
What Cannot Be Computed Locally!∗

Fabian Kuhn
Dept. of Computer Science

ETH Zurich
8092 Zurich, Switzerland

kuhn@inf.ethz.ch

Thomas Moscibroda
Dept. of Computer Science

ETH Zurich
8092 Zurich, Switzerland

moscitho@inf.ethz.ch

Roger Wattenhofer
Dept. of Computer Science

ETH Zurich
8092 Zurich, Switzerland

wattenhofer@inf.ethz.ch

ABSTRACT
We give time lower bounds for the distributed approxima-
tion of minimum vertex cover (MVC) and related problems
such as minimum dominating set (MDS). In k communi-
cation rounds, MVC and MDS can only be approximated

by factors Ω(nc/k2
/k) and Ω(∆1/k/k) for some constant c,

where n and ∆ denote the number of nodes and the largest
degree in the graph. The number of rounds required in
order to achieve a constant or even only a polylogarith-
mic approximation ratio is at least Ω(

p
log n/ log log n) and

Ω(log ∆/ log log ∆). By a simple reduction, the latter lower
bounds also hold for the construction of maximal matchings
and maximal independent sets.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
approximation hardness, distributed algorithms, dominat-
ing set, locality, lower bounds, maximal independent set,
maximal matching, vertex cover

∗The work presented in this paper was supported (in part)
by the Hasler Stiftung (Berne, Switzerland) and by the Na-
tional Competence Center in Research on Mobile Informa-
tion and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under
grant number 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04, July 25–28, 2004, St. John’s, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

1. INTRODUCTION AND
RELATED WORK

What can be computed locally? Naor and Stockmayer
[18] raised this for the distributed computing community
vital question over a decade ago, and though the price of lo-
cality has puzzled researchers ever since, results have been
rare [15]. The importance of locality stems from the desire of
achieving a global goal based on local information only. This
is not only one of the key challenges when developing fast
distributed algorithms, but it also improves fault-tolerance
and allows detecting illegal global configurations by check-
ing local conditions [1]. Recent advances in networking and
ever-growing distributed systems drive the need for a thor-
ough understanding of locality issues. In the present paper,
we study the impact of locality in the classic message pass-
ing model where the distributed system is modelled as a
graph: Nodes represent the processors and two nodes can
communicate if and only if they share an edge in the graph.

We present lower bounds for several traditional graph
theory problems, starting out with minimum vertex cover
(MVC). A vertex cover for a graph G = (V,E) is a subset of
nodes V ′ ⊆ V such that, for each edge (u, v) ∈ E, at least
one of the two incident nodes u, v belongs to V ′. Finding
a vertex cover with minimum cardinality is known as the
MVC problem.

In local algorithms, nodes are only allowed to communi-
cate with their direct neighbors in G. After several rounds of
communication they need to come up with a global solution,
e.g. a good approximation for MVC. Intuitively MVC could
be considered perfectly suited for a local algorithm: A node
should be able to decide whether to join the vertex cover by
communicating with its neighbors a few times. Very distant
nodes seem to be superfluous for this decision. The fact
that there is a simple greedy algorithm which approximates
MVC within a factor 2 in the global setting, additionally
raises hope for an efficient local algorithm.

To our surprise, however, there is no such algorithm. In
this paper, we show that in k communication rounds, MVC

can only be approximated by a factor Ω(nc/k2
/k) for a con-

stant c larger than 1/4. This implies a running time of

Ω(
p

log n/ log log n) in order to achieve a constant or even
polylogarithmic approximation ratio. When making the re-
sult dependent on the maximum degree ∆ instead of the
number of nodes n, the approximation ratio is Ω(∆1/k/k)
and the time needed to obtain a polylogarithmic or con-
stant approximation is Ω(log ∆/ log log ∆). The results for
MVC can be extended to minimum dominating set (MDS)
and other distributed covering problems. Further, the time

300

lower bounds for constant MVC approximations also apply
for the construction of maximal matchings and maximal in-
dependent sets. Since all lower bounds hold even in the
cases of unbounded messages and complete synchrony, the
lower bounds are a true consequence of locality limitations,
and not merely a side-effect of congestion, asynchrony, or
limited message size.

Moreover, some of our lower bounds are almost tight for
many cases. In k rounds, MVC can be approximated by
a factor O(∆1/k) [10]. In order to obtain a polylogarith-
mic approximation, we have to set k = O(log∆/ log log ∆),
for a constant approximation, the number of rounds is k =
O(log ∆). Hence, for polylogarithmic (and worse) approx-
imation ratios, our lower bound is tight whereas for con-
stant approximation algorithms, it is tight up to a factor
O(log log ∆). For the MDS problem, recent results show
that in k rounds, the respective linear program can be ap-

proximated up to a factor ∆c/
√

k, whereas for MDS itself

an approximation ratio of ∆c/
√

k ln∆ can be achieved [9,
10]. If message size and local computations are unbounded,
the MDS LP and MDS can be appoximated up to factors
O(n1/k) and O(n1/k ln∆), respectively [10]. It is easy to
verify that the lower bounds for MDS also holds for the frac-
tional LP version. The best known algorithms for maximal
matching and maximal independent set need time O(log n)
[8, 17].

A pioneering and seminal lower bound by Linial [15] shows
that the non-uniform O(log∗n) coloring algorithm by Cole
and Vishkin [2] is asymptotically optimal for the ring. This
lower bound has been cherished by researchers as a funda-
mental advancement in the theory of distributed algorithms.
For different models of distributed computation, there is a
number of other lower bounds [6, 11], most notably for the
problem of constructing a minimum spanning tree (MST) of
the network graph [3, 4, 16, 20]. With the exception of [3],
the MST lower bounds apply to a model where message size
is bounded. In [4], the lower bounds of [16, 20] are extended
to approximation algorithms. To the best of our knowledge,
it is the only previous lower bound on distributed hardness
of approximation.

Linial’s lower bound [15] is based on the drosophila mela-
nogaster of distributed computing, the ring network. For
the MVC problem, highly symmetric graphs such as rings
often feature a straight-forward solution with constant ap-
proximation ratio. In any δ-regular graph, for example, the
algorithm which includes all nodes in the vertex cover is
already a 2-approximation for MVC: Each node will cover
at most δ edges, the graph has nδ/2 edges, and therefore at
least n/2 nodes need to be in the minimum vertex cover. On
the other extreme, asymmetric graphs often enjoy constant-
time algorithms, too. In a tree, choosing all inner nodes
yields a 2-approximation. The same trade-off exists for node
degrees. If the maximum node degree is low (constant), we
can tolerate to choose all nodes, and have by definition a
good (constant) approximation. If there are nodes with high
degree, the diameter of the graph is small, and a few com-
munication rounds suffice to inform all nodes of the entire
graph. What we need is a construction of a not too sym-
metric and not too asymmetric graph with a variety of node
degrees! Not many graphs with these “non-properties” are
known in distributed computing.

