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Abstract

Counterfactual statements, e.g., "my headache
would be gone had | taken an aspirin” are cen-
tral to scientific discourse, and are formally in-
terpreted as statements derived from "alternative
worlds”. However, since they invoke hypotheti-
cal states of affairs, often incompatible with what
is actually known or observed, testing counter-
factuals is fraught with conceptual and practi-
cal difficulties. In this paper, we provide a com-
plete characterization of "testable counterfactu-
als,” namely, counterfactual statements whose
probabilities can be inferred from physical exper-
iments. We provide complete procedures for dis-
cerning whether a given counterfactual is testable
and, if so, expressing its probability in terms of
experimental data.

Introduction

variables not included in the analysis, over which a proba-
bility distribution P(U) is assumed to be defined. This dis-
tribution, together with the functional relationships argo
the variables defines a unique joint probability distribati
P(V) over observable variablds, which governs statisti-
cal data obtained in observational studies.

The results ofobserving some aspect of the current
state of affairs leads to conditional distributio®%V|e)
andP(Ule). In contrast, the result of hypothetically estab-
lishing x is represented by amterventional distribution
P(V|do(x)) or P(V), wheredo(x) stands for hypotheti-
cally forcing variableX to attain values regardless of the
factors that influenc¥ in the model while leaving all other
functional relationships unaltered. A variabfeaffected by
an interventiordo(x) is changed into aounter factual
variable and is denoted byy. *

To represent a 'what iX were x’ question, we assume
the state of knowledg#(U|e) induced by the observa-
tionse, and ask for the consequences of taking the atomic
action do(x), where actions and observations can poten-
tially be in conflict. In our framework, this corresponds
to expressions of the forn?(Yx|e). This way of mathe-

Human beings organize their knowledge of the world inmatizing counterfactuals was first proposedBalke &
terms of causes-effect relationships, because many of tHeearl, 1994h [Balke & Pearl, 1994 In addition,[Balke
practical questions they face are causal in nature. Counte& Pearl, 1994bproposed a method for evaluating expres-
factuals are an example of causal questions which abourglons like the above when all parameters of a causal model
both in everyday discourse, as well as in empirical scienceare known. In practice, however, complete knowledge of
medicine, law, public policy, economics, and so on. the model is too much to ask for; the functional relation-
ships as well as the distributioR(U) are not known ex-

A Icounter:jactual 'Z S|{nply a \t/yhat Itf tquefsttr:on - Iltdm- actly, though some of their aspects can be inferred from the
volves evidence about an existing state of the world, e.g.,, o aple distributio® (V).

"I have a headache”, and a question about an alternative,
hypothetical world, where the past is modified in someEvaluating causal queries given this partial state of knowl
way, e.g., "what if | had taken aspirin?”. To formalize such edge is a subtle problem known @&nti fication [Pearl,
questions, we need a framework that can seamlessly int¢000d. A well studied version of this problem is comput-
grate the notions of evidence and 'world alteration,’ such__

as that provided by structural causal mod®sarl, 2000h !In practice, attempts to physically intervene on one végiab
Such models are represented by a graph calleduaal may have unintended side effects. Still, a semantics based o

) - . . ideal, atomic interventions provides a useful abstractgmilar
diagram, where the vertice¥ are variables of interest, | jarivative” in calculus), with the help of which the imgtzof

directed edges represent functional relationships, agliel bi compound interventions, side effects included, can beyaed!
rected edges are spurious dependencies emanating fromith mathematical precision.
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ing causal ef fects, or expressions of the forn®(Y), dencies between counterfactual variables, in those hypo-
given P and the causal diagrai@. This version of the thetical worlds that are invoked by the query. We use the
identification problem has received considerable attentio counterfactual graph to give a complete graphical charac-
in the last 15 years, with partial results found[Bpirtes, terization of those counterfactuals which can be identified

Glymour, & Scheines, 1993 [Pearl & Robins, 1995  from experiments, and provide complete algorithms which

[Pearl, 1995 [Kuroki & Miyakawa, 1999, [Tian & Pearl, can express all identifiable counterfactuals in terms of ex-
2004, and was finally closed in general graphical modelsperimental data.

