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Abstract 

We present a model of judgement under uncertainty, in which an agent combines 

data received from the external world with information retrieved from memory to 

evaluate a hypothesis.  We focus on what comes to mind immediately, as the agent makes 

quick, System I, evaluations.   Because the automatic retrieval of data from memory is 

both limited and selected, the agent’s evaluations may be severely biased.  Some of the 

heuristics and biases evidence presented by Kahneman and Tversky, including 

conjunction and disjunction fallacies, can be accounted for in this framework.  
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1. Introduction 

Since the early 1970s, Daniel Kahneman and Amos Tversky (hereafter KT 1972, 

1974, 1983, 2002) published a series of remarkable experiments documenting significant 

deviations from Bayesian theory of judgment under uncertainty.  While KT’s heuristics 

and biases program has survived substantial experimental scrutiny, models of heuristics 

have proved elusive2.  In this paper, we offer a new model of decision making that 

accounts for quite a bit of this experimental evidence.   

Our approach is succinctly captured by an observation made by Kahneman in a 

2008 lecture at Harvard.  Kahneman noted that heuristics describe how people evaluate 

hypotheses quickly, based on what first comes to mind.  People may be entirely capable 

of more careful deliberation and analysis, and perhaps of better decisions, but not when 

they do not think things through.  Kahneman (2003) describes such quick decision 

making as System 1 (intuition), and distinguishes it from System 2 (reasoning).  We 

present a formal model of such System 1 judgement, based on what comes to mind. 

We describe a problem in which a decision maker evaluates a hypothesis in light 

of some data, but with some residual uncertainty remaining.  This residual uncertainty 

can be thought of as scenarios that have not been specified.  We think of the decision 

maker as automatically filling in from memory some of the scenarios, but not others, and 

making the judgement in light of what he is thinking about.  Our approach is broadly 

consistent with KT’s insistence that judgment under uncertainty is similar to perception.  

Just as an individual fills in details from memory when interpreting sensory data (for 

example, when looking at the duck-rabbit or when judging distance from the height of the 

                                                 
2 Partial exceptions include Mullainathan (2000), Griffin and Tversky (1992), and Tversky and Koehler 
(1994), to which we return. 
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object), the decision maker recalls missing scenarios when he evaluates a hypothesis. 

In our model, what is automatically retrieved from memory – what comes to mind 

– in the first instance is both limited and selected.  On the one hand, some scenarios come 

to mind immediately, others do not: the working memory is limited.  On the other hand, 

the selection is primed by the question being asked (or hypothesis being evaluated), and 

might not be the data a Bayesian would ask for.  Crucially, we specify that scenarios come 

to mind in order of their diagnosticity, which formally means their ability to predict the 

hypothesis being evaluated relative to other hypotheses. Diagnosticity captures the idea 

that we recall more easily “representative” scenarios for the hypothesis evaluated by the 

agent.   In this model, when the decision maker only thinks of some scenarios, his 

evaluations could (but need not) be severely biased; if he considers all the scenarios, his 

decisions are rational in the Bayesian sense.   The deliberate System 2 evaluations thus 

emerge as the limiting case of System 1 judgments, as more things come to mind. 

In the next section, we present a simple example illustrating our approach.  In 

Section 3, we present the formal model, and discuss in detail the relationship of our 

approach to prior work.  The following sections apply the model to KT’s experimental 

findings. Section 4 considers some of biases related to representativeness, such as base 

rate neglect and insensitivity to predictability.   Section 5 addresses the failures of 

extensionality, namely the conjunction and disjunction fallacies.  Section 6 concludes.   
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2 An Example: Electoral Campaign 

We illustrate the basic working of our model using an example loosely based on 

Popkin (1991).  An Asian-American voter evaluates the qualifications of a presidential 

candidate after the latter fails to use chopsticks to eat noodles at a campaign banquet. The 

voter classifies candidates along two dimensions: qualification and familiarity with the 

Asian customs and community.  The voter estimates the probability that the candidate is 

qualified, which is all he cares about, but along the way fills in the candidate’s familiarity 

with Asian customs, which we call “scenarios.”  Think of the voter as having a database 

of “associations” in his long term memory, summarized by a distribution of candidate 

types that, conditional on failing to use chopsticks, is described in Table 1.A: 
 

Familiarity with Asian customs Candidate cannot use 
chopsticks familiar unfamiliar 

qualified  

0.024 
 

0.43 

qualificat
ion of 
candidate unqualified  

0.026 
 

0.52 
 

Table 1.A 

Table 1.A captures two ideas: i) failure to use chopsticks is very informative about 

unfamiliarity with Asian customs (95% of the candidates who fail to use chopsticks are 

“unfamiliar” with Asian customs), but ii) familiarity with Asian customs is scarcely 

informative about qualification (relative to a prior of 1/2). The latter property is reflected 

in the qualification estimate of a Bayesian voter, which is equal to: 

Pr(qualified) = Pr(qualified, familiar) + Pr(qualified, unfamiliar) = 0.454           (1) 

The Bayesian reduces his prior very little due to the event’s low informational content. 

Although Table 1.A is stored in the voter’s long term memory, due to working 

memory limits not all candidate types come to his mind to aid his evaluation of the 

candidate’s qualification.  In equation (1), the Bayesian voter considers that both 
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qualified and unqualified candidates can be either familiar or unfamiliar with Asian 

customs. The decision maker we describe, in contrast, is a “local thinker,” named so 

because, to evaluate hypotheses, he does not use all the data in Table 1.A but only the 

information he obtains by sampling in his memory some specific examples of qualified 

and unqualified candidates.  In KT’s spirit, what first comes to the agent’s mind are 

examples of representative, or stereotypical, qualified and unqualified candidates. 

We model this idea by assuming that the voter draws from memory examples of 

qualified and unqualified candidates by searching for the most diagnostic levels of 

familiarity – scenarios – for each type.   These scenarios are respectively given by: 

{ }
)Pr(maxarg)(

,
squalifiedqualifieds

unfamiliarfamiliars∈
= ,                                 (2) 

{ }
)Pr(maxarg)(

,
sdunqualifiedunqualifies

unfamiliarfamiliars∈
= .                             (3) 

Each type of candidate brings to mind examples sharing the level of familiarity relatively 

more associated with that type.  In Table 1.A, this means that a qualified candidate 

evokes examples of candidates that are familiar with Asian customs, but an unqualified 

candidate evokes candidates unfamiliar with them.3  This is because, for this voter, a 

candidate familiar with his own customs is at least marginally more qualified, so 

qualification and familiarity are associated in the stereotypical qualified candidate.  This 

effectively reduces the voter’s information to the circled diagonal below: 

Familiarity with Asian customs Candidate cannot use 
chopsticks familiar Unfamiliar 

qualified  

0.024 
 

0.43 

qualificat
ion of 
candidate 

unqualified  

0.026 
 

0.52 
 

Table 1.B 

                                                 
3 Indeed, Pr(qual|fam) = 12/25 > 43/95 =Pr(qual|unfam). The reverse is true for an unqualified candidate. 
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As the local thinker retrieves from memory stereotypical qualified and unqualified 

candidates, his assessment (indicated by superscript L) is only based on these stereotypes.   

044.0
),Pr(),Pr(

),Pr()(Pr ≈
+

=
unfamiliardunqualifiefamiliarqualified

familiarqualifiedqualifiedL             (4) 

Relative to a Bayesian, the local thinker overreacts to the candidate’s inability to use 

chopsticks, underestimating his qualification by a factor of about 20!  Why is this so?  

Intuitively, inability to use chopsticks evokes in the voter’s mind many examples 

of unqualified and unfamiliar candidates and few examples of qualified and familiar 

ones.  The reason is that many stereotypical unqualified candidates are indeed unable to 

use chopsticks while most stereotypical qualified candidate can use them, which causes 

under-sampling and thus under-estimation of qualification.  Under-estimation here is 

severe because, by recalling stereotypes, the voter forgets that many qualified candidates 

are unfamiliar with Asian customs!  As noted by Popkin (1991), voters fit political facts 

using candidates’ personal data because those data, even if uninformative, allow voters to 

map the candidate into a representative candidate.  In our example, this effect is due to 

imperfect recall and causes a drastic bias in the estimate of qualification. 