The proof of our lower bounds is based on the timeless in-
distinguishability argument [7, 12]. In k rounds of commu-

nication, a network node can only gather information about
nodes which are at most k hops away and hence, only this
information can be used to determine the computation’s out-
come. In particular, we show that after k communication
rounds two neighboring nodes see exactly the same graph
topology; informally speaking, both neighbors are equally
qualified to join the vertex cover. However, in our example
graphs, choosing the wrong neighbor will be ruinous.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the model of computation. The lower bound
is constructed in Section 3. In Section 4, we show how our
MVC lower bound can be extended to minimum dominating
set (MDS), maximal matching (MM), and maximal indepen-
dent set (MIS). Section 5 concludes the paper.

2. MODEL
We consider the classic message passing model, which con-

sists of a point-to-point communication network, described
by an undirected graph G = (V,E). Nodes correspond to
processors and edges represent communication channels be-
tween them. In one communication round, each node of the
network graph can send an arbitrarily long message to each
of its neighbors. Local computations are for free and ini-
tially, nodes have no knowledge about the network graph.
They only know their own unique identifier.1 In k commu-
nication rounds, a node v may collect the IDs and intercon-
nections of all nodes up to distance k from v. Tv,k is defined
to be the topology seen by v after these k rounds, i.e. Tv,k is
the graph induced by the k-neighborhood of v where edges
between nodes at exactly distance k are excluded. The la-
belling (i.e. the assignment of IDs) of Tv,k is denoted by
L(Tv,k).

Because message size is unbounded, the best a deter-
ministic algorithm can do in time k, is to collect its k-
neighborhood and base its decision on (Tv,k,L(Tv,k)). In
other words, a deterministic distributed algorithm can be
regarded as a function mapping (Tv,k,L(Tv,k)) to the possi-
ble outputs. For randomized algorithms, the outcome of v is
also dependent on the randomness computed by the nodes
in Tv,k.

The model presented is in accordance with the one used
in [15] and textbooks [19]. It is the strongest possible model
when proving lower bounds for local computations because
it focuses entirely on the locality of distributed problems
and abstracts away other issues arising in the design of dis-
tributed algorithms (e.g. need for small messages, fast local
computations, etc.). This guarantees that our lower bounds
are true consequences of locality.

3. LOWER BOUND
We first give an outline of the proof. The basic idea is to

construct a graph Gk = (V,E), for each positive integer k,
which contains a bipartite subgraph S with node set C0∪C1

and edges in C0 ×C1 as shown in Figure 1. Set C0 consists
of n0 nodes each of which has δ0 neighbors in C1. Each of
the n0 · δ0

δ1
nodes in C1 has δ1, δ1 > δ0, neighbors in C0. The

goal is to construct Gk in such a way that all nodes in v ∈ S
see the same topology Tv,k within distance k. In a globally
optimal solution, all edges of S may be covered by nodes in
C1 and hence, no node in C0 needs to join the vertex cover.

1Our results hold for any possible ID space including the
standard case where IDs are the numbers 1, . . . , n.

301

In a local algorithm, however, the decision of whether or
not a node joins the vertex cover depends only on its local
view, that is, the pair (Tv,k,L(Tv,k)). We show that because
adjacent nodes in S see the same Tv,k, every algorithm adds
a large portion of nodes in C0 to its vertex cover in order to
end up with a feasible solution. In other words, we construct
a graph in which the symmetry between two adjacent nodes
cannot be broken within k communication rounds. This
yields suboptimal local decisions and hence, a suboptimal
approximation ratio. Throughout the proof, we will use C0

and C1 to denote the two sets of the bipartite subgraph S.
Our proof is organized as follows. The structure of Gk

is defined in Subsection 3.1. In Subsection 3.2, we show
how Gk can be constructed without small cycles, ensuring
that each node sees a tree within distance k. Subsection 3.3
proves that adjacent nodes in C0 and C1 have the same view
Tv,k and finally, Subsection 3.4 derives the lower bounds.

3.1 The Cluster Tree
The nodes of graph Gk = (V,E) can be grouped into dis-

joint sets which are linked to each other as bipartite graphs.
We call these disjoint sets of nodes clusters.

We define the structure of Gk using a directed tree CTk =
(C,A) with doubly labelled arcs � : A → N × N. We refer to
CTk as the cluster tree, because each vertex C ∈ C represents
a cluster of nodes in Gk. The size of a cluster |C| is the
number of nodes the cluster contains. An arc a = (C,D) ∈
A with �(a) = (δC , δD) denotes that the clusters C and D
are linked as a bipartite graph, such that each node u ∈ C
has δC neighbors inD and each node v ∈ D has δD neighbors
in C. It follows that |C| · δC = |D| · δD. We call a cluster
leaf-cluster if it is adjacent to only one other cluster, and we
call it inner-cluster otherwise.

Definition 3.1. The cluster tree CTk is recursively de-
fined as follows:

CT1 := (C1,A1), C1 := {C0, C1, C2, C3}
A1 := {(C0, C1), (C0, C2), (C1, C3)}

�(C0, C1) := (δ0, δ1), �(C0, C2) := (δ1, δ2),

�(C1, C3) := (δ0, δ1)

Given CTk−1, we obtain CTk in two steps:

• For each inner-cluster Ci, add a new leaf-cluster C′
i

with �(Ci, C
′
i) := (δk, δk+1).

• For each leaf-cluster Ci of CTk−1 with (Ci′ , Ci) ∈ A
and �(Ci′ , Ci) = (δp, δp+1), add k−1 new leaf-clusters
C′

j with �(Ci, C
′
j) := (δj , δj+1) for j = 0 . . . k, j �= p+1.

Further, we define |C0| = n0 for all CTk.

Figure 1 shows CT2. The shaded subgraph corresponds
to CT1. The labels of each arc a ∈ A are of the form �(a) =
(δl, δl+1) for some l ∈ {0, . . . , k}. Further, setting |C0| = n0

uniquely determines the size of all other clusters. In order to
simplify the upcoming study of the cluster tree, we need two
additional definitions. The level of a cluster is the distance
to C0 in the cluster tree (cf. Figure 1). The depth of a cluster
C is its distance to the furthest leaf in the subtree rooted
at C. Hence, the depth of a cluster plus one equals the
height of the subtree corresponding to C. In the example of
Figure 1, the depths of C0, C1, C2, and C3 are 3, 2, 1, and
1, respectively.

12δ δ3 δ2 δ0 δ1

δ0 δ1

δ3δ2 δ1δ0

δ3δ2δ2 δ1δ0δ1

δ

Level 0

Level 1

Level 2

Level 3

3

2C

0C
S

1

C

C

Figure 1: Cluster-Tree CT2.