in [Huang & Valtorta, 200F [Shpitser & Pearl, 2008b

Shpitser & Pearl, 200 -
[Shpitser & Pearl, 20082 2 Notation and Definitions

The problem with counterfactual queries lik&Yx|e) is

even more severe. Since actions and evidence can Standlw this section we review the mathematical machinery of

logical contradiction, no experimental setup exists Wh'ChcausaI reasoning, and introduce counterfactual distribu-

would emulate b?”‘ the evideneand the actiow. For ex- tions as well-defined objects obtained from causal models.
ample, no experimental setup can reveal to us the percent-

age of deaths that could be avoided among people who réd  probabilistic causal model is a tupleV =
ceived a given treatment, had they not taken the treatmentU, V,F, P(U)), whereV is a set of observable vari-
We simply cannot perform an experiment where the sam@bles, U is a set of unobservable variables distributed
person is both given and not given treatment. Mathematiaccording to P(U), and F is a set of functions. Each
cally, this means that it is unclear whether counterfactuavariableV' € V has a corresponding functigfy € F that
expressions likeP?(Yy|e), with e andx incompatible, can determines the value df in terms of other variables i

be estimated consistently even if we are given the results gindU. The distribution orV induced byP(U) andF will

all possible experiments (represented by thefset {P|  be denoted”(V).

wherex is a value assignment of C V} [Pearl, 2000B. The induced grapt of a causal model/ contains a node

Some basic results on evaluating counterfactuals artor every element iV, a directed edge between nodes
known. For instance, a simple algebraic trick shows thatX andY if fy possibly uses the values of directly to
P(Y,|z") is experimentally identifiable (i.e., computable determine the value of, and a bidirected edge between
from P,) if X is a binary variable, regardless of the under-nodesX andY  if fx, andfy both possibly use the value
lying graph. On the other hand, the counterfactual repreOf some variable irJ to determine their values. In this
sented byP(Y,, Y,), named 'probability of necessity and paper we considerecursive causal models, those mod-
sufficiency’ in [Pearl, 2000h is known to not be experi- €ls which induce acyclic graphs. We will use abbreviations
mentally identifiabldAvin, Shpitser, & Pearl, 20d5un-  Pa(.)a, Ch(.)a, An(.)a, De(.)c to denote the set of par-
less additional assumptions can be brought to bear (e.ggnts, children, ancestors and descendants of a given node
monotonicity [Pearl, 20008. In this paper we explore inG.

testability of counterfactuals relative to scientific knew An actiondo(x) modifies the functions associated with
edge expressed in the form of missing links in the underly,., ) their normal behavior to outputting constant valkes
ing graph. The sensitivity of the tested quantities to tkis e The result of an actioro(x) on a modelM/ is asubmodel

tra knowledge can be assessed using the bounding meth%ich we denote by/,. Because the nodésare now con-

of [Balke & Pearl, 1994k stant, the graph induced hyly is G \ X. We denote the
A complete proof system for reasoning about causal an@vent "variableY” attains valuey in My”" by the shorthand
counterfactual quantities was given fhlalpern, 2000 "y

While such a system is, in principle, powerful enough to
evaluate any identifiable counterfactual expressiongkda in some modelM. If all subscriptsx’ are the same and
a proof guiding method which guarantees termination Ir'equal tox, thisy merely corresponds to value assignments

a reasonable amount of time. Furthermore, such a System o set of variables in a submoded. The probability of
would not provide a graphical characterization of identifi-thiS assignment is theR(y) = B (yl. y*) which can
- X PR

cation, and much of human knowledge, as we postulate, i§g o4l computed from,. But what if the subscripts are
stored in graphical form.. To the best of the authors kn_oyv I'not the same, and possibly force conflicting values to the
gdge, no _generf_ﬂl algorithms for counterfactual Ident"C'C"""same variable? A natural way to interpret our conjunction
tion exist in the literature. in this case is to consider all submoda@lf., ..., M,. at

In this paper, we present a structure called theonce, and compute the joint probability over the counter-
counter factual graph, which stands in the same relation factual variables in those submodels inducedJpyhe set

to a counterfactual query that the causal graph does to @f exogenous variables all these submodels have in com-

causal query. In other words, this graph displays indepenmon. The probability of our conjunction is then given by
P(v) = X qujueyy P(U) whereu |= « is taken to mean

Consider a conjunction of eventsequal toy,, A ... A yfk



that each variable assignmentyrholds true in the corre- Vg Y
sponding submodel o/ when the exogenous variables D oY x* p X
U assume values. In this way, P(U) induces a distri- ,f>1 lx =Nt jd ’
bution on all counterfactual variables M. In this paper, ' -- )
we will represent counterfactual utterances by joint distr |
butions such ag>(v) or conditional distributions such as  U*,
P(v|6), wherey andé are conjunctions of counterfactual "8 Y

. . . Y Y - _ Yw__ LY X
events. SeéPearl, 2000kfor an extensive discussion of X iyl d ©
counterfactuals, and their probabilistic representatised @ (b)
in this paper.