The same idea, though, suggests that in many cases local thinkers can produce 

fairly good assessments.  Suppose for instance that the candidate claims that the main 

meat eaten by the Chinese is dog.  Suppose that the distribution of candidate types is: 

Familiarity with Asian customs The Chinese only eat dogs 
Familiar unfamiliar 

qualified  

0.25 
 

0.025 

Q
ualifica

tion of 
candidat
e 

unqualified  

0.025 
 

0.7 

Table 1.C 
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Table 1.C captures two ideas: i) the candidate’s statement is quite informative 

about his unfamiliarity with the Asian customs and ii) unfamiliarity in this case is 

extremely informative about the candidate’s qualification.  Based on Table 1.C, a 

Bayesian assesses Pr(qualified) = 0.275.  Due to ii) the local thinker still associates 

familiarity with qualification, and estimates: 

    26.0
),Pr(),Pr(

),Pr()(Pr ≈
+

=
unfamiliardunqualifiefamiliarqualified

familiarqualifiedqualifiedL           (5) 

which is almost identical to a Bayesian’s assessment.  In contrast to the previous case, the 

candidate’s unfamiliarity with the Asian customs is now so grotesque as to be very 

informative about the candidate’s low qualification.  In this case, local thinking generates 

a very mild loss of information.   

Why this difference in the examples?  After all, in both examples the stereotypical 

qualified (resp. unqualified) candidate is someone familiar (resp. unfamiliar) with Asian 

customs.  In the first example of Table 1.B, though, the stereotypical qualified candidate 

is extremely uncommon because the bulk of qualified candidates are unfamiliar [i.e. a 

fraction 0.43/(0.024+0.43) = 0.95 of them], causing gross under-estimation of 

qualification.  In contrast, in the second example, almost all of the qualified candidates 

are familiar with Asian customs.  In this latter case, the stereotype of a qualified 

candidate is not only diagnostic but also likely, which greatly reduces the agent’s 

assessment bias.  As we show below, the relationship between the diagnosticity and 

likelihood of stereotypes is a key determinant of the accuracy of a local thinker’s 

probabilistic assessments. 

We now formalize our model of decision making and study its broader 

implications for judgment under uncertainty and the heuristics and biases research. 
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3 The Model 

The world is described by a probability space (X,π ), where  is a 

finite state space generated by the product of K ≥ 1 dimensions and the function 

∏
=

≡
Ki

iXX
,...,1

[ 1,0: →X ]π  that maps each element Xx∈  into a probability 0)( ≥xπ  such that 

.  In the example of Section 2, the dimensions of X are the candidate’s 

qualification and familiarity with Asian customs (i.e., K =  2), the elements  are 

candidate types and the probability space (X,

1)( =∑
∈Xx

xπ

Xx∈

π ) is described in Table 1.A. 

An agent evaluates the probability of  hypotheses  in light of data 

.  Hypotheses and data are events of X; that is,  for every r = 1,..., N.  If the 

agent receives no data, then 

1>N Nhh ,...,1

d Xdhr ⊆,

Xd = : nothing is ruled out. Hypotheses may be non-

exclusive and non-exhaustive.  In (X, π ), the probability of  is given by the formula: rh

∑
∑

∈

∩∈=
∩

=

dx

dhxr
r x

x

d
dh

dh r

)(

)(

)Pr(
)Pr(

)Pr(
π

π
,                                          (6) 

which integrates the probabilities of all elements consistent with the hypothesis and the 

data [i.e. ], dividing the resulting sum by the probability of d alone.  In our 

example, expression (1) follows from (6) since in Table 1.A the probabilities are 

normalized by Pr(no chopsticks).  As we saw in Section 2, a local thinker may fail to 

produce the correct assessment (6) because he only considers a subset of elements x, 

those belonging to what we henceforth call his “represented state space”. 

dhx r ∩∈

 

3.1 The Represented State Space 

The represented state space is shaped by the recall of elements in X prompted by 
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the assessed hypotheses , r = 1,…,N.  Recall is governed by two assumptions.  First, 

working memory limits the number of elements recalled by the agent to represent each 

hypothesis. Second, the elements recalled to represent a hypothesis are the most 

“diagnostic” ones for that hypothesis.  Note that an element here is what we called a 

stereotype in the example of Section 2.  We formalize the first assumption as follows: 

rh

 

A1 (Local Thinking):  Given data d, the agent represents hypothesis , r =1,…,N  by 

using at most  elements 

rh

1≥b dhx r ∩∈ .   
 

The set  is the set of representations of hypothesis  and includes all the elements 

in X consistent with hypothesis  and with the data d.  Two polar cases are of interest: i) 

the case where  when thinking is fully local and only one element in the set of 

representations is selected for each hypothesis, and ii) the case where  is sufficiently 

large that all hypotheses are represented using all elements in 

dhr ∩ rh

rh

1=b

b

dhr ∩ . In the latter case, 

we say that the agent’s representation of all hypotheses is perfect.4

The representation of hypothesis  is perfect if there are fewer than b  elements 

in the set of representations 

rh

dhr ∩ .  At the extreme, if the hypothesis and the data 

identify a single element in X, even the representation by the agent with  is perfect.  

The more interesting case involves broad hypotheses consisting of more than b  elements.  

In this case, when  the set of possible representations 

1=b

1=b dhr ∩  must be collapsed into 

a single element. To do so, the agent must attribute exact values to the dimensions of X 

that are not pinned down by the hypothesis and the data.  For instance, in the example of 

Section 2, to represent qualified and unqualified candidates, the voter attributes one level 

                                                 
4 A.1 is one way to capture limited recall.  None of our substantive results would change if we alternatively 
assumed that the agent discounts the probability of certain elements.   
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of familiarity to each hypothetical level of qualification.  We call such fitted levels of 

familiarity “scenarios”.  

To give a general definition of scenarios, suppose that  and  specify exact 

values (rather than ranges) for some dimensions of X, taking the form: 

rh d

[ ]{ }KisomeandXxsomeforxxXx iiii ,...,1ˆˆ ∈∈=∈ ,                (7) 

where  denotes the i th dimension of element ix Xx∈ , while  is the exact value taken 

by such dimension in the hypothesis or data. The remaining dimensions are unrestricted.  

This is consistent with the example of Section 2 where hypotheses specify a qualification 

level, data specifies inability to use chopsticks, and the remaining familiarity dimension 

is left completely free.  The possible scenarios for hypothesis  are defined as follows: 

ix̂

rh

 

Definition 1.   Suppose that  fixes the values of Ndhr ∩ r < K dimensions in X.  Denote 

by S the set of the remaining K – Nr free dimensions.  A scenario s is any event 

{ }StallandXxsomeforxxXxs tttt ∈∈′′=∈≡ .  If Nr = K, a scenario is s = X. 

 

A scenario completes the details missing from the hypothesis and data because it 

identifies a single element in dhr ∩ : Xdhs r ∈∩∩ .  A scenario can be viewed as a 

“frame”, namely as a mental model allowing one to interpret a situation in light of partial 

data.  But how do scenarios come to mind? We assume that the agent represents 

hypotheses taking the form of expression (7) in the following way: 
 

A2 (Recall by Diagnosticity):  Fix d and .  When b = 1, the agent represents  with 

the most “diagnostic” scenario , which is the scenario maximizing: 

rh rh
1
rs

)Pr()Pr(
)Pr()Pr(

dshdsh
dshdsh
rr

r
r ∩∩+∩∩

∩∩
=∩ ,                                  (8) 
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where rh is the complement X/  in X of hypothesis .  When b > 1, the agent represents 

 with b most “diagnostic” scenarios , k = 1,…,b, where scenarios with a lower index 

k obtain a higher value of (8).   

rh rh

rh k
rs

 

The local thinker represents  by recalling only the b most “diagnostic” 

scenarios, those that are more associated with  relative to the other hypotheses.  

Scenario  can be interpreted as the most representative model for the hypothesis  

because, together with the data, it maximizes the likelihood 

rh

rh

1
rs rh

)Pr( dshr ∩  of the hypothesis.   

We can derive the represented state space from the recalled scenarios.  If the 

agent recalls  in conjunction with the hypothesis , he includes the corresponding 

element  in the representation of .  Applying this logic to all the 

hypotheses  evaluated by the agent yields: 

1
rs rh

Xdhs rr ∈∩∩1
rh

Nhh ,...,1

 

Definition 2 Denote by > 1 the total number of scenarios for hypothesis , r = 1,…,N.  

Then, the agent’s represented state space is . 

rM rh

U
),min(,...,1

,...,1
bMk

Nr
r

k
r

r

dhs
=
=

∩∩

The represented state space is simply the union of all elements recalled by the agent for 

each of the assessed hypotheses.  Definition 2 applies to hypotheses of the form given by 

(7), but it is easy to extend it to hypotheses which, rather than attributing exact values, 

restrict the range of some dimensions of X.  Appendix 1 shows how to do that and to 

apply our model to the evaluation of these hypotheses as well.   