Note that CTk describes the general structure of Gk, i.e.
it defines for each node the number of neighbors in each clus-
ter. However, CTk does not specify the actual adjacencies.
In the next subsection, we show that Gk can be constructed
so that each node’s view is a tree.

3.2 The Lower Bound Graph
In Subsection 3.3, we will prove that the topologies seen

by nodes in C0 and C1 are identical. This task is greatly
simplified if each node’s topology is a tree (rather than a
general graph) because we do not have to worry about cycles.
The girth of a graph G, denoted by g(G), is the length of
the shortest cycle in G. We want to construct Gk with
girth at least 2k + 1 so that in k communication rounds,
all nodes see a tree. Given the structural complexity of Gk

for large k, constructing Gk with large girth is not a trivial
task. The solution we present is based on the construction
of the graph family D(r, q) as proposed in [13]. For given
r and q, D(r, q) defines a bipartite graph with 2qr nodes
and girth g(D(r, q)) ≥ r + 5. In particular, we show that
for appropriate r and q, we obtain an instance of Gk by
deleting some of the edges of D(r, q). In the following, we
introduce D(r, q) up to the level of detail which is necessary
to understand our results. For the interested reader, we refer
to [13].

For an integer r ≥ 1 and a prime power q, D(r, q) defines
a bipartite graph with node set P ∪L and edges ED ⊂ P×L.
The nodes of P and L are labelled by the r-vectors over the
finite field Fq , i.e. P = L = F

r
q . In accordance with [13], we

denote a vector p ∈ P by (p) and a vector l ∈ L by [l]. The
components of (p) and [l] are written as follows (for D(r, q),
the vectors are projected onto the first r coordinates):

(p) = (p1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, p3,2, . . .

pi,i, p
′
i,i, pi,i+1, pi+1,i, . . .) (1)

[l] = [l1, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, l3,2, . . .

li,i, l
′
i,i, li,i+1, li+1,i, . . .]. (2)

Note that the somewhat confusing numbering of the compo-
nents of (p) and [l] is chosen in order to simplify the following
system of equations. There is an edge between two nodes (p)
and [l], exactly if the first r − 1 of the following conditions
hold (for i = 2, 3, . . .).

l1,1 − p1,1 = l1p1

l1,2 − p1,2 = l1,1p1

l2,1 − p2,1 = l1p1,1

li,i − pi,i = l1pi−1,i (3)
l′i,i − p′i,i = li,i−1p1

li,i+1 − pi,i+1 = li,ip1

li+1,i − pi+1,i = l1p
′
i,i

302

In [13], it is shown that for odd r ≥ 3, D(r, q) has girth
at least r + 5. Further, if a node u and a coordinate of
a neighbor v is fixed, the remaining coordinates of v are
uniquely determined. This is concretized in the next lemma.

Lemma 3.2. For all (p) ∈ P and l1 ∈ Fq , there is exactly
one [l] ∈ L such that l1 is the first coordinate of [l] and
such that (p) and [l] are connected by an edge in D(r, q).
Analogously, if [l] ∈ L and p1 ∈ Fq are fixed, the neighbor
(p) of [l] is uniquely determined.

Proof. The first r − 1 equations of (3) define a linear
system for the unknown coordinates of [l]. If the equations
and variables are written in the given order, the matrix cor-
responding to the resulting linear system of equations is a
lower triangular matrix with non-zero elements in the diag-
onal. Hence, the matrix has full rank and by the basic laws
of (finite) fields, the solution is unique. Exactly the same
argumentation holds for the second claim of the lemma.

We are now ready to construct Gk with large girth. We
start with an arbitrary instance G′

k of the cluster tree which
may have the minimum possible girth 4. An elaboration of
the construction of G′

k is deferred to Subsection 3.4. For
now, we simply assume that G′

k exists. Both Gk and G′
k

are bipartite graphs with odd-level clusters in one set and
even-level clusters in the other. Let m be the number of
nodes in the larger of the two partitions of G′

k. We choose q
to be the smallest prime power greater than or equal to m.
In both partitions V1(G

′
k) and V2(G

′
k) of G′

k, we uniquely
label all nodes v with elements c(v) ∈ Fq .

As already mentioned, Gk is constructed as a subgraph of
D(r, q) for appropriate r and q. We choose q as described
above and we set r = 2k − 4 such that g(D(r, q)) ≥ 2k + 1.
Let (p) = (p1, . . .) and [l] = [l1, . . .] be two nodes of D(r, q).
(p) and [l] are connected by an edge in Gk if and only if
they are connected in D(r, q) and there is an edge between
nodes u ∈ V1(G

′
k) and v ∈ V2(G

′
k) for which c(u) = p1 and

c(v) = l1. Finally, nodes without incident edges are removed
from Gk.

Lemma 3.3. The graph Gk constructed as described above
is a cluster tree with the same degrees δi as in G′

k. Gk has
at most 2mq2k−5 nodes and girth at least 2k + 1.

Proof. The girth directly follows from the construction;
removing edges cannot create cycles.

For the degrees between clusters, consider two neighboring
clusters C′

i ⊂ V1(G
′
k) and C′

j ⊂ V2(G
′
k) in G′

k. In Gk, each

node is replaced by q2k−5 new nodes. The clusters Ci and
Cj consist of all nodes (p) and [l] which have their first
coordinates equal to the labels of the nodes in C′

i and C′
j ,

respectively. Let each node in C′
i have δα neighbors in C′

j ,
and let each node in C′

j have δβ neighbors in C′
i. By Lemma

3.2, nodes in Ci have δα neighbors in Cj and nodes in Cj

have δβ neighbors in Ci, too.

Remark. In [14], it has been shown that D(r, q) is discon-

nected and consists of at least q�
r+2
4 � isomorphic compo-

nents which the authors call CD(r, q). Clearly, those com-
ponents are valid cluster trees as well and we could use one
of them for the analysis. As our asymptotic results remain
unaffected by this observation, we continue to use Gk as
constructed above.

3.3 Equality of Views
In this subsection, we prove that two adjacent nodes in

clusters C0 and C1 have the same view, i.e. within distance
k, they see exactly the same topology Tv,k. Consider a node
v ∈ Gk. Given that v’s view is a tree, we can derive its
view-tree by recursively following all neighbors of v. The
proof is largely based on the observation that corresponding
subtrees occur in both node’s view-tree.