. e . Figure 1: Nodes fixed by actions not shown. (a) Gréph
We are interested in finding out when queries likgy) can (b) Parallel worlds graph faP (i |2, 4, d) (the two nodes

be computed fron®P,, the set of all interventional distribu-
tions, and when they cannot. To get a handle on this quesOlenOted by are the same). () Counterfactual graph for

/
tion, we turn to the notion of identifiability, which has been Pysla’, 24, d).
successfully applied to similar questions involving cdusa

effectsP(Y) [Pearl, 2000h to pass that a counterfactual query of interest would in-

volve three or more worlds. For instance, we might be inter-
ested in how likely the patient would be to have a symptom
Y given a certain dose of drug X, assuming we know
that the patient has taken dosé of drug X, dosed of
drug D, and we know how an intermediate symptahme-
sponds to treatmenmt This would correspond to the query
P(yz|2', za, d), which mentions three worlds, the original
modelM, and the submodel&l,, M,.

Definition 1 (identifiability) Consider a class of models
M with a descriptionT’, and objectsp and § computable
from each model. We say thatis #-identified inT if ¢ is
uniquely computable fromin any M € M.

If ¢ is 6-identifiable inT", we write T, 0 ;4 ¢. Otherwise,
we writeT’, 0 t/,q ¢. The above definition leads naturally to
a way to prove non-identifiability.

This problem is easy to tackle — we simply add more than
Lemma 1 LetT be a description of a class of modéls two submodel graphs, and have them all share the same
Assume there exist/!, M? <€ M that share object®, U nodes. This simple generalization of the twin network
while ¢ in M is different fromg in M2. ThenT, 0 174 ¢. model was considered ifvin, Shpitser, & Pearl, 2045

and was called there the parallel worlds graph. Fig. 1 shows
In the remainder of the paper, we will construct an algo-the original causal graph and the parallel worlds graph for
rithm which, for anyT = G, will identify ¢ = P(v|0) ~vy =y, A2 AzqgAd.
(with § possibly empty) frond = P,, and prove that when-
ever the algorithm fails, the original query is not identifi-
able using Lemma 1.

The other problematic feature of the twin network graph,
which is inherited by the parallel worlds graph, is that mul-
tiple nodes can sometimes correspond to the same random
variable. For example in Fig. 1 (b), the variablgsand
3 The Counterfactual Graph Z,, are represented by distinct nodes, although it's easy
to show that since&Z is not a descendant of, Z7 = Z,.
Solutions to the causal effect identification problem relyThese equality constraints among nodes can make the d-
on judging independencies among random variables in theeparation criterion misleading if not used carefully. For
same submodél/y using d-separatiofPearl, 1988inthe  instanceY, [ Z|Z, even though using d-separation in
causal grapldz \ X. If we are dealing with a counterfactual the parallel worlds graph suggests the opposite. To handle
~, more than one submodel is mentioned. Nevertheless, wihis problem, we use the following lemma which will tell
would like to use a similar technique, and construct a graplus when variables from different submodels are in fact the
which will allow us to reason about independencies amongame.
the set of counterfactual variables in all submodels men-
tioned invy. Lemma 2 LetG be a causal diagram witkh observed and

The first attempt to construct such a graph was made iR fixed. Then in all model inducing' where nodesy,

[Balke & Pearl, 1994awhere atwin network graph was share both the same functional mechanism and _the same
. . exogenous parents, «, 5 are the same random variable if
constructed fory which mention exactly two submodels.