 

3.2 Probabilistic Assessments by a Local Thinker 

In the represented state space, the local thinker computes the probability of  as: th
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∑ ∑

∑

= =

=

∩∩

∩∩
=

N

r

bM

k
r

k
r

bM

k
t

k
t

t
L

t

t

dhs

dhs
dh

1

),min(

1

),min(

1

)Pr(

)Pr(
)(Pr ,                                             (9) 

namely as the probability of the representation of  divided by that of the representation 

of all hypotheses , r = 1,…,N.  One property of (9) is that the assessed probability of a 

hypothesis depends on the other hypotheses examined in conjunction with it.  This is one 

key way in which the examined hypotheses shape assessments in our model.  Evaluated 

at b = 1, (9) is the counterpart of expression (4) in Section 2.   

th

rh

We can rewrite (9) as: 

∑ ∑

∑

= =

=

∩⎥
⎦

⎤
⎢
⎣

⎡
∩

∩⎥
⎦

⎤
⎢
⎣

⎡
∩

=
N

r
r

bM

k
r

k
r

t

bM

k
t

k
t

t
L

dhdhs

dhdhs
dh

r

t

1

),min(

1

),min(

1

)Pr()Pr(

)Pr()Pr(
)(Pr ,                                (9’) 

Suppose that the hypotheses examined are exhaustive, that is .  

Expression (9’) highlights the role of local thinking.  If  for all r = 1,..,N, then the 

bracketed terms disappear because 

)Pr()Pr(
1

ddh
N

r
r =∩∑

=

rMb ≥

1)Pr(
1

=∩∑
=

rM

k
r

k
r dhs  must necessarily hold.  In this case 

(9’) boils down to , which is the Bayesian’s estimate of )Pr(/)Pr( ddht ∩ )Pr( dht .  Biases 

in judgement can only arise when the agent’s representations are limited, that is, when 

 for some r.   rMb <

To interpret (9’), note that )Pr( dhs r ∩  is the likelihood of scenario s for , of  

the probability of s when  is true.  The bracketed terms in (9’) then measure the share of 

a hypothesis’ total probability captured by its representation.  Equation (9’) says that if 

the representations of all hypotheses are equally likely (bracketed terms are equal), the 

rh

rh
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estimate is perfect, even if memory limitations are severe.  Otherwise, biases may arise.  

Despite the importance of likelihood for the accuracy of assessments, the ranking of 

scenarios by their likelihood often differs from that by their diagnosticity.   

 

3.3 Discussion of Setup and Assumptions 

It is worth discussing the conceptual structure of the model.  Assumption A2 

posits that a hypothesis is represented using a mental model, or more specifically a 

scenario, that is most closely associated with this hypothesis relative to other ones, much 

in the spirit of KT’s notion of representativeness.  Representativeness is “defined as a 

subjective judgement of the extent to which the event in question is similar in essential 

properties to its parent population or reflects the salient features of the process by which 

it is generated” (KT 1972, p 431).  Indeed, KT (2002, p.23) have a discussion of 

diagnosticity related to our model’s definition:  “Representativeness tends to covary with 

frequency: common instances and frequent events are generally more representative than 

unusual instances and rare events,” but they add that “an attribute is representative of a 

class if it is very diagnostic; that is the relative frequency of this attribute is much higher 

in that class than in a relevant reference class.”  In other words, sometimes what is 

representative is not likely.  As we show below, the representation of hypotheses by 

diagnostic but unlikely scenarios drives many of the KT anomalies. 

Our approach is related to Griffin and Tversky’s (1992) notion that agents assess 

a hypothesis more in light of the strength of the evidence in its favour, a concept akin to 

our “diagnosticity”, rather than in light of such evidence’s weight, a concept akin to our 

“likelihood”.  Also related is Tversky and Koehler’s (1994) support theory, which 
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postulates that individuals do not attach beliefs to events but to descriptions of events, so 

that different descriptions of the same event may trigger different assessments. Tversky 

and Koheler however characterize such non-extensional probability axiomatically, 

without deriving it from underlying cognitive frictions as we do here. 

In our model, diagnostic scenarios quickly pop to the mind of a decision maker, 

consistent with the idea – supported in cognitive psychology and neurobiology – that 

background information is a key input in the interpretation of external (e.g., sensory) 

stimuli.5  What prevents the local thinker form integrating all other scenarios consistent 

with the hypothesis, as a Bayesian would do, is assumption A1 of incomplete recall.  

With complete recall, even our agent is Bayesian.  His thinking is System 2 thinking.  

The key implication of this setup is that the hypotheses evaluated by the agent 

themselves influence his assessments by “polluting” his representation of the state space 

through their effect on the recall and salience of alternative scenarios.  This feature is 

neither shared by existing models of imperfect memory (e.g., Mullainathan 2000, Wilson 

2002) nor by models of categorization (e.g., Mullainathan 2002, Mullainathan et al. 

2008).  In the latter models, there is a first stage in which – irrespective of the hypotheses 

evaluated by the agent – data provision prompts the choice of a category (akin to a 

scenario) and a second stage where all hypotheses are evaluated in the same chosen 

category.  In models of categories, the voter observing a candidate not using chopsticks 

immediately categorizes him as unfamiliar with Asian customs, and within that category 

he estimates the relative likelihood of qualified and unqualified candidates.  In our model, 

                                                 
5 In the model, background knowledge is summarized by the objective probability distribution )(xπ . This 
clearly need not be the case. Consistent with memory research, some elements Xx∈  may get precedence 
in recall not because they are more frequent but because the agent has experienced them more intensely or 
because they are easier to recall.  Considering these possibilities is an interesting extension of our model. 
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in contrast, everything happens simultaneously because, on the one hand, the hypotheses 

themselves affect which scenarios are recalled and, on the other hand, different 

hypotheses can be represented using different scenarios.  In many situations, categorical 

and local thinking lead to similar assessments of hypotheses, but in many important 

situations related to KT anomalies, they diverge.  Categorical thinking cannot, for 

example, explain the conjunction and disjunction fallacies, as we discuss below.   

 

4.  Biases in Probabilistic Assessments 

We measure a local thinker’s bias in assessing a generic hypothesis  against an 

alternative hypothesis  by deriving from expression (9’) the odds ratio: 

1h

2h

)Pr(
)Pr(

)Pr(

)Pr(

)(Pr
)(Pr

2

1
),min(

1
22

),min(

1
11

2

1
2

1

dh
dh

dhs

dhs

dh
dh

bM

k

k

bM

k

k

L

L

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∩

∩
=

∑

∑

=

= ,                                   (10) 

where )Pr(/)Pr( 21 dhdh  is a Bayesian’s estimate of the odds of relative to .  One 

interpretation of (10) is that representations of  and  pop to the agent’s mind.  The 

relative likelihood of those representations is captured by the bracketed term.  The odds 

of  are over-estimated if and only if the representation of  is more likely than that of 

 (the bracketed term is greater than one).  Intuitively, a more likely representation 

induces the agent to over-sample instances of the corresponding hypothesis.  Biases arise 

in our model when a hypothesis is represented with relatively unlikely scenarios.   

1h 2h

1h 2h

1h 1h

2h

When b =1, expression (10) becomes:   

)Pr(
)Pr(

)Pr(
)Pr(

)(Pr
)(Pr

2

1

2
1
2

1
1
1

2

1

dh
dh

dhs
dhs

dh
dh

L

L

⎥
⎦

⎤
⎢
⎣

⎡

∩
∩

= ,                                     (11) 
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which highlights how diagnosticity and likelihood of scenarios shape probability 

estimates.  Ceteris paribus, over-estimation of  is the strongest if the diagnostic 

scenario  used to represent  is also the most likely one for , while the diagnostic 

scenario  used to represent  is the least likely one for .  In this case, 

1h

1
1s 1h 1h

1
2s 2h 2h )Pr( 1

1
1 dhs ∩  is 

maximal and )Pr( 2
1
2 dhs ∩  is minimal, maximizing the bracketed term in (11).  

Conversely, under-estimation of  is the strongest if the diagnostic scenario  is the 

least likely one for , while the scenario  is the most likely one for . 