Let Ci and Cj be adjacent clusters in CTk connected by
�(Ci, Cj) = (δl, δl+1), i.e. each node in Ci has δl neighbors
in Cj , and each node in Cj has δl+1 neighbors in Ci. When
traversing a node’s view-tree, we say that we enter cluster
Cj (resp., Ci) over link δl (resp., δl+1) from cluster Ci (resp.,
Cj). Furthermore, we make the following definitions:

Definition 3.4. The following nomenclature refers to sub-
trees in the view-tree of a node in Gk.

• Mi is the subtree seen upon entering cluster C0 over a
link δi.

• Bi,d,λ is a subtree seen upon entering a cluster C ∈
C \ {C0} over a link δi, where C is on level λ and has
depth d.

Definition 3.5. When entering subtree Bi,d,λ from a clus-
ter on level λ − 1 (λ + 1), we write B↑

i,d,λ (B↓
i,d,λ). The

predicate ¬ in B¬
i,d,λ denotes that instead of δi, the label of

the link into this subtree is δi − 1.

The predicate ¬ is necessary when, after entering Cj from
Ci, we immediately return to Ci on link δi. In the view-
tree, the edge used to enter Cj connects the current subtree
to its parent. Thus, this edge is not available anymore and
there are only δi − 1 edges remaining to return to Ci. The
predicates ↑ and ↓ describe from which “direction” a cluster
has been entered. As the view-trees of nodes in C0 and C1

have to be absolutely identical for our proof to work, we
must not neglect these admittedly tiresome details.

The following example should clarify the various defini-
tions. Additionally, you may refer to the example of G3 in
Figure 3 in the appendix.

Example 3.6. Consider G1. Let VC0 and VC1 denote the
view-trees of nodes in C0 and C1, respectively:

VC0 = B↑
0,1,1 ∪B↑

1,0,1 VC1 = B↑
0,0,2 ∪M1

B↑
0,1,1 = B↑

0,0,2 ∪M¬
1 B↑

0,0,2 = B↓,¬
1,1,1

B↑
1,0,1 = M¬

2 M1 = B↑,¬
0,1,1 ∪B↑

1,0,1

· · · · · ·

We start the proof by giving a set of rules which describe
the subtrees seen at a given point in the view-tree. We
call these rules derivation rules because they allow us to
derive the view-tree of a node by mechanically applying the
matching rule for a given subtree.

Lemma 3.7. The following derivation rules hold in Gk:

Mi =
[

j=0...k
j �=i−1

B↑
j,k−j,1 ∪ B↑,¬

i−1,k−i+1,1

B↑
i,d,1 = F{i+1} ∪D{} ∪ M¬

i+1

B↓
i,d,1 = F{i−1,k−d+1} ∪D{} ∪Mk−d+1 ∪B↑,¬

i−1,d−1,2

B↑
i,d,λ = F{i+1} ∪D{i+1} ∪ B↓,¬

i+1,d+1,λ−1

303

where F and D are defined as

FW :=
[

j=0...k−d+1
j /∈W

B↑
j,d−1,λ+1

DW :=
[

j=k−d+2...k
j /∈W

B↑
j,k−j,λ+1.

Proof. We first show the derivation rule for Mi. It can
be seen in Example 3.6 that the rule holds for k = 1. For
the induction step, we build CTk+1 from CTk as defined
in Definition 3.1. M (k) is an inner cluster and therefore,
one new cluster Bk+1,0,1 is added. The depth of all other

subtrees increases by 1 and M (k+1) :=
S

j=0...k+1 B
↑
j,k−j,1

follows. If we enter M (k+1) over link δi, there will be only
δi−1 − 1 edges left to return to the cluster from which we
had entered C0. Consequently, the link δi−1 features the ¬
predicate.

The remaining rules follow along the same lines. Let Ci be
a cluster with entry-link δi which was first created in CTr,
r < k (Note that in CTk, r = k− d holds because each sub-
tree increases its depth by one in each “round”). According
to the second building rule of Definition 3.1, r new neighbor-
ing clusters (subtrees) are created in CTr+1. More precisely,
a new cluster is created for all entry-links δ0 . . . δr, except δi.
We call these subtrees fixed-depth subtrees F . If the subtree
with root Ci has depth d in CTk, the fixed-depth subtrees
have depth d − 1. In each CTr′ , r′ ∈ {r + 2, . . . , k}, Ci is
an inner-cluster and hence, one new neighboring cluster with
entry-link δr′ is created. We call these subtrees diminishing-
depth subtrees D. In CTk, each of these subtrees has grown
to depth k − r′.

We now turn our attention to the differences between the
three rules. They stem from the exceptional treatment of
level 1, as well as the predicates ↑ and ↓. In B↑

i,d,1, the
link δi+1 returns to C0, but contains only δi+1 − 1 edges
in the view-tree. In B↓

i,d,1, we have to consider two special
cases. The first one is the link to C0. For a cluster on level
1 with entry-link (from C0) i, the equality k = d + i holds
and therefore, the link to C0 is δk−d+1 and thus, Mk−d+1

follows. Secondly, we write B↑,¬
i−1,d−1,2, because there is one

edge less leading back to the cluster where we had come
from. (Note that since we entered the current cluster from
a higher level, the link leading back to where we came from
is δi−1, instead of δi+1). Finally in B↑

i,d,λ, we again have to
treat the returning link δi+1 specially.

Note that the general derivation rule for B↓
i,d,λ is missing

as we will not need it for the proof.

Next, we define the notion of r-equality. Intuitively, if two
view-trees are r-equal, they have the same topology within
distance r.

Definition 3.8. Let V1 =
S

i=0...k bi and V2 =
S

i=0...k b
′
i

be view-trees; bi and b′i are subtrees entered on link δi. Then,
V1 and V2 are r-equal if all corresponding subtrees are (r−1)-
equal,

V1
r
= V2 ⇐= bi

r−1
= b′i , ∀i ∈ {0, . . . , k}.

Further, all subtrees are 0-equal: Bi,d,λ
0
= Bi′,d′,λ′ and

Bi,d,λ
0
= Mi′ for all i, i′, d, d′, λ, and λ′.

Using the notion of r-equality, it is now easy to define
what we actually have to prove. We will show that in Gk,

VC0
k
= VC1 holds. This is equivalent to showing that each

node in C0 sees exactly the same topology within distance k
as its neighbor in C1. We will now establish several helper
lemmas.

Lemma 3.9. Let β and β′ be sets of subtrees, and let
Vv1 = B↑

i,d,x ∪ β and Vv2 = B↑
i,d,y ∪ β′ be two view-trees.

Then, for all x and y

Vv1
r
= Vv2 ⇐= β r−1

= β′.