The twin network aranh consisted of two submodel araph all their corresponding parents are either shared or attain
: grap . 9"aPM3he same value (either by intervention or observation).
which shared exogenous variablés

One problem with the twin network graph, of course, isProof: This follows from the fact that variables in a causal
the restriction to two possible worlds. It can easily comemodel are functionally determined from their parentsc



The parallel worlds graph can be thought of as a causajorithm can make an arbitrary choice picking a parent of
diagram for a special kind of causal model where somev each time Lemma 3 is applied, both the counterfactual
distinct nodes share the same functions. Using Lemma 8raphG’, and the corresponding modified counterfactual
as a guide, we want to modify such a diagram to rid our-y’ are not unique. This does not present a problem, how-
selves of duplicate nodes, while at the same time ridging ever, as any such graph is acceptable for our purposes.

of syntactically d|s_t|nct var_|ables which represent Fhmea It's straightforward to verify that applyingake-cgto the
counterfactual variable. Since we need to establish same- - ,
causal graph in Fig. 1 (a) and= y,. A zq A 2’ A d, one of

ness for parents before children, we apply Lemma 2 induc / ; -
tively starting with the root nodes. the graphs that can be obtained is one in Fig. 1 (c).

If two nodes are established to be the same, we want ta
specify the rule for merging them in the graph. This rule
work as we would expect. If two nodes (say correspond- ) ]
ing to Yy, ;) are established to be the samednthey are Having constructed a graphical representation of worlds
merged into a single node which inherits all the childrenmentioned in counterfactual queries, we can turn to identifi
of the original two. These two nodes either share their parcation. We construct two algorithms for this task, the fgst i
ents (by induction) or their parents attain the same value<alledID* afd works for unconditional queries, while the

If a given parent is shared, it becomes the parent of the ne®€c0nd/DC* , works on queries with counterfactual evi-
node. Otherwise, we pick one of the parents arbitrarily todence and calls the first as a subroutine. These are shown
become the parent of the new node. The soundness of thid Fig. 2.

operation is simple to establish. These algorithms make use of the following notation:

. sub(.) returns the set of subscriptgr(.) the set of vari-
Lemma 3 LetM be a causal model withobserved, and  gpjes, aneV(.) the set of values (either set or observed) ap-
fixed such that Lemma 2 holds foy 3. LetM’ be a causal  pearing in a given counterfactual, whilal(.) is the value
model obtained frond/ by merginga, (3 into a new node  5ssigned to a given counterfactual varialiléG” ) is the set
w, which inherits all parents and the functional mechanismg¢ C-components, antf(G') is the set of observable nodes
of a. All children of, 8 in M’ become children ab. Then ¢ . Following[Pearl, 2000k (/. is the graph obtained
M, M’ agree on any distribution consistent withbeing from G’ by removing all outgoing%arcs frofi,; +/ is ob-

T Tyx

observed anat being fixed. tained fromm’ by replacing all descendant variablé3 of

Y, in v" by W,,. A counterfactua$:, wheres, r are value
assignments to sets of nodes, represents the event "the node
The new nodevy we obtain from Lemma 3 can be thought setS attains values under interventiomo(r).”

of as a new counterfactual variable. What should be its a
tion (subscript)? Intuitively, it is those fixed variablebiah
are ancestors ab in the graphG’ of M’. Formally the
subscript isw, whereW = An(w)gs N sub(y), where the
sub(+) corresponds to those nodegifiwhich correspond
to subscripts iny. Since we replaced, 5 by w, we replace
any mention ofy, 5 in our given counterfactual quef(v)

by w. Note that sincex, 3 are thesame, their value assign-
ments must be the same (say equaj)toThe new counter-
factualw inherits this assignment.

Identification of Counterfactual Queries

Proof: This is a direct consequence of Lemma 2.

S illustrate the operation of these algorithms by consid-
ering the identification of a querl(y.|«’, z4, d) consid-
ered in the previous section. SinB¢x’, z4, d) is notincon-
sistent, we proceed to construct the counterfactual graph
on line 2. Suppose we produce the graph in Fig. 1 (c),
where the corresponding modified queryAgy.. |2/, z, d).
Since P(y.,2’,z,d) is not inconsistent we proceed to
the next line, which moves,d (with d being redun-
dant due to graph structure) to the subscriptyef to
obtain P(y, .|x’). Finally, we callID* with the query
We summarize the inductive applications of Lemma 2, andP(y.., 2"). The first interesting line is 6, where the query
3 by themake-cgalgorithm, which takes andG as argu-  is expressed 8., P(yx, - w, 2")P(w,). Note thatr is re-
ments, and constructs a version of the parallel worlds grapdundant in the first term, so a recursive call reaches line

without duplicate nodes. We call the resulting structuee th 9 with P(y. .,,z’), which is identifiable asP, ,(y,z’)
counter factual graph of v, and denote it by7,. Theal- from P,. The second term is trivially identifiable as
gorithm is shown in Fig. 2. P.(w), which means our query is identifiable & =