1h 1
1s

1h 1
2s 2h

This illuminates the electoral campaign example of Section 2.  Recall that in that 

example the hypotheses are  and , while their possible 

scenarios are given by .  Consider the general distribution of 

candidate types: 

dunqualifieh =1 qualifiedh =2

{ unfamiliarfamiliars ,∈ }

 

Cannot use chopsticks Familiar Unfamiliar 
qualified π1 π2

unqualified π3 π4
 

Table 2.A 
 

 

We continue to assume that π1/π3>π2/π4, i.e. that being qualified is more likely 

among familiar than unfamiliar types, so that familiarity with Asian customs is at least 

slightly informative about qualification.  In this case, the diagnostic scenario for 

 is “unfamiliar” while the diagnostic scenario for  is 

“familiar”.  To see this formally, note that π

dunqualifieh =1 qualifiedh =2

1/π3>π2/π4 implies: 

)Pr()Pr(
31

3

42

4 familiardunqualifieunfamiliardunqualifie =
+

>
+

=
ππ

π
ππ

π , 

)Pr()Pr(
24

2

13

1 unfamiliarqualifiedfamiliarqualified =
+

>
+

=
ππ

π
ππ

π , 
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By A2, these conditions imply that the voter represents  with  

and  with .  In this represented state space, the local thinker 

estimates , so that the estimated odds ratio is equal to: 

1h ),( unfamiliardunqualifie

2h ),( familiarqualified

)/()(Pr 414 πππ +=dunqualifieL

21

43

21

1

34

4

)(Pr
)(Pr

ππ
ππ

ππ
π

ππ
π

+
+

⎥
⎦

⎤
⎢
⎣

⎡
++

=
qualified

dunqualifie
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,                               (12) 

which is the counterpart of (11).  The bracketed term is the ratio of the likelihoods of 

scenarios for low and high qualifications [ )Pr( dunqualifieunfamilar / )Pr( qualifiedfamiliar ].  

The odds that the candidate is unqualified are over-estimated when π4/π3> π1/π2, namely 

when the share of unfamiliar candidates among the unqualified ones is sufficiently high.  

In this case, by associating unfamiliarity with low qualifications, the voter forgets that 

many qualified candidates are also unfamiliar with Asian customs, leading to an over-

sampling of unqualified types.   

With parameter values in Table 1.A, such over-sampling is strong because π1 and 

π3 are small while π2 and π4 are large.  This is precisely the case we discussed previously, 

in which the diagnostic scenario “unfamiliar” used to represent  is highly 

likely [π

dunqualifieh =1

4/(π3+π4) is large], while the diagnostic scenario “familiar” used to represent 

 is unlikely [πqualifiedh =2 1/(π2+π1) is small].  The extreme version of such divergence 

between diagnosticity and likelihood for  arises under the following 

probability distribution of types: 

qualifiedh =2

 

Cannot use chopsticks Familiar Unfamiliar 
qualified π 1→0 π2

unqualified 0 π4
 

Table 2.B 
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If π3 = 0 and π1→0, the diagnosticity of scenarios is preserved because it is still the case 

that π1/π3 > π2/π4.  In the limit, the likelihood of the “familiar” scenario for  

becomes zero, so the bias in expression (12) becomes infinite! 

qualifiedh =2

In contrast, in the example of Table 1.C, because π2 and π3 are small, the most 

diagnostic and the most likely scenarios coincide for both hypotheses.  The extreme 

version of this case arises when the distribution is: 

 

The Chinese only eat dogs familiar Unfamiliar 
qualified π1 0 

unqualified 0 π4
 

Table 2.C 
 

With parameter values in Table 2.C, the bias in expression (12) is zero. When 

diagnosticity and likelihood coincide, the associations popping up in the agent’s mind 

summarize all relevant cases, entailing no over-sampling and thus no informational loss. 

The errors in assessment are particularly high when diagnosticity and likelihood 

of scenarios are positively related for one hypothesis and negatively related for the other. 

When this happens, the representation of the first hypothesis is much more probable than 

that of the second, leading the agent to over-estimate the probability of the former. 

Proposition 1, proved in the Appendix, describes the factors that lead to such 

asymmetry in the relation between diagnosticity and likelihood across hypotheses. 

 

Proposition 1.  Fix ,  and denote by S1h 2h i the set of scenarios for hi, i = 1, 2.  Suppose 

that 12 hh =  and .  We then have: SSS == 21

a)  for k = 1,…,M where M denotes the total number of scenarios in S.   1
21

+−= kMk ss
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b) If )(xπ  is such that )Pr( 11 dhsk ∩  and )Pr( 21 dhsk ∩  decrease (increase) in k, then the 

agent over (under) estimates the odds of  relative to  for every b < M.   If b = 1, one 

can find a 

1h 2h

)(xπ  such that such over (under) estimation is arbitrarily large.   

c) If )(xπ  is such that )Pr( 11 dhsk ∩  decreases and )Pr( 21 dhsk ∩  increases in k, then the 

maximal factor of under (over) estimation of the odds of  is bounded above by M. 1h

 

Part a) of Proposition 1 says that competing hypotheses tend to be represented 

with different scenarios.  If  is the negation of , the most diagnostic scenarios for the 

former are the least diagnostic ones for the latter and vice-versa.  Different scenarios 

necessarily come to mind for the two hypotheses, even if they share the same set of 

potential scenarios.  This result follows from A2 and captures the idea that the agent 

seeks to build an exemplar representation for each hypothesis, and so must use markedly 

different scenarios for each.  The exemplar of a qualified candidate cannot be the same as 

that of an unqualified one.   

1h 2h

Part b) says that this search for exemplars is a source of pervasive biases if the 

likelihood ranking of scenarios is the same under both hypotheses.  In this case, the use of 

a highly likely scenario for one hypothesis precludes its use for the competing hypothesis, 

yielding overestimation of the former.  If for the former hypothesis the likelihood and 

diagnosticity rankings coincide, the bias becomes very strong, potentially infinite.  This is 

the case captured by Table 2.B, where “unfamiliar” is the most likely scenario for both 

hypotheses but is only used by  because it is only diagnostic of that 

hypothesis.  This competition among hypotheses for bringing scenarios to mind is 

dunqualifieh =1
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another crucial way in which hypotheses affect representations in our model. It is a key 

ingredient in accounting for the biases arising from heuristics. 

Part c) instead captures the situation in which the diagnosticity and likelihood of 

scenarios are positively related for both hypotheses. Biases are now limited (but possibly 

still large).  The largest estimation bias occurs if the likelihood of one hypothesis is fully 

concentrated on one scenario while the likelihood of the competing hypothesis is fully 

spread among its M scenarios.  In this case, the relative likelihood of the former 

hypothesis is over-estimated by a factor of M.  Hypotheses whose distributions are spread 

out over a larger number of scenarios are more likely to be underestimated. 

 

4.1 Neglect of Base Rates 

Experimental subjects often fail to properly use base rates in assessing probability. 

KT (1974) gave subjects a personality description of a stereotypical engineer, and told 

them that he comes from a group of 100 engineers and lawyers, and the share of 

engineers in the group.  Subjects assessed the odds that this person was an engineer or a 

lawyer.  In making this assessment, they mainly focused on the personality description, 

barely taking the base rates of the engineers in the group into account.   

Our model generates base rate neglect.  We perform the analysis in a flexible 

setup based on KT’s (1983) famous Linda experiment, to which we return in Section 5 to 

discuss conjunction fallacies.  Subjects are presented with a description of a young 

woman, called Linda, who is a stereotypical leftist, and in particular was a college 

activist.  They are then asked to check off in order of likelihood the various possibilities 

of what Linda is today.  Subjects estimate that Linda is more likely to be “a bank teller 
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and a feminist” than merely “a bank teller.”  We can also use Linda to discuss base rate 

neglect. 

Recall that Linda is described as a former leftist activist (A), and suppose she can 

be in one of two occupations, bank teller (BT) or social worker (SW) and adhere to one 

of two current political orientations, feminist (F) or moderate (M).  The (unconditional) 

probability distribution of full descriptions of former activist Linda is displayed below.  

Crucially, τ and σ are the base probabilities of a bank teller and a social worker in the 

whole population, respectively. 
 

A (activist) F (feminist) M (moderate) 
BT (bank teller) (2/12)τ (1/12)τ 

SW (social worker) (9/15)σ (1/15)σ 
 

Table 3. 
 

Table 3 captures two ideas: i) being a former activist reduces the odds of being a 

bank teller (former activists are only 1/4th of all bank tellers but 10/15ths of all social 

workers), and ii) bank tellers are relatively more moderate than social workers (among 

former activists, moderates are only 1/10th of social workers but 1/3rd of bank tellers). 