Proof. Assume that the roots of the subtree of Vv1 and
Vv2 are Ci and Cj . The subtrees have equal depth and entry-
link and they have thus grown identically. Hence, all paths
which do not return to clusters Ci and Cj must be identical.
Further, consider all paths which, after s hops, return to Ci

and Cj over link δi+1. After these s hops, they return to the
original cluster and see views V ′

v1 and V ′
v2 , differing from Vv1

and Vv2 only in the placement of the ¬ predicate. This does
not affect β and β′ and therefore,

Vv1
r
= Vv2 ⇐= V ′

v1
r−s
= V ′

v2 ∧ β r−1
= β′ , s > 1.

The same argument can be repeated until r − s = 0 and
because V ′

v1
0
= V ′

v2 , the lemma follows.

Lemma 3.10. Let β and β′ be sets of subtrees, and let
Vv1 = B↑

i,d,x ∪ β and Vv2 = B↑
i,d′,y ∪ β′ be two view-trees.

Then, for all x and y, and for all r ≤ min (d, d′),

Vv1
r
= Vv2 ⇐= β r−1

= β′.

Proof. W.l.o.g, we assume d′ ≤ d. In the construction
process of Gk, the root clusters of Vv1 and Vv2 have been
created in steps k−d and k−d′, respectively. By Definition
3.1, all subtrees with depth d∗ < d′ have grown identically in
both views. The remaining subtrees of Vv2 were all created
in step k− d′ +1 and have depth d′ − 1. The corresponding
subtrees in Vv1 have at least the same depth and hence, each
pair of corresponding subtrees are (d′−1)-equal. It follows
that for r ≤ min (d, d′), the subtrees B↑

i,d,x and B↑
i,d′,y are

identical within distance r. Using the same argument as in
Lemma 3.9 concludes the proof.

2 Τ2 Τ1 Τ0

δ4−1

δ1

δ1

VC1

δ4−1

δ1

Τ2

δ3 δ2+ +1 δ3 δ2+ +1

δ3 δ0−13

−1δ2 δ1

δ0

’ ’ ’

δ

VC

δ

0

2

Τ1 Τ0Τ

Figure 2: The view-trees VC0 and VC1 in G3 seen
upon using link δ1.

Figure 2 shows a part of the view-trees of nodes in C0 and
C1 in G3. The figure shows that the subtrees with links δ0
and δ2 cannot be matched directly to one another because
of the different placement of the −1. It turns out that this
inherent difference appears in every step of our theorem.
However, the following lemma shows that the subtrees T0

and T2 (T ′
0 and T ′

2) are equal up to the required distance and

304

hence, nodes are unable to distinguish them. It is this crucial
property of our cluster tree, which allows us to “move” the ¬
predicate between links δi and δi+2 and enables us to derive
the main theorem.

Lemma 3.11. Let β and β′ be sets of subtrees and let Vv1

and Vv2 be defined as

Vv1 = M¬
i ∪B↑

i−2,k−i,2 ∪ β

Vv2 = Mi ∪B↑,¬
i−2,k−i,2 ∪ β′.

Then, for all i ∈ {2, . . . , k},

Vv1
k−i
= Vv2 ⇐= β k−i−1

= β′.

Proof. Again, we make use of Lemma 3.7 to show that
Mi and B↑

i−2,k−i,2 are (k−i−1)-equal. The claim then follows
from the fact that the two subtrees are not distinguishable
and the placement of the ¬ predicate is irrelevant.

Mi =
[

j=0...k
j �=i−1

B↑
j,k−j,1 ∪ B↑,¬

i−1,k−i+1,1

B↑
i−2,k−i,2 =

[
j=0...i+1

j �=i−1

B↑
j,k−i−1,3 ∪

[
j=i+2...k

B↑
j,k−j,3

∪ B↓,¬
i−1,k−i+1,1

For j = {0, . . . , i−2, i, . . . , k}, all subtrees are equal accord-
ing to Lemmas 3.9 and 3.10. It remains to be shown that
B↑

i−1,k−i+1,1
k−i−2

= B↓
i−1,k−i+1,1. For that purpose, we plug

B↑
i−1,k−i+1,1 and B↓

i−1,k−i+1,1 into Lemma 3.7 and show
their equality using the derivation rules. Let β be defined
as β := F{i−2,i} ∪D{}.

B↑
i−1,k−i+1,1 = F{i} ∪D{} ∪M¬

i

= B↑
i−2,k−i,2 ∪M¬

i ∪ β

B↓
i−1,k−i+1,1 = F{i−2,i} ∪D{} ∪Mi ∪B↑,¬

i−2,k−i,2

= B↑,¬
i−2,k−i,2 ∪Mi ∪ β

Again, if Mi and B↑
i−2,k−i,2 are (k−i−3)-equal, we can move

the ¬ predicate because the subtrees are indistinguishable.
Hence, we have to show Mi

k−i−3
= B↑

i−2,k−i,2. In the proof,

we have reduced Vv1
k−i
= Vv2 stepwise to an expression of

diminishing equality conditions, i.e.

Vv1
k−i
= Vv2 ⇐= Mi

k−i−1
= B↑

i−2,k−i,2

⇐= B↑
i−1,k−i+1,1

k−i−2
= B↓

i−1,k−i+1,1

⇐= Mi
k−i−3

= B↑
i−2,k−i,2.

This process can be continued until either

B↑
i−1,k−i+1,1

0
= B↓

i−1,k−i+1,1 or Mi
0
= B↑

i−2,k−i,2

which is always true.

Finally, we are ready to prove the main theorem.

Theorem 3.12. Consider graph Gk. Let VC0 and VC1 be
the view-trees of two adjacent nodes in clusters C0 and C1,
respectively. Then, VC0

k
= VC1 .

Proof. Initially, each node in C0 sees subtree M∗ and
each node in C1 sees B∗,k,1 (∗ denotes that the subtree has
not been entered on any link):

VC0 : M∗ =
[

j=0...k

B↑
j,k−j,1

VC1 : B∗,k,1 =
[

j=0...k
j �=1

B↑
j,k−j,2 ∪M1.

It follows VC0
k
= VC1 ⇐= B↑

1,k−1,1
k−1
= M1 because all other

subtrees are (k − 1)-equal by Lemma 3.9. Having reduced

VC0
k
= VC1 to B↑

1,k−1,1
k−1
= M1, we can further reduce it to

M2
k−2
= B↑

2,k−2,1:

M1 =
[

j=1...k

B↑
j,k−j,1 ∪ B↑,¬

0,k,1

B↑
1,k−1,1 = B↑

0,k−2,2 ∪B↑
1,k−2,2 ∪D{} ∪ M¬

2

k−2
=

Lem. 3.11
B↑,¬

0,k−2,2 ∪B↑
1,k−2,2 ∪D{} ∪ M2.

By Lemmas 3.9 and 3.10, all subtree are (k−2)-equal, except
B↑

2,k−2,1 and M2.