> w Prw(y, 2") Py (w), and the conditional query is equal

Note that there are three additional subtletiemake-cg 0 P'/P'(x')

The first is that if variabled, Y; were judged to be the
same by Lemma 2, bytassigns them different values, this When considering the soundness of our algorithms, the key
implies thatP(y) = 0. The second is that due to the fac- observation is that the counterfactual graph which is out-
torization properties of causal graphs if we are interesteghut by make-cgis a causal diagram for a particular causal
in identifiability of P(v), we can restrict ourselves to the model. Thus, all the theorems that have been developed for
ancestors ofy in G’ [Tian, 2002. Finally, because the al- ordinary causal models work for the counterfactual graph.



functionmake-cq G, v)

INPUT: G a causal diagram, a conjunction of counterfac-
tual events

OUTPUT: A counterfactual grap&,, and either a set of
eventsy’ s.t. P(v') = P(y) orINCONSISTENT

1 Construct a submodel grapfy, for each action
do(x;) mentioned invy. ConstructG’ by having all
such graphs share their correspondihgodes.

2 Letr be a topological ordering of nodes@. Apply
Lemmas 2 and 3, in order, to each node pait, 5
sharing functions. If at any poinal(a) # val(3), but
a = by Lemma 2, returi@y’, INCONSISTENT.

3 return(An(v")gr, 7).

functionID* (G, )

INPUT: GG a causal diagramy, a conjunction of counterfac-
tual events

OUTPUT: an expression fdP(~) in terms of P, or FAIL

1ify=0retunl

if (3z,.. € ), return0

if (3z,.. € 7), returnID* (G, v \ {z4..})
(G',~") = make-cd G, )

if v/ = INCONSISTENT, return 0

if C(G") ={s*,...,8%},

returny_y cy, L ID* (G, sy 1)

7 if C(G") = {S} then,

8 if (Ix,X') s.t.x # X', x € sub(S),x" € evS),
throw FAIL

9 else, letx = | Jsub(S)
returnPx(var(S))

o oA WN

functionIDC* (G, v, 9)

INPUT: G a causal diagramy, 6 conjunctions of counter-
factual events

OUTPUT: an expression faP(vy|d) in terms ofP,, FAIL ,
or UNDEFINED

1 if ID* (G, ) = 0, returnUNDEFINED
2 (G',y' Ad') = make-cd G,y AJ)

3 if v/ A ¢’ = INCONSISTENT, return O
4 if (Jyx € o) st (Yx 1L )G,

returniDC* (G, v,,., 0" \ {yx})
5 else, letP’ = ID* (G, A ). returnP’ /P’(§)

Figure 2: Counterfactual identification algorithms.

Thus, we reproduce a number of definitions and lemmas
which hold for causal models which will help us in our
proof.

Definition 2 (c-component) G is a C-component if any
two nodesX,Y in G are connected by a path where no
observable node on the path has any outgoing arrows in
the path. (such a path is called a confounding path).

C-components partition a causal diagram into a set of frag-
ments where the distribution corresponding to each frag-
ment is identifiable.

Lemma 4 For any G and any effectF(y), P(y) =
2w yux) LI Pos; (si), where{Sy, ..., Si} is the set of C-
components of7 \ X.

Proof: See[Tian, 2003, [Shpitser & Pearl, 2004b o

The truly new operation specific to identificationiy ap-
pears in line 9. We justify this operation with the following
lemma.

Lemma 5 If the preconditions of line 7 are meB(S) =
Pi(var(S)), wherex = | sub(5).

Proof: Let x = | Jsub(S). Since the preconditions are met,

x does not contain conflicting assignments to the same vari-
able, which meando(x) is a sound action in the original
causal model. Note that for any variablg in .S, any vari-
able in(Pa(S) \ S) N An(Yy)s is already inw, while any
variable in(Pa(S)\ S)\ An(Yw)s can be added to the sub-
script of Yy, without changing the variable. SinggnX = ()

by assumptiony;, = Y. SinceY}, was arbitrary, our result
follows. o

Theorem 1 If ID* succeeds, the expression it returns is
equal toP(~) in a given causal graph.