A fully local thinker (i.e., b = 1) is told that Linda was an activist (i.e., A) and 

asked to assess the probability that she is a bank teller (BT) or a social worker (SW).  

What comes to his mind?  Property ii) of Table 3 implies that the diagnostic scenario for 

a bank teller is “moderate” (M), while that for a social worker is “feminist” (F). Formally, 

=d

),Pr( MABT  = 5τ/(5τ+4σ), which is greater than Pr( , )BT A F  = 5τ/(5τ+18σ).  But then, it 

follows that ),Pr( MASW  is smaller than ),Pr( FASW . In turn, this implies that a bank 

teller is represented by (BT, A, M), while a social worker by (SW, A, F), leading to: 
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.                                     (13) 

As in (11), the right-most term in (13) is the Bayesian odds ratio, while the 

bracketed term is the ratio of the two representations’ likelihoods.  The bracketed term is 

smaller than one, implying not only that the local thinker under-estimates the odds of 

Linda being a bank teller, but that he also neglects the information contained in the 

population odds of a bank teller τ/σ.  Even if τ/σ is high, the local thinker under-weights 

the base rate by a factor of (1/3)/(9/10) = 10/27 relative to the Bayesian assessment. 

In our model, neglect of base rates arises because the data d = A skews the agent’s 

recall and thus probability judgement in favour of “social worker”, activating in the 

agent’s mind many instances of social workers (the former activists and now feminist), 

but only a few instances of bank tellers (the former activists and now moderate).  This 

leads to an over-representation of social workers in the agent’s mind as he forgets that, 

among former activists, many bank tellers are feminist.6  In this sense, our model shows 

that one effect that KT attribute to agents’ use of non-probabilistic logic or heuristics can 

be rationalized as the result of subjects’ limited ability to represent and recall scenarios. 

 

4.2 Insensitivity to Predictability 

Various experiments show that people often fail to take into account the reliability 

of the evidence used in making probabilistic judgements, which are often heavily shaped 

by scarcely informative data.  In one study, KT (1974) presented subjects with 

descriptions of the performance of a student-teacher during a particular practice lesson.  

                                                 
6 To allow Table 3 to also illustrate the conjunction fallacy, we assumed that bank teller triggers the least 
likely scenario of “moderate.” Unlike the conjunction fallacy, base rate neglect does not require the 
difference between diagosticity and likelihood. 
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Some subjects were asked to evaluate the quality of the lesson, other subjects were asked 

to predict the standing of each student-teacher five years after the practice lesson.  The 

judgements made under the two conditions were identical, irrespective of subjects’ 

awareness of the limited predictability of teaching competence five years later on the 

basis of a single trial lesson. 

The electoral campaign example of Sections 2 and 3 already showed that local 

thinkers can over-react to scarcely informative, but diagnostic, evidence.  To see this in 

the context of KT’s experiments, suppose that a local thinker assesses the quality of a 

candidate based on the latter’s job talk at a university department.  There are three 

dimensions: the candidate’ quality, which can be high (H) or low (L), the quality of his 

talk, which can be good (GT) or bad (BT), and his expressive ability, which can be 

articulate (A) or inarticulate (I).  The distribution of these characteristics is as follows:   
 

 

Good Talk (GT) Inarticulate (I) Articulate (A) 
High Quality (H) 0.005 0.255 
Low Quality (L) 0.005 0.235 

 

Table 4.A 
 

Bad Talk  (BT) Inarticulate (I) Articulate (A) 
High Quality (H) 0.235 0.005 
Low Quality (L) 0.255 0.005 

 

Table 4.B 
 
 

In tables 4.A and 4.B, the quality of the talk is highly correlated with expressive 

ability, but the latter dimension is mildly informative of the candidate’s quality.  Tables 

4.A and 4.B are admittedly extreme, but their similarity to Table 2.B allows us to 

illustrate the parallel between insensitivity to predictability and the electoral campaign 

example of Section 3. 
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Since in Tables 4.A and 4.B the candidate’s expressive ability is diagnostic of his 

quality, after listening to the talk, the local thinker represents low quality candidates as 

inarticulate, and high quality ones as articulate.  The local thinker then assesses: 

019.0
),,Pr(
),,Pr(

)(Pr
)(Pr

51
),,Pr(
),,Pr(

)(Pr
)(Pr

==

==

IBTL
ABTH

BTL
BTH

IGTL
AGTH

GTL
GTH

L

L

L

L

 

The local thinker grossly over-estimates the quality of the candidate after a good talk and 

under-estimates it after a bad talk.  Indeed, in our example the quality of the talk conveys 

very little information about the candidate’s quality: a Bayesian would estimate 

Pr(H|GT)/Pr(L|GT) = 1.08 and Pr(H|BT)/Pr(L|BT) = 0.93 !! 

Over-reaction to the quality of the talk is due to the agent’s quick association of 

the candidate’s quality and expressive ability, which induces him to miss the fact that the 

latter attribute is scarcely informative.  The general principle here is that there is strong 

over-reaction when data (quality of the talk) are scarcely informative about the target 

attribute (quality of the candidate), but very informative about an attribute used by the 

agent to represent different hypotheses (expressive ability). 

 

4.3 The Role of Data-Provision 

In the previous example(s), biases result from the agent’s reaction to data.  How 

exactly does data provision shape a local thinker’s estimate?  To answer this question, 

consider again expression (11) and focus on the bracketed term, measuring the local 

thinker’s bias.  If no data is provided, i.e. if d = X, this bracketed term is equal to: 
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where  is the diagnostic scenario for  when no data is given.  In (14), the agent’s bias 

is written as the product of two factors: i) the ratio of the probabilities of representations 

(the first factor) and ii) the ratio of the probabilities of the hypotheses (the second factor).  

After data provision (i.e. ), equation (14) becomes: 

1
is ih

Xd ⊂
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=
∩
∩ ,                                (15) 

where  is the diagnostic scenario for  when d is given.  Data reduce the bias if (15) is 

closer to 1 than (14), they raise the bias otherwise.  We cannot say a priori which of these 

cases we are in, but we can think of the role of data as a combination of the two effects.  

1
îs ih

First, for a given ratio of the probabilities of representations (the first factor), d 

can boost bias by changing the probabilities of hypotheses (the second factor).  Only this 

effect is at work if the initial scenario  is also feasible with data (i.e.,  for  ffi = 

1,2), since in this case representations do not change.  Crucially, if representations do not 

change, neither does the agent’s assessment, even if d is objectively informative.  This 

first effect of data, then, captures the under-reaction of a local thinker.  Through this 

effect, d increases the over-estimation of  if the data are informative about  [i.e. 

Pr(h

1
is φ≠∩ dsi

1

1h 2h

1∩d)/Pr(h2∩d) < Pr(h1)/Pr(h1)], in which case under-reaction boosts the bias for .  1h

The second effect arises instead when the data “destroy” either or both of the 

initial scenarios (i.e.  for some i = 1,2), so that the representation of one or both 

hypotheses must change.  Only this effect is at work when d is uninformative [i.e. 

Pr(h

φ=∩ dsi
1

1∩d)/Pr(h2∩d) = Pr(h1)/Pr(h1)]. This effect captures a local thinker’s over-reaction 

and enhances over-estimation of  if the new representation of  triggered by the data is 1h 1h
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relatively more likely than that of .  In this case, data facilitate the recall of instances 

supporting  relative to , increasing the over-sampling of the former hypothesis. 

2h

1h 2h

This last effect can be seen in the example of Section 4.2, where data, consisting 

of the job candidate’s talk, is almost uninformative about his quality.  To see why the 

agent over-reacts to the talk, consider a local thinker’s assessment of the candidate’s 

quality before hearing his talk. Tables 4.A and 4.B imply that without data, a high quality 

candidate is represented as someone articulate and giving good talks, i.e. with (H,GT,A), 

a low quality candidate as someone inarticulate and giving bad talks, i.e. with (L,BT,I).  

The local thinker’s unconditional assessment is then given by: 

1
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L
,                                              (16) 

which is equal to the Bayesian odds ratio of Pr(H)/Pr(L) = 1.  In this case, limited 

memory does not create biases.   