It seems clear that we can continue to reduce VC0
k
= VC1

step by step in the same fashion until we reach 0. For the in-
duction step, we assume VC0

k
= VC1 ⇐= B↑

r,k−r,1
k−r
= Mr for

r < k and prove VC0
k
= VC1 ⇐= B↑

r+1,k−r−1,1
k−r−1

= Mr+1.

Mr =
[

j=0...k
j �=r−1

B↑
j,k−j,1 ∪ B↑,¬

r−1,k−r+1,1

B↑
r,k−r,1 =

[
j=0...r

B↑
j,k−r−1,2 ∪D{} ∪ M¬

r+1

k−r−1
=

Lem. 3.11

[
j=0...r
j �=r−1

B↑
j,k−r−1,2 ∪ B↑,¬

r−1,k−r−1,2

∪
[

j=r+2...k

B↑
j,k−j,2 ∪ Mr+1.

Apart from Mr+1 (resp,. B↑
r+1,k−r−1,1), all subtrees are

(k − r− 1)-equal by Lemmas 3.9 and 3.10. Since Mr+1 and
B↑

r+1,k−r−1,1 are the only subtrees not being immediately
matched, the induction step follows. For r = k − 1, we get
VC0

k
= VC1 ⇐= B↑

k,0,1
0
= Mk, which concludes the proof

because B↑
k,0,1

0
= Mk is true.

Remark. As a side-effect, the proof of Theorem 3.12 has
highlighted the fundamental significance of the critical path
P = (δ1, δ2, . . . , δk) in CTk. After following path P , the view
of a node v ∈ C0 ends up in the leaf-cluster neighboring C0

and sees δi+1 neighbors. Following the same path, a node
v′ ∈ C1 ends up in C0 and sees

Pi
j=0 δj−1 neighbors. There

is no way to match these views. This inherent inequality is
the underlying reason for the way Gk is defined: It must be
ensured that the critical path is at least k hops long.

3.4 Analysis
In this subsection, we derive the lower bounds on the ap-

proximation ratio of k-local MVC algorithms. Let OPT be
an optimal solution for MVC and let ALG be the solution
computed by any algorithm. The main observation is that
adjacent nodes in the clusters C0 and C1 have the same view

305

and therefore, every algorithm treats nodes in both of the
two clusters the same way. Consequently, ALG contains a
significant portion of the nodes of C0, whereas the optimal
solution covers the edges between C0 and C1 entirely by
nodes in C1.

Lemma 3.13. Let ALG be the solution of any distributed
(randomized) vertex cover algorithm which runs for at most
k rounds. When applied to Gk as constructed in Subsection
3.2 in the worst case (in expectation), ALG contains at least
half of the nodes of C0.

Proof. Let v0 ∈ C0 and v1 ∈ C1 be two arbitrary, adja-
cent nodes from C0 and C1. We first prove the lemma for
deterministic algorithms. The decision whether a given node
v enters the vertex cover depends solely on the topology Tv,k

and the labelling L(Tv,k). Assume that the labelling of the
graph is chosen uniformly at random. Further, let pA0 and
pA1 denote the probabilities that v0 and v1, respectively, end
up in the vertex cover when a deterministic algorithm A op-
erates on the randomly chosen labelling. By Theorem 3.12,
v0 and v1 see the same topologies, that is, Tv0,k = Tv1,k.
With our choice of labels, v0 and v1 also see the same dis-
tribution on the labellings L(Tv0,k) and L(Tv1,k). Therefore
it follows that pA0 = pA1 .

We have chosen v0 and v1 such that they are neighbors in
Gk. In order to obtain a feasible vertex cover, at least one
of the two nodes has to be in it. This implies pA0 + pA1 ≥ 1
and therefore pA0 = pA1 ≥ 1/2. In other words, for all nodes
in C0, the probability to end up in the vertex cover is at
least 1/2. Thus, by the linearity of expectation, at least half
of the nodes of C0 are chosen by algorithm A. Therefore,
for every deterministic algorithm A, there is at least one
labelling for which at least half of the nodes of C0 are in the
vertex cover.2

The argument for randomized algorithms is now straight-
forward using Yao’s minimax principle. The expected num-
ber of nodes chosen by a randomized algorithm cannot be
smaller than the expected number of nodes chosen by an op-
timal deterministic algorithm for an arbitrarily chosen dis-
tribution on the labels.

Lemma 3.13 gives a lower bound on the number of nodes
chosen by any k-local MVC algorithm. In particular, we
have that E [|ALG |] ≥ |C0|/2 = n0/2. We do not know
OPT , but since the nodes of cluster C0 are not necessary
to obtain a feasible vertex cover, the optimal solution is
bounded by |OPT | ≤ n− n0. In the following, we define

δi := δi , ∀i ∈ {0, . . . , k + 1} (4)

for some value δ.

Lemma 3.14. If k + 1 < δ, the number of nodes n of Gk

is

n ≤ n0

�
1 +

k + 1

δ − (k + 1)

�
.

Proof. There are n0 nodes in C0. By (4), the number
of nodes per cluster decreases for each additional level by a
factor δ. Hence, a cluster on level l contains n0/δ

l nodes.

2In fact, since at most |C0| such nodes can be in the vertex
cover, for at least 1/3 of the labellings, the number exceeds
|C0|/2.

By the definition of CTk, each cluster has at most k + 1
neighboring clusters on a higher level. Thus, the number of
nodes nl on level l is upper bounded by

nl ≤ (k + 1)l · n0

δl
.

Summing up over all levels l and interpreting the sum as a
geometric series, we obtain

n ≤ n0 ·
k+1X
i=0

�
k + 1

δ

�l

≤ n0 ·
∞X

i=0

�
k + 1

δ

�l

= n0 + n0

�
k + 1

δ

�
1

1 − k+1
δ

!

= n0

�
1 +

k + 1

δ − (k + 1)

�
.

It remains to determine the relationship between δ and n0

such that Gk can be realized as described in Subsection 3.2.
There, the construction of Gk with large girth is based on
a smaller instance G′

k where girth does not matter. Using
(4) (i.e. δi := δi), we can now tie up this loose end and
describe how to obtain G′

k. The number of nodes per cluster
decreases by a factor δ on each level of CTk. Including
C0, CTk consists of k + 2 levels. The maximum number
of neighbors inside a leaf-cluster is δk. Hence, we can set
the sizes of the clusters on the outermost level k + 1 to
be δk. This implies that the size of a cluster on level l
is δ2k+1−l. Particularly, the size of C′

0 at level 0 in G′
k is

n′
0 = δ2k+1. Let Ci and Cj be two adjacent clusters with

�(Ci, Cj) = (δi, δi+1). Ci and Cj can simply be connected
by as many complete bipartite graphs Kδi,δi+1 as necessary.