Proof: The first line merely states that the probability of
an empty conjunction is 1, which is true by convention.
Lines 2 and 3 follow by the Axiom of EffectivenefSalles

& Pearl, 1998. The soundness ahake-cg has already
been established in the previous section, which implies the
soundness of line 4. Line 6 follows by Lemma 4, and line
9 by Lemma 5. o

The soundness ¢DC* is also fairly straightforward.

Theorem 2 If IDC* does not outputAlL, the expression
it returns is equal taP(+|d) in a given causal graph, if that
expression is defined, adNDEFINED otherwise.

Proof: [Shpitser & Pearl, 2006a@hows how an operation
similar to line 4 is sound by rule 2 of do-calcul{Rearl,
1995 when applied in a causal diagram. But we know
that the counterfactual graph is just a causal diagram for
a model where some nodes share functions, so the same
reasoning applies. The rest is straightforward. o



5 Completeness 1) = 0 in M?, while the same probabilities are pos-
itive in M!, and secondly that in both models distri-

We would like to show completenesslaf* andIDC*. To  butionsP(y,, w?, ..., w*, z,/) and P(y,, w', .., w", z) are

do so, we show non-identifiability in increasingly complex uniform. Note that the proof is easy to generalize for posi-

graph structures, until we finally encompass all situationgive P, by adding a small probability fr to flip its normal

wherelD* andIDC* fail. Since we will be making heavy value. o

use of Lemma 1, we first prove a utility lemma that make

. X : STo extend our results to more complex graph structures we
constructing counterexamples which agregreasier.

need lemmas that allow us to make changes to the causal

Lemma 6 Let G be a causal graph partitioned into a set 9raph that preserve non-identification. It should be noted
{51,..., S} of C-components. Then two modalg, A/,  that versions of the following two lemmas also hold for
which induceG agree onP, if and only if their submodels identifying causal effects fron?.

Mg, Mg, agree onP; for every C-componers;, and

value assignment\ s;. Lemma 9 (contraction lemma) AssumeP,, G tiq P(7).

Let G’ be obtained fromG by merging some two nodes
Proof: This follows from C-component factorization: X,Y into a new nodeZ whereZ inherits all the parents
P(v) = [, Pas, (si). This implies that for everylo(x), and children ofX, Y, subject to the following restrictions:

Px(v) can be expressed as a product of tefg,, \x) (s \
x), which implies the result. o e The merge does not create cycles.

The simplest non-identifiable counterfactual graph is the e If (Jws € v) wherez € s,y ¢ s, andX € An(W)g,
so called 'w-graph[Avin, Shpitser, & Pearl, 20d5as the thenY ¢ An(W)g.

following lemma shows.
e If (3ys € v) wherex € s, thenAn(X)g = 0.

Lemma 7 AssumeX is a parent of Y in G. Then

P..G tia P(ysr1)), Plya, y') for any value pairy, 1. e If (Y, Xs € 7), thenw and s agree on all variable

settings.

Proof: See[Avin, Shpitser, & Pearl, 2045 o

AssumdX | x |Y| = |Z| and there’s some isomorphisfn
assigning value pairs, y to a valuef(x, y) = z. Lety’ be
obtained fromy as follows. For anyws € :

Intuitively, the problem with the 'w-graph’ is that a variab
X is treated inconsistently in different worlds, while at the
same time variables derived fror share the background
contextU, andX is a direct parent of these variables. This
means that it is not possible to use independence informa-
tion to reconcile the inconsistency. This suggests the fol-

o If W ¢ {X,Y}, and valuest, y occur ins, replace
them byf (z, y).

lowing generalization. o If W ¢ {X,Y}, and the value of one of, Y occur
Lemma 8 Assumes is such that¥ is a parent oft” and Br;z,rr;place it by some consistent with the value of

Z,andY and Z are connected by a bidirected path with
observable noded’!, ..., W* on the path. The®,, G V4 e If X Y donot occur iny, leavey as is.
P(ye,w', .cyw®, 240), P(yz, w', ..., wk, 2) for any value

assignments, w', ..., w*, 2. o If W =Y andx € s, replacews by f(z,y)s\ {2}

e otherwise, replace every variable pair of the form

Proof: We construct two models with gragh as follows.
grayih i =y, Xs=2byZis = f(z,y).