Why does the talk trigger such over-reaction?  Suppose that the talk is bad.  While 

this piece of data is fully consistent with the representation of a bad candidate (who is 

supposed to give bad talks), it “destroys” the representation of a good candidate, 

relegating it to the rare exemplar of an articulate candidate who occasionally gives a bad 

talk.  This renders other instances of high quality candidates hard to recall for the agent, 

giving rise to drastic under-estimation of quality.  The reverse occurs after a good talk, 

which “destroys” only the representation of a low quality candidate, leading to over-

estimation of quality.  The provision of scarcely informative data causes an over-reaction 

when such data is consistent with the representation of one of the hypotheses while 

inconsistent with that of the other, leading to an over-sampling of the former. 
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We conclude this discussion by illustrating that the same idea can explain the base 

rate neglect example of Section 4.1.  Suppose that distribution of Linda types is: 

A 
NA

F M 

BT (2/3)(2τ/8) 
 

(1/5)(6τ/8)

(1/3)(2τ/8) 
 

(4/5)(6τ/8)
SW (9/10)(2σ/3) 

 
(1/2)(σ/3)

(1/10)(2σ/3) 
 

(1/2)(σ/3)
 

Table 5. 
 

The numbers above the diagonal capture the distribution of former activist Linda types; 

while the distribution of non activist types (NA) lie below the diagonal. 

Suppose that an agent is asked to assess the probability that Linda is a bank teller 

or a social worker without being given any data.  In this case, the agent represents a bank 

teller as a “non activist and moderate” and a social worker as an “activist and feminist”.  

It is easy to check that (NA,M) is the diagnostic scenario for bank teller while (A,F) is the 

diagnostic scenario for social worker.  As a consequence: 

σ
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,                        (17) 

an almost correct unconditional probability assessment, given that the population odds 

ratio is equal to τ/σ.   

A comparison of (17) and (13) shows that the evidence that Linda was an activist 

mutes the impact of base rates by a factor larger than two.  This is so because the data 

destroys the representation of bank teller, which relies on Linda not being an activist, but 

not that of a social worker.  Such asymmetric impact on the hypotheses’ representation 

implies that d = A reduces the agent’s ability to recall instances of bank tellers, inducing 

an over-sampling of social workers and thus a drastic neglect of bank tellers’ base rate. 
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5.  Failures of Extensionality 

5.1 Conjunction Fallacy 

The conjunction rule states that the probability of a conjoined event C&D cannot 

exceed the probability of event C or D by itself.  KT’s (1983) Linda experiment, which 

we have already described and analyzed for other purposes, dramatically demonstrated 

the conjunction fallacy.  Experimental subjects estimated that Linda the former activist is 

more likely today to be a feminist bank teller than just a bank teller.  

In our model, the conjunction fallacy obtains only under the following necessary 

condition: 
 

Proposition 2 Fix two hypotheses , .  Then,  only if the scenario 

 with which the agent represents  is not the most likely one. 

1h 2h )(Pr)(Pr 121 hhh LL ≥∩

1s 1h

 

The conjunction fallacy arises only if the constituent event  is represented with 

a diagnostic but unlikely scenario.  To see why, denote by  the scenario used to 

represent the conjunction  and by  the scenario used to represent the constituent 

event .  We study the case with no data, but it is easy to extend the argument to the 

case in which some data is provided.  The conjunction rule is violated when: 

1h

2,1s

21 hh ∩ 1s

1h

)Pr()Pr( 11212,1 hshhs ∩≥∩∩ ,                                            (18) 

i.e., when the probability of the represented conjunction is higher than the probability of 

the represented constituent event .  We can rewrite (18) as: 1h

)Pr()Pr( 11122,1 hshhs ≥∩ .                                              (19) 

The conjunction rule is violated if and only if scenario  is less likely than  for 

hypothesis . Note, though, that 

1s 22,1 hs ∩

1h 22,1 hs ∩  is itself a scenario for , because 1h

 28



122,1 hhs ∩∩  identifies an element of X.  As a consequence, condition (18) holds only if 

the diagnostic scenario  used to represent  is not the most likely one, which proves 

Proposition 2. 

1s 1h

Consider how the conjunction rule is violated in the Linda example of Section 4.  

After hearing Linda described as a former activist (i.e., d = A), the agent – whose 

probability space is displayed in Table 3 – assesses the probabilities that Linda is a “bank 

teller” and a “feminist bank teller”.  As discussed previously, the agent picks the 

“moderate” scenario for the bank teller.  Linda the bank teller is thus represented as 

“former activist, moderate, bank teller”.  Linda the “feminist bank teller” leaves instead 

no gaps to be filled and is represented perfectly, even by a local thinker. Using the values 

of Table 3, the local thinker estimates: 

1
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The conjunction rule is violated. Intuitively, the diagnostic scenario “moderate” used to 

represent “bank teller” is very unlikely in light of the fact that Linda is a former activist.  

The term “bank teller” brings to mind a representation that excludes feminist bank tellers 

because “feminist” is a characteristic disproportionately associated with social workers, 

which does not then match the image of an exemplar bank teller. 

This discussion highlights the key role played by the data. In this example, the 

conjunction rule is violated not because “bank teller” is represented with the “moderate” 

scenario per se, but because such a scenario is very unlikely given that Linda is a former 

activist.  This is another instance of the effect of data provision discussed in Section 4.3.  

If d = A were not provided, then, according to Table 5, the unconditional scenario for 
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bank teller would be “non activist, moderate” (NA,M), while that for a feminist bank 

teller would be “activist (A).  In this case,  

1
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                           (21) 

Not only is the conjunction rule not violated, but the odds of “bank teller” are over-

estimated.  Once more, the reason for the conjunction fallacy is that d = A destroys the 

likely scenario of “formerly non-activist, moderate,” with which “bank teller” is 

represented. 

One explanation of the Linda experiment discussed in KT (1983) holds that the 

subjects, instead of assessing Pr(BT|A) and Pr(BT,F|A), intuitively assess the probabilities 

of Linda being a former activist under the two hypotheses namely Pr(A|BT) and 

Pr(A|F,BT).7  This error can yield the conjunction fallacy because being feminist can 

increase the chance of being Linda.  Indeed, in our example in Table 5, Pr(A|BT) = 1/4 < 

Pr(A|F,BT) = 10/19.8  KT (1983) addressed this possibility in some experiments.  In one 

of them, after being told that the tennis player Bjorn Borg had reached the Wimbledon 

final, subjects were asked to assess whether it was more likely that in the final Borg 

would lose the first set or whether he would lose the first set but win the match.  Most 

subjects violated the conjunction rule by stating that the second outcome was more likely 

than the first.  Although our model can explain this evidence, a mechanical assessment of 

                                                 
7 In personal communication, Xavier Gabaix proposed a “local prime” model complementary to our local 
thinking model. Such model exploits the above intuition about the conjunction fallacy. Specifically, in the 
local prime model an agent assessing h1, …, hn evaluates PrL’(hi|d) = Pr(d|hi)/[ Pr(h1|d) + …+ Pr(hn|d)].   
8 On problem with this explanation is that it does not elucidate the thought process by which the subject 
substitutes the target assessment Pr(h|d) with the assessment Pr(d|h).  Our model can however help shed 
light on such thought process. This is seen by writing Pr(h1|d)/Pr(h2|d) = [Pr(d|h1)/Pr(d|h2)]*[Pr(h1)/Pr(h2)]. 
In the latter expression, one way in which subjects may mistakenly estimate the odds of h1 given d with the 
odds of d given h is if he mis-estimates the base rates of the hypotheses to be equal, i.e. if PrL(h1) = PrL(h2).  
Although it is beyond the scope of this paper to identify under what conditions this is indeed the case, in 
virtue of its ability to account for base rates’ neglect our model can allow to address this issue. In particular, 
it is fairly easy to come up with numerical examples where this is actually the case. 
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Pr(d|h) cannot.  The reason is that Pr(Borg has reached the final| score in the final) is 

always equal to one, regardless of the final score.   

Most important, the conjunction fallacy explanation based on the substitution of 

Pr(h|d) with Pr(d|h) relies on the provision of data d.  This story cannot thus explain the 

conjunction rule violations that occur in the absence of data provision.  To see how our 

model can account for those, consider another experiment from KT (1983).  Subjects are 

asked to compare the likelihoods of “A massive flood somewhere in North America in 

which more than 1000 people drown” to that of “An earthquake in California causing a 

flood in which more than 1000 people drown”.  Most subjects find the latter event, which 

a special case of the former, to be nonetheless more likely.  

To analyze this experiment, the state space can be described as having three 

dimensions: the type of flood, which can either be severe (S) or mild (M), the cause of 

flood, which can either be a earthquake (E) or a tornado (T), and the location of the flood, 

which can either be California (C) or the rest of North America (NC).  The distribution in 

the state space has the following features: 

M 
S

E T 

C (1-x)eC
xeC

tC/2 
tC/2

NC eNC/2 
eNC/2 

(1-z)tNC
ztNC

 

Table 6 

eL and tL capture the probabilities of an earthquake and a tornado in location L = 

C, NC, while x > 1/2 and z > 1/2 are respectively the share of earthquakes causing severe 

floods in California and of tornados causing severe floods in the rest of North America.  