If we assume that k+1 ≤ δ/2, we have n ≤ 2n0 by Lemma
3.14. Applying the construction of Subsection 3.2, we get
n0 ≤ n′

0 · 〈n′〉2k−5, where 〈n′〉 denotes the smallest prime
power larger than or equal to n′, i.e. 〈n′〉 < 4n′

0. Putting all
together, we get

n0 ≤ (4n′
0)

2k−4 ≤ 42k−4δ4k2
. (5)

Theorem 3.15. There are graphs G, such that in k com-
munication rounds, every distributed algorithm for the min-
imum vertex cover problem on G has approximation ratios
at least

Ω

nc/k2

k

!
and Ω

�
∆1/k

k

�

for some constant c ≥ 1/4, where n and ∆ denote the num-
ber of nodes and the highest degree in G, respectively.

Proof. We can choose δ ≥ 4−1/(2k)n
1/(4k2)
0 due to In-

equality (5). Finally, using Lemmas 3.13 and 3.14, the ap-
proximation ratio α is at least

α ≥ n0/2

n− n0
≥ n0/2 · δ/2

n0 · (k + 1)
=

δ

4(k + 1)

≥ (n/2)1/(4k2)

41+1/(2k)(k + 1)
∈ Ω

n1/(4k2)

k

!
.

The second lower bound follows from ∆ = δk+1.

306

Theorem 3.16. In order to obtain a polylogarithmic or
even constant approximation ratio, every distributed algo-

rithm for the MVC problem requires at least Ω
�q

log n
log log n

�
and Ω

�
log ∆

log log ∆

�
communication rounds.

Proof. We set k = β
p

log n/ log log n for an arbitrary
constant β > 0. When plugging this into the first lower
bound of Theorem 3.15, we get the following approximation
ratio α:

α ≥ γn
c log log n

β2 log n · 1

β

s
log log n

log n

where γ is the hidden constant in the Ω-notation. For the
logarithm of α, we get

logα ≥ c log log n

β2 log n
· log n− 1

2
· log log n− log β

=

�
c

β2
− 1

2

�
· log log n− log β.

and therefore

α ∈ Ω

log(n)

�
c

β2 − 1
2

�!
.

By choosing an appropriate β, we can determine the ex-
ponent of the above expression. For every polylogarithmic
term α(n), there is a constant β such that the above expres-
sion is at least α(n) and hence, the first lower bound of the
theorem follows.

The second lower bound follows from an analogous com-
putation by setting k = β log ∆/ log log ∆.

Remark. By defining δi := δi, i ∈ {0, . . . , k} and δk+1 :=

δk+1/2 (instead of δk+1), we obtain slightly stronger approx-
imation lower bounds of

Ω
�
nc/k2

− k
�

and Ω
�
∆c′/k − k

�
. (6)

The bounds of (6) clearly do not suffice to improve the re-
sults of Theorem 3.16.

4. REDUCTIONS
Using the lower bound for vertex cover, we can obtain

lower bounds for several other classical graph problems. In
this section, we give time lower bounds for the construction
of maximal matchings and maximal independent sets as well
as for the approximation of minimum dominating set.

A maximal matching (MM) of a graph G is a maximal set
of edges which do not share common end-points. Hence, a
MM is a set of non-adjacent edges of G such that all edges in
E(G)\MM have a common end-point with an edge in MM.
A maximal independent set (MIS) is a maximal set of non-
adjacent nodes, i.e. all nodes not in the MIS are adjacent
to some node of the MIS. The best known lower bound for
the distributed computation of a MM or a MIS is Ω(log∗n)
which holds for rings [15]. Based on Theorem 3.16, we get
the following stronger lower bounds.

Theorem 4.1. There are graphs G on which every dis-
tributed, possibly randomized algorithm requires time

Ω

 s
log n

log log n

!
and Ω

�
log ∆

log log ∆

�

to compute a maximal matching. The same lower bounds
hold for the construction of maximal independent sets.

Proof. It is well known that the set of all end-points of
the edges of a MM form a 2-approximation for MVC. This
simple 2-approximation algorithm is commonly attributed
to Gavril and Yannakakis. The lower bound for the con-
struction of a MM therefore directly follows from Theorem
3.16.

For the MIS problem, consider the line graph L(Gk) of
Gk. The nodes of a line graph L(G) of G are the edges of
G. Two nodes in L(G) are connected by an edge whenever
the two corresponding edges in G are incident to the same
node. The MM problem on a graph G is equivalent to the
MIS problem on L(G). Further, if the real network graph
is G, k communication rounds on L(G) can be simulated in
k+O(1) communication rounds on G. Therefore, the times
t to compute a MIS on L(Gk) and t′ to compute a MM on
Gk can only differ by a constant, t ≥ t′ − O(1). Let n′ and
∆′ denote the number of nodes and the maximum degree of
Gk, respectively. The number of nodes n of L(Gk) is less
than n′2/2, the maximum degree ∆ of Gk is less than 2∆′.
Because n′ only appears as log n′, the power of 2 does not
hurt and the theorem holds (log n = Θ(logn′)).

We conclude this section by considering the problem of
approximating the minimum dominating set (MDS) prob-
lem. A dominating set S is a subset of the nodes of a graph
G such that all nodes of G are either in S or they have a
neighbor in S. In a non-distributed setting, MDS in equiv-
alent to the general minimum set cover problem3 whereas
MVC is a special case of set cover which can be approxi-
mated much better. It is therefore not surprising that in a
distributed environment, MDS is strictly harder than MVC,
too. In the following, we show that this intuitive fact can
be formalized.

Theorem 4.2. There are graphs G, such that in k com-
munication rounds, every distributed algorithm for the mini-
mum dominating set problem on G has approximation ratios
at least

Ω

nc/k2

k

!
and Ω

�
∆1/k

k

�

for some constant c, where n and ∆ denote the number of
nodes and the highest degree in G, respectively.

Proof. We show that every MVC instance can be seen as
a MDS instance with the same locality. Let G′ = (V ′, E′) be
a graph for which we want to solve MVC. We construct the
corresponding dominating set graph G = (V, E) as follows.
For every node and for every edge in G′, there is a node in
G. We call nodes vn ∈ V corresponding to nodes v′ ∈ V ′

n-nodes, and nodes ve ∈ V corresponding to edges e′ ∈
E′ e-nodes. Two n-nodes are connected by an edge if and
only if they are adjacent in G′. An n-node vn and an e-
node ve are connected exactly if the corresponding node and
edge are incident in G′. There are no edges between two e-
nodes. Clearly, the localities of G′ and G are the same, i.e.
k communication rounds on one of the two graphs can be
simulated by k+O(1) rounds on the other graph. Let C be
a feasible vertex cover for G′. We claim that all nodes of

3There exist approximation preserving reductions in both
directions.