In both models, all variables are binary, aRdU) is uni-
form. In M, each variable is set to the bit parity of its
parents. IN\/2, the same is true exceptandZ ignore the
values ofX. To prove that the two models agree Bn we
use Lemma 6. Clearly the two models agreer(iX ). To
show that the models also agree Bn(V \ X) for all val-
ues ofz, note that inM, each value assignment owén X
with even bit parity is equally likely, while no assignment We have four types of modifications to variables+n
with odd bit parity is possible. But the same is truehiit The first clearly results in the same counterfactual vari-
because any value efcontributes to the bit parity of \ X able. For the second, due to the restrictions we imposed,
exactly twice. The agreement 81!, M2 on P, follows by  w; = w;, ., which means we can apply the first modifica-
the graph structure df. tion.

ThenPy, G’ t/iqa P(v').

Proof: Let Z be the Cartesian product of, Y, and fix f.
We want to show that the proof of non-identification of
P(v) in G carries over taP(y’) in G’.

To see that the result is true, we note firstly tRgb>;W?+  For the third, we have®(y) = P(8,y. ;). By our restric-
Yo+ Zy (mod 2) =1) = P(S;W'+Y,+Z (mod 2) = tions, and rule 2 of do-calculi®earl, 1995 this is equal



to P(9, y;|z-). Since this is not identifiable, then neitheris If X ¢ S, fix Y, W € S N Ch(X). AssumeS has no
P(4,yz, zz). Now it’s clear that our modification is equiva- directed edges at all. Thef,, G ;4 P(S) by Lemma 8.
lent to the fourth. The result now follows by Lemma 10, and by construction

The fourth modification is simply a merge of events con-.of G-, which implies all nodes its have some descendant

sistent with a single causal world into a conjunctive event,In v
which does not change the overall expression. o If S has directed edges, we want to sh@,G g4
P(R(S)), whereR(S) is the subset of with no children

Intuitively, the Contraction Lemma states thatowing . . .
. . in S. We can recover this from the previous case as follows.
less about the model, by having a coarser graph which con-

siders two distinct nodes as one, will not help identificatio Assumes has no edges as before. For a nodle 5, fix
' P Gal0 3 set of childless node$ € S which are to be their par-
as you would expect.

ents. Add a virtual nod&” which is a child of all nodes

in X. ThenP,,G tf;q P((S\ X)UY’) by Lemma 10.
ThenP,, G g P(R(S’)), whereS’ is obtained fromS

by adding edges froX to Y by Lemma 9, which applies
because no w-graph exists ,. We can apply this step
inductively to obtain the desired forest (all nodes have at
most one child)5 while making sureP., G 1,4 P(R(S)).

Lemma 10 (downward extension lemma)Assume
P.,G VWiq P(v). Let {y},...,yp.} be a subset of
counterfactual events if. Let G’ be a graph obtained
from G by adding a new child¥ of Y! .. Y". Let
Y = (Y \{Yhs o Ym }) U {wya, ..., wyem }, Wherew is an
arbitrary value ofiW. ThenP,, G’ t/;4 P(v').

If Sis not a forest, we can simply disregard extra edges so
Proof: Let M, M? witnessP,, G ;4 P(v). We will ex-  effectively it is a forest. Since the w-graph is notiy this
tend these models to witne$%, G’ t/;q P(v’). Since the  does not affect edges froii to S.

function of a newly added” will be shared, and/*, M? . .

agree onP, in G, the extensions will agree of, by If X € §,fixY esSn Ch(X).. If S has no directed edges

Lemma 6. We have two cases. at all, replaceX by a new virtual nod&”, and makeX
be the parent ot". By Lemma 8,P,, G t/;q P((S\ z) U

Assume there is a variabl¢’ such thay,, v, areiny. By  y,). We now repeat the same steps as before, to obtain that

Lemma 7.P,, G tia P(y.,;,yi.). Thenlet be achildof P, G Iy P((R(S)\ x) Uy,) for generalS. Now we use

justY?, and assum@V| = Y| = c. LetW be setto the Lemma 9 to obtainP,,G 44 P(R(S)). Having shown

value of Y'* with probability1 — ¢, and otherwise itis set P,,G I/;4 P(R(S)), we conclude our result by inductively

to a uniformly chosen random value Bf among the other applying Lemma 10. o

¢ — 1 values. Since is arbitrarily small, and sinc#/,; and

Wy pay attention to the sanié variable, it is possible to Theorem 4 IDC* is complete.