All probabilities must add up to 1.  Table 6 captures two key features of a subject´s 
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beliefs: i) earthquakes are sufficiently milder in the rest of North America than in 

California that they cause fewer severe floods (only 1/2 of earthquakes cause severe 

floods in North America, x >1/2 earthquakes cause severe floods in California), and ii) 

tornados are sufficiently milder in California than in the rest of North America that they 

cause fewer severe floods (only 1/2 of tornados cause severe floods in California, z > 1/2 

tornados cause severe floods in the rest of North America).  We make the natural 

assumption that z > x, meaning that tornados are more likely to cause severe floods than 

earthquakes.   

Table 6 implies that a severe flood (S) is represented with scenario (T,NC), namely 

as a severe flood caused by a tornado in the rest of North America because zNCTS =),Pr(  

> xCES =),Pr(  > =),Pr( CTS 2/1),Pr( =NCES . The event “Severe flood caused by an 

earthquake in California” instead uniquely identifies the scenario (S,C,E).  Given these 

representations, the assessed odds of (S,C,E) relative to (S) are: 

C

NC
L

L

xe
zt

ECS
TNCS

ECS
S

==
),,Pr(
),,Pr(

),,(Pr
)(Pr .                                       (22) 

If the probability of disastrous earthquakes in California is sufficiently high relative to 

that of disastrous tornados in North America, (i.e., ), the conjunction fallacy 

arises without data.  Intuitively, although tornadoes mainly cause mild floods, they are a 

prototypical cause of floods.  Hence, severe floods are represented as being caused by 

tornadoes, disregarding that an earthquake in California can cause a very disastrous flood. 

CNC xezt >

 

5.2 Disjunction Fallacy 

According to the disjunction rule, the probability attached to an event A should be 

equal to the total probability of all events whose union is equal to A.  Fischoff, Slovic and 
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Lichtenstein (1979) were the first to document the violation of the disjunction rule 

experimentally.  They asked car mechanics, as well as lay people, to estimate the 

probabilities of different causes of a car’s failure to start.  They document that on average 

the probability assigned to the residual hypothesis – “The cause of failure is something 

other than the battery, fuel system, or the engine” – went up from 0.22 to 0.44 when that 

hypothesis was broken up into more specific causes (e.g. the starting system, the ignition 

system). Respondents, including most remarkably experienced car mechanics, discounted 

hypotheses that were not explicitly mentioned.  The under-estimation of implicit 

disjunctions such as residual hypotheses has been documented in many other experiments 

and is the key assumption behind Tversky and Koehler’s (1994) support theory.   

To see whether local thinking can rationalize such disjunction fallacy, compare 

the assessment of hypothesis h1 with the assessment of hypotheses  and  where 

.  From equation (10), the implicit disjunction h

1,1h 2,1h

12,11,1 hhh =∪ 1 is underestimated when: 

)Pr()Pr()Pr( 1
1
12,1

1
2,11,1

1
1,1 hshshs ∩>∩+∩ ,                                 (23) 

i.e., when the probability of its representation  is smaller than the sum of the 

probabilities of the representations  and of  and , respectively.  

A sufficient condition for (24) to hold is that: 

1
1
1 hs ∩

1,1
1

1,1 hs ∩ 2,1
1

2,1 hs ∩ 1,1h 2,1h

{ }2,1
1

2,11,1
1

1,11
1
1 , hshshs ∩∩∈∩ ,                                          (24) 

that is, at least one of hypotheses  and  has the same representation of the implicit 

disjunction .  The appendix shows that this must always be true, which thus implies: 

1,1h 2,1h

1h

 

Proposition 3  For any hypotheses ,  and  with 1h 1,1h 2,1h 12,11,1 hhh =∪ , a local thinker 

assessment satisfies . )Pr()(Pr)(Pr 12,11,1 hhh LL ≥+
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Local thinking leads to underestimation of implicit disjunctions. Intuitively, 

unpacking a hypothesis h1 into its constituent events reminds the local thinker of 

elements of h1 he would otherwise fail to integrate into his representation.  In Proposition 

3, the inequality is weak to allow for the possibility that the local thinker’s representation 

is perfect (because for instance  identifies a single element or because b is large).  

Generically, the inequality is strict when the agent’s representations are imperfect. 

1h

Consider the following version of the car mechanic experiment.  There is only one 

dimension, the cause of a car’s failure to start (i.e., K = 1) so that { }ignitionfuelbatteryX ,,≡ , 

where fuel stands for “fuel system” and ignition stands for “ignition system.” Assume 

without loss of generality that . The agent is initially 

asked to assess the likelihood that the car’s failure to start is not due to battery troubles.  

That is, he is asked to assess the hypotheses 

0)Pr()Pr()Pr( >>> ignitionfuelbattery

{ }ignitionfuelh ,1 = , batteryh =2 . Since K = 

1, there are no scenarios to fit.  Yet, since the implicit disjunction  

does not pin down an exact value for the car’s failure to start, by criterion (8’) in 

Appendix 1 the agent represents it by selecting its most likely element, which is fuel by 

assumption.  The local thinker then attaches the probability: 

{ }ignitionfuelh ,1 =

)Pr()Pr(
)Pr()(Pr 1 batteryfuel

fuelhL

+
=                                            (25) 

to the cause of the car’s failure to start being other than battery when this hypothesis is 

formulated as an implicit disjunction.   

Now suppose that the implicit disjunction h1 is broken up into its constituent 

elements, h1,1 = fuel and h1,2 = ignition (e.g., the individual is asked to separately assess 

the likelihood that the car’s failure to start is due to ignition troubles or to fuel system 
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troubles).  Clearly, the local thinker represents h1,1 by fuel and h1,2 by ignition.  As before, 

he represents the other hypothesis h2 by battery.   The local thinker now attaches greater 

probability to the car’s failure to start being other than the battery because: 

)Pr()Pr(
)Pr()(Pr

)Pr()Pr()Pr(
)Pr()Pr()(Pr)(Pr

1 batteryfuel
fuelh

batteryfuelignition
fuelignitionfuelignition

L

LL

+
=>

++
+

=+
.                  (26) 

 

In other words, we can account for the observed disjunction fallacy.  

 

6. Conclusion 

We have presented a simple model of System 1 in which the agent perceives some 

data, and combines it with information retrieved from memory to evaluate a hypothesis.  

The central assumption of the model is that, in the first instance, information retrieval 

from memory is both limited and selected.  Some, but not all, of the missing scenarios 

come to mind of the decision maker.  Moreover, the hypothesis in question primes the 

selective retrieval of scenarios from memory, with those most predictive of the 

hypothesis itself being retrieved first.  We showed that this simple model accounts for a 

significant number of experimental results documented by Kahneman and Tversky, most 

of which are related to the representativeness heuristic.  In particular, the model can 

explain the conjunction and disjunction fallacies exhibited by experimental subjects. 

To explain the evidence, we took a narrow view of how recall of various 

scenarios takes place.  In reality, many other factors affect recall.  Both availability and 

anchoring heuristics described by Kahneman and Tversky bear on how scenarios come to 

mind, but through mechanisms other than those we elaborated.   
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Perhaps, at a more general level, our model suggests a somewhat different view of 

heuristics, and of System 1 vs System 2 thinking.  From our perspective, intuition and 

reasoning are not two different modes of thought.  Rather, they differ in what is retrieved 

from memory to make an evaluation.   In the case of intuition, the retrieval is not only 

quick, but also partial and selective.  In the case of reasoning of the sort studied by 

economists, the retrieval is complete.    

Indeed, in economic models, we typically think of people receiving limited 

information from the outside world, but then combining it with everything they know to 

make evaluations and decisions.   The point of our model is that, at least in making quick 

decisions, people do not bring everything they know to bear on their decisions.  Only 

some information is automatically recalled from passive memory, and – crucially to 

understanding the world – the things that are recalled might not even be the most useful.  