307

G corresponding to nodes in C form a valid dominating set
on G. By definition, all e-nodes are covered. The remaining
nodes of G are covered because for a given graph, a valid
vertex cover is a valid dominating set as well. Therefore, the
optimal dominating set on G is at most as big as the optimal
vertex cover on G′. There also exists a transformation in the
other direction. Let D be a valid dominating set on G. If D
contains an e-node ve, we can replace ve by one of its two
neighbors. The size of D remains the same and all three
nodes covered (dominated) by ve are still covered. By this,
we get a dominating set D′ which has the same size as D
and which consists only of n-nodes. Because D′ dominates
all e-nodes, the nodes of G′ corresponding to D′ form a valid
vertex cover. Thus, MDS on G is exactly as hard as MVC
on G′ and the theorem follows from Theorem 3.15.

Corollary 4.3. To obtain a polylogarithmic or constant
approximation ratio for minimum dominating set, there are
graphs on which every distributed algorithm needs time

Ω

 s
log n

log log n

!
and Ω

�
log ∆

log log ∆

�
.

Proof. The corollary is a direct consequence of Theorem
4.2 and the proof of Theorem 3.16.

Remark. Note that in the above corollary, we give a time
lower bound for constant MDS approximation although it
has been shown that MDS cannot be approximated better
than ln∆ unless NP ⊆ DTIME(nO(log log n)) [5]. Because
local computation is for free in our model, however, it is
theoretically possible to get a constant-factor approximation
for MDS.

5. CONCLUSIONS
As distributed systems grow larger, it is becoming increas-

ingly vital to design algorithms which do not need to main-
tain full information about the network. Unfortunately, with
a few notable exceptions [15], there have been almost no
hard results, which would have shed light into the theoreti-
cal possibilities and limitations of locality-based approaches.
We have shown locality-imposed restrictions on the approx-
imability and computability of a number of distributed prob-
lems. Comparing with the respective upper bounds, some of
our lower bounds are near tight. We hope and believe that
the various lower bounds given in the present paper will help
to ameliorate this situation.

6. REFERENCES
[1] Y. Afek, S. Kutten, and M. Yung. The Local Detection

Paradigm and its Applications to Self-Stabilization.
Theoretical Computer Science, 186(1-2):199–229, 1997.

[2] R. Cole and U. Vishkin. Deterministic Coin Tossing
with Applications to Optimal Parallel List Ranking.
Information and Control, 70(1):32–53, 1986.

[3] M. Elkin. A Faster Distributed Protocol for
Constructing a Minimum Spanning Tree. In Proc. of
the 15 th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 359–368, 2004.

[4] M. Elkin. Unconditional Lower Bounds on the
Time-Approximation Tradeoffs for the Distributed
Minimum Spanning Tree Problem. In Proc. of the
36 th ACM Symposium on Theory of Computing
(STOC), 2004.

[5] U. Feige. A Threshold of ln n for Approximating Set
Cover. Journal of the ACM (JACM), 45(4):634–652,
1998.

[6] F. Fich and E. Ruppert. Hundreds of impossibility
results for distributed computing. Distrib. Comput.,
16(2-3):121–163, 2003.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of Distributed Consensus With One
Faulty Process. J. ACM, 32(2):374–382, 1985.

[8] A. Israeli and A. Itai. A Fast and Simple Randomized
Parallel Algorithm for Maximal Matching.
Information Processing Letters, 22:77–80, 1986.

[9] F. Kuhn and R. Wattenhofer. Constant-Time
Distributed Dominating Set Approximation. In Proc.
of the 22nd Annual ACM Symp. on Principles of
Distributed Computing (PODC), pages 25–32, 2003.

[10] F. Kuhn and R. Wattenhofer. Distributed
Combinatorial Optimization. Technical Report 426,
ETH Zurich, Dept. of Computer Science, 2003.

[11] E. Kushilevitz and Y. Mansour. An Ω(D log(N/D))
Lower Bound for Broadcast in Radio Networks. SIAM
Journal on Computing, 27(3):702–712, June 1998.

[12] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[13] F. Lazebnik and V. A. Ustimenko. Explicit
Construction of Graphs with an Arbitrary Large Girth
and of Large Size. Discrete Applied Mathematics,
60(1-3):275–284, 1995.

[14] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar. A
New Series of Dense Graphs of High Girth. Bulletin of
the American Mathematical Society (N.S.),
32(1):73–79, 1995.

[15] N. Linial. Locality in Distributed Graph Algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[16] Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed
MST for Constant Diameter Graphs. In Proc. of the
20 th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 63–71, 2001.

[17] M. Luby. A Simple Parallel Algorithm for the
Maximal Independent Set Problem. SIAM Journal on
Computing, 15:1036–1053, 1986.

[18] M. Naor and L. Stockmeyer. What Can Be Computed
Locally? In Proc. of the 25 th Annual ACM Symp. on
Theory of Computing (STOC), pages 184–193, 1993.

[19] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM, 2000.

[20] D. Peleg and V. Rubinovich. A Near-Tight Lower
Bound on the Time Complexity of Distributed
Minimum-Weight Spanning Tree Construction. SIAM
Journal on Computing, 30(5):1427–1442, 2000.

308

APPENDIX

δ2 δ1δ3 δ0

δ0δ2δ3δ3 δ1 δ0δ0δ1δ2

δ2 δ0δ3 δ1 δ0 δ3 δ0δ2δ3δ2 δ1 δ0

δ2 δ1 δ0 δ3 δ2 δ0

δ

δ −1δ2 0δ1δ

−1δ3 1δ 0δ

−1δ2 −1δ1

2δ

−1δ3

0δ

−1δ2 −1δ1

2δ

−1δ3 −1δ4

3δ

3δ 2δ 0δ−1δ1

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

0δ−1δ2

−1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

−1δ4

3δ

0δ

1δ

3δ −1δ2 1δ 0δ 3δ 2δ 0δ−1δ1

2δ −1δ0

1δ2δ−1δ3 −1δ4

3δ

0δ 3δ 3δ 2δ 0δ−1δ1

0δ−1δ12δ

3δ 2δ
1δ 0δ

1δ2δ−1δ3 2δ 1δ −1δ0−1δ3 2δ 1δ 0δ

−1δ4

3δ −1δ2 0δ1δ

−1

3

3 1δ

VC0

VC1

Figure 3: The Cluster Tree CT3 and the corresponding view-trees of nodes in C0 and C1. The cluster
trees CT1 and CT2 are shaded dark and light, respectively. The labels of the arcs of the cluster tree
represent the number of neighbors of nodes of the lower-level cluster in the neighboring higher-level
cluster. The labels of the reverse links are omitted. In the view-trees, an arc labelled with δi stands for
δi edges, all connecting to identical subtrees.

309