sete in such a way that itP! (Y}, Y}) # P*(Y},,Y.),

however minutely, the®! (W, , Wyx ) # P?(Wys, Wy ). Proof: The difficult step is to show that after line 5 is

Otherwise, lefW| = [], |Y"|, and letP(W|Y*,..,Y") reached, ifP., G /ia P(v,9) thenPx, G iia P(y]0). If

. . . ) P.,G ;4 P(0), this is obvious. Assum®,, G t/,q P(9).
be an invertible stochastic matrix. Our result follows. o Fix the S which witnesses that fa¥ C 6, P., G tig P(5").

Intuitively, the Downward Extension Lemma states Fix someY such that a backdoor, i.e. starting with an in-
that non-identification of causes translates into non<coming arrow, path exists from toY in G, 5. We want to
identification of effects (because the distribution ovex th show thatP,, G t/,q P(Y'|¢’). LetG’ = An(d") N De(S).
latter can be in a one-to-one relationship with the distribu

i the f Wi dv to tackle th - AssumeY is a parent of a nod® € ¢, andD € G'.
ion over the former). We are now ready to tackle the m"’"nAugment the counterexample models which induce coun-
results of the paper.

terfactual graphG’ with an additional binary node fdr’,
and let the value ofD be set as the old value plus
modulo|D|. Let Y attain value 1 with vanishing proba-
bility e. That the new models agree &1 is easy to estab-
lish. To see that’,, G t/;q P(d’) in the new model, note
cfhatP(é’) in the new model is equal t®#(§' \ D,D =
d)*(1—€)+P(6'\D,D = (d—1) (mod |D|))xe. Because
e is arbitrarily small, this implies our result. To show that
Fix someX which witnesses the precondition on line 8. P,,G t/;4 P(Y = 1|¢'), we must show that the models dis-
We can assum& is a parent of some nodesfh Assume agree onP(¢'|Y = 1)/P(¢’). But to do this, we must sim-
no other node isub(S) affectsS (effectively we delete all  ply find two consecutive values @, d,d + 1 (mod |D|)
edges from parents ¢f to S except fromX). Because the such thatP(§’ \ D,d + 1 (mod |D|))/P(§' \ D,d) is
w-graph is not a part ofs.,, this has no ramifications on different in the two models. But this follows from non-
edges inS. Further, we assum& has two values it$. identification of P(¢").

Theorem 3 ID* is complete.

Proof: We want to show that if line 8 fails, the original
P(v) cannot be identified. There are two broad cases t
consider. IfG., contains the w-graph, the result follows by
Lemmas 7 and 10. If not, we argue as follows.



If Y is not a parent ofD € G’, then either it is further on the untreated patients) can be shown to be identifiable
along on the backdoor path or it's a child of some node inin general, with no additional assumptions needed. Oth-
G’. In case 1, we must construct the distributions along theers (e.g., the effect of a multi-valued treatment on the un-
backdoor path in such a way thati,, G t/,; P(Y'|d’)  treated), are identifiable only if the causal graph has a cer-
thenP,, G t/;q P(Y|8'), whereY” is a node precediny  tain structure (e.g., Figure 1 (a)). The sensitivity of the r

on the path. The proof follows closely the ond 8hpitser  sults to graphical assumptions can be assessed using the
& Pearl, 20064 In case 2, we duplicate the nodes@h  bounding method ofBalke & Pearl, 1994lawhich, again,
which lead fromY” to §’, and note that we can show non- is made feasible by the calculus of counterfactuals and thei
identification in the resulting graph using reasoning irecas semantics.

1. We obtain our result by applying Lemma 9. Since all counterfactuals are empirically identifiableim |

We conclude the paper by giving a graphical characteriear systems, an interesting challenge would be to deter-
zation of counterfactuals on whidiD* fails. Intuitively, = mine what properties of linear system can be given up with-
the condition says thaP(~) cannot be identified if ac- out sacrificing empirical identifiability. Another intetesy
tions and observations set variables in some C-componeiuestion is examine how these results can be carried over
to conflicting values, and the conflicting variable is a par-to the case of cyclic graphs.

ent of some node in the C-component. The properties of

C-components then ensure that this conflict cannot be reAcknowledgments
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