Heuristics, then, are not limited decisions.  They are decisions like all the others, but 

based on limited and selected inputs from memory.  System 1 and System 2 are examples 

of the same mode of thought; they differ in what comes to mind. 
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7. Appendix 1: Generalizing the definition of scenarios 

Consider now hypotheses constrain some dimensions of X to be in a certain set without 

necessarily constraining them to take specific values as in expression (7). Such general 

hypotheses take the form: 

[ ]{ }KIforIisomeandXHsomeforHxXx iiii ,...,1⊆∈⊂∈∈    (27) 

In the above definition, I is the set of dimensions constrained in the hypothesis and Hi is 

the admissible set specified in the hypothesis for each dimension .  Dimensions 

 are left completely free in the hypothesis.  Note that the hypotheses of expression 

(7) are special cases of the hypotheses above when H

Ii∈

Ii∉

i is a singleton for every . Ii∈

To operationalize our definition of scenario in the case of the general hypotheses 

above, we assume that the agent transform a hypothesis of type (27) into a hypothesis of 

type (7) by filling specific values in each of the sets Hi for every Ii∈ .  At the same time, 

the agent fills the remaining dimensions (i.e. those left completely free in the hypothesis) 

by selecting a scenario fulfilling Definition 1.  As a result, the agent must now choose not 

only how to fill a scenario (i.e. the dimensions unrestricted in the hypothesis), but also 

how to fill the dimensions left unrestricted in the hypothesis.  We assume that an agent 

with b = 1 does that by solving the optimization problem: 

( )
[ ]dsxx EiiIiiSsHx Iiii

∩∈∈∈∈ ∈

)(,)(Prmax
,

,                                         (8’) 

where E is a subset of I containing all dimensions that are constrained by equality in the 

hypothesis.  When all the constrained dimensions in the hypothesis are constrained with 

equality, formally E = I, expression (8’) boils down into (8). If some dimensions are 

instead constrained but not by equality, then the agent selects specific values for them in 

their admissible range so as to maximize the probability that, conditional on the scenario 

selected and the data, the hypothesis under scrutiny is true. Assumption (8’) captures the 

idea that dimensions explicitly mentioned in the hypothesis are selected to maximize the 

probability of the latter.9  It is easy to check that a solution to problem (8’) always exists. 

                                                 
9 We could assume that filling gaps in hypotheses taking the form described in (27) is equivalent to 
selecting scenarios, that is the agent may maximize (8) subject to selecting scenarios . Although 
our main results would still hold, in this case all scenarios 

dhs r ∩∈
dhs r ∩∈  would be equally diagnostic, as 

expression (8) would always be equal to 1. Assumption (8’) captures the intuitive idea that the agent also 
orders the diagnosticity of elements belonging to ranges explicitly mentioned in the hypothesis itself. 
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With assumption (8’) all the results of the paper are generalized to hypotheses 

taking the form in (27).  The only caveat is that in this case the representation 

 of hypothesis  should be read as the intersection of the set identified by 

the specific values chosen by the agent for representing  with the scenario chosen as 

well as with the data. 

dhs rr ∩∩1
rh

rh

 
8.  Appendix 2: Proofs  
Proof of Proposition 1.  Consider claim a) first. If 12 hh = , the diagnosticity ranking of 

 for  follows Ss∈ 1h [ ])Pr()Pr(/)Pr()Pr( 2111 sdhsdhsdhsdh ∩∩+∩∩∩∩=∩ . The 

diagnosticity ranking of  for  follows Ss∈ 2h )Pr(1)Pr( 12 sdhsdh ∩−=∩ . Evidently 
then, the diagnosticities of scenarios for the two hypotheses are perfectly negatively 
correlated, formally  for k = 1,…,M. 1

21
+−= kMk ss

We now turn to claim b).  At any given b < M,  is represented with scenarios 1h
( ) bk

ks ≤1 , while  is represented with 2h ( ) bk
kMs ≤

−+1
1 . As such, the odds of  are over-

estimated at b if and only if 
1h

∑∑
=

−+

=

∩≥∩
b

k

kM
b

k

k dhsdhs
1

2
1

1
1

11 )Pr()Pr(                                    (28) 

Suppose now that )Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  strictly decrease in k.  Then, one can 
easily show that the above condition is met for every b < M.  Suppose in fact that for a 
certain b* < M the above condition is not met.  That is, suppose that  

∑∑
=

−+

=

∩<∩
**

1
2

1
1

1
11 )Pr()Pr(

b

k

kM
b

k

k dhsdhs                                   (29) 

Then, at some b** ≤ b* , it must be the case that )Pr()Pr( 2
1

111
****

dhsdhs bMb ∩<∩ −+ .  But 

then, since )Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  strictly decrease in k, it must also be the case 

that )Pr()Pr( 2
1

111 dhsdhs bMb ∩<∩ −+  for all b ≤ b*.  The same property implies that 

)Pr()Pr( 2
1

111 dhsdhs bMb ∩<∩ −+  for all b > b*.  But then, this implies that (29) must hold 
for all b > b*, including b = M, which is inconsistent with the fact that: 

1)Pr()Pr(
1

2
1

1
1

11 =∩=∩ ∑∑
=

−+

=

M

k

kM
M

k

k dhsdhs                                (30) 

must necessarily hold.  Hence, if )Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  strictly decrease in k 
condition (28) must always hold and the odds of  are always (weakly) overestimated.  
By using the same logic, it is immediate to show that the odds of  are always (weakly) 
overestimated when 

1h

2h
)Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  strictly increase in k.  By using the 

same logic, one can readily show that when )Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  strictly 
increase in k. the odds of odds of  are under-estimated for any b. 1h
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To see how over-estimation of  may be infinite, consider, in the class of 
distributions such that 

1h
)Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  decreases in k a distribution 

where ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−∩=∩∩

−

ε
εε

1
11)Pr()Pr(

1
2

11
1
1

M

dhdhs  and )  for all 

k≥2 and 

2(2
111 )Pr()Pr( −∩=∩∩ kk dhdhs ε

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−∩=∩∩

−

ε
ε

1
11)Pr()Pr(

1

22
1
1

M

dhdhs  and  for 

all k≥2, where 0 < ε < 1.  Under this distribution, lower indexed frames are more 
diagnostic of  because the probability of bundles belonging to  decays much faster 
with k than that of bundles belonging to .  Under both hypotheses, the probability of 
bundles decreases in k, which implies that this probability distribution belongs to the 
class where 

)2(
221 )Pr()Pr( −∩=∩∩ kk dhdhs ε

1h 1h

2h

)Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  decrease in k.   Notice that when b =1 the 
odds of  relative to  are equal to: 1h 2h
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For given true odds ratio 
)Pr(
)Pr(

2

1

dh
dh

∩
∩ , the estimated odds ratio becomes infinite as ε → 0. 

Finally, consider point c).  If )Pr( 11 dhs k ∩  and )Pr( 2
1

1 dhs kM ∩−+  (weakly) 
decrease in k, the two hypotheses are represented with their most likely frames.  Thus, the 
greatest over estimation of  relative to  is reached when 1h 2h 1)Pr( 1

1
1 =∩ dhs  and 

Mdhs M /1)Pr( 21 =∩ .  That is, when  is concentrated on its representation while the 
distribution of  is fully dispersed among all frames.  In this case, the agent over 
estimates the odds of  by a factor of M.  Accordingly, when 

1h

2h

1h Mdhs /1)Pr( 1
1
1 =∩  and 

1)Pr( 21 =∩ dhs M , the agent under estimates the odds of  by a factor of M.  To 
conclude, notice that in those distributions it is indeed the case that k indicates the recall 
order for  because in both cases the diagnosticity of a frame for  falls in k.    

1h

1h 1h
 
Proof of Proposition 3.  The only thing to check to ensure that (25) holds is that  is 
indeed a feasible scenario for at least one of  and .  If this is the case, condition 

(25) intuitively follows by “revealed preference” logic: if  is the most diagnostic 
scenario for , then  is going to be the most diagnostic scenario for either  or , 
because the scenario for  must be the scenario for , for , or for both (as 

).  Suppose to the contrary that  is a feasible scenario neither for  nor 
for .  By the definition of the scenario, this can only occur if both  and  are 
such that neither  nor  identifies an element in X.  This, however, cannot 

be the case because by definition  is a scenario for , that is  identifies one 

1
1s

1,1h 2,1h
1
1s

1h 1
1s 1,1h 2,1h

1h 1,1h 2,1h

12,11,1 hhh =∪ 1
1s 1,1h

2,1h 1,1h 2,1h

1,1
1
1 hs ∩ 2,1

1
1 hs ∩

1
1s 1h 1

1
1 hs ∩
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element in X. By using the distributive property, this implies that 
 also identifies one element in X.  But this implies 

that  must be a scenario for either  or . 
2,1

1
11,1

1
12,11'1

1
1 )( hshshhs ∩∪∩=∪∩

1
1s 1,1h 2,1h
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