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What Counterfactuals Can Be Tested

Ilya Shpitser, Judea Pearl
Cognitive Systems Laboratory

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA. 90095
{ilyas, judea}@cs.ucla.edu

Abstract

Counterfactual statements, e.g., ”my headache
would be gone had I taken an aspirin” are cen-
tral to scientific discourse, and are formally in-
terpreted as statements derived from ”alternative
worlds”. However, since they invoke hypotheti-
cal states of affairs, often incompatible with what
is actually known or observed, testing counter-
factuals is fraught with conceptual and practi-
cal difficulties. In this paper, we provide a com-
plete characterization of ”testable counterfactu-
als,” namely, counterfactual statements whose
probabilities can be inferred from physical exper-
iments. We provide complete procedures for dis-
cerning whether a given counterfactual is testable
and, if so, expressing its probability in terms of
experimental data.

1 Introduction

Human beings organize their knowledge of the world in
terms of causes-effect relationships, because many of the
practical questions they face are causal in nature. Counter-
factuals are an example of causal questions which abound
both in everyday discourse, as well as in empirical science,
medicine, law, public policy, economics, and so on.

A counterfactual is simply a ’what if’ question – it in-
volves evidence about an existing state of the world, e.g.
”I have a headache”, and a question about an alternative,
hypothetical world, where the past is modified in some
way, e.g., ”what if I had taken aspirin?”. To formalize such
questions, we need a framework that can seamlessly inte-
grate the notions of evidence and ’world alteration,’ such
as that provided by structural causal models[Pearl, 2000a].
Such models are represented by a graph called acausal
diagram, where the verticesV are variables of interest,
directed edges represent functional relationships, and bidi-
rected edges are spurious dependencies emanating from

variables not included in the analysis, over which a proba-
bility distributionP (U) is assumed to be defined. This dis-
tribution, together with the functional relationships among
the variables defines a unique joint probability distribution
P (V) over observable variablesV, which governs statisti-
cal data obtained in observational studies.

The results ofobserving some aspecte of the current
state of affairs leads to conditional distributionsP (V|e)
andP (U|e). In contrast, the result of hypothetically estab-
lishing x is represented by aninterventional distribution
P (V|do(x)) or Px(V), wheredo(x) stands for hypotheti-
cally forcing variablesX to attain valuesx regardless of the
factors that influenceX in the model while leaving all other
functional relationships unaltered. A variableY affected by
an interventiondo(x) is changed into acounterfactual
variable and is denoted byYx. 1

To represent a ’what ifX were x’ question, we assume
the state of knowledgeP (U|e) induced by the observa-
tionse, and ask for the consequences of taking the atomic
action do(x), where actions and observations can poten-
tially be in conflict. In our framework, this corresponds
to expressions of the formP (Yx|e). This way of mathe-
matizing counterfactuals was first proposed in[Balke &
Pearl, 1994b], [Balke & Pearl, 1994a]. In addition,[Balke
& Pearl, 1994b] proposed a method for evaluating expres-
sions like the above when all parameters of a causal model
are known. In practice, however, complete knowledge of
the model is too much to ask for; the functional relation-
ships as well as the distributionP (U) are not known ex-
actly, though some of their aspects can be inferred from the
observable distributionP (V).

Evaluating causal queries given this partial state of knowl-
edge is a subtle problem known asidentification [Pearl,
2000a]. A well studied version of this problem is comput-

1In practice, attempts to physically intervene on one variable
may have unintended side effects. Still, a semantics based on
ideal, atomic interventions provides a useful abstraction(similar
to ”derivative” in calculus), with the help of which the impact of
compound interventions, side effects included, can be analyzed
with mathematical precision.
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ing causal effects, or expressions of the formPx(Y ),
given P and the causal diagramG. This version of the
identification problem has received considerable attention
in the last 15 years, with partial results found in[Spirtes,
Glymour, & Scheines, 1993], [Pearl & Robins, 1995],
[Pearl, 1995], [Kuroki & Miyakawa, 1999], [Tian & Pearl,
2002], and was finally closed in general graphical models
in [Huang & Valtorta, 2006], [Shpitser & Pearl, 2006b],
[Shpitser & Pearl, 2006a].

The problem with counterfactual queries likeP (Yx|e) is
even more severe. Since actions and evidence can stand in
logical contradiction, no experimental setup exists which
would emulate both the evidencee and the actionx. For ex-
ample, no experimental setup can reveal to us the percent-
age of deaths that could be avoided among people who re-
ceived a given treatment, had they not taken the treatment.
We simply cannot perform an experiment where the same
person is both given and not given treatment. Mathemati-
cally, this means that it is unclear whether counterfactual
expressions likeP (Yx|e), with e andx incompatible, can
be estimated consistently even if we are given the results of
all possible experiments (represented by the setP∗ = {Px|
wherex is a value assignment ofX ⊆ V} [Pearl, 2000a]).

Some basic results on evaluating counterfactuals are
known. For instance, a simple algebraic trick shows that
P (Yx|x′) is experimentally identifiable (i.e., computable
from P∗) if X is a binary variable, regardless of the under-
lying graph. On the other hand, the counterfactual repre-
sented byP (Yx, Yx′), named ’probability of necessity and
sufficiency’ in [Pearl, 2000a], is known to not be experi-
mentally identifiable[Avin, Shpitser, & Pearl, 2005], un-
less additional assumptions can be brought to bear (e.g.,
monotonicity [Pearl, 2000a]). In this paper we explore
testability of counterfactuals relative to scientific knowl-
edge expressed in the form of missing links in the underly-
ing graph. The sensitivity of the tested quantities to this ex-
tra knowledge can be assessed using the bounding method
of [Balke & Pearl, 1994a].

A complete proof system for reasoning about causal and
counterfactual quantities was given in[Halpern, 2000].
While such a system is, in principle, powerful enough to
evaluate any identifiable counterfactual expression, it lacks
a proof guiding method which guarantees termination in
a reasonable amount of time. Furthermore, such a system
would not provide a graphical characterization of identifi-
cation, and much of human knowledge, as we postulate, is
stored in graphical form. To the best of the authors’ knowl-
edge, no general algorithms for counterfactual identifica-
tion exist in the literature.

In this paper, we present a structure called the
counterfactual graph, which stands in the same relation
to a counterfactual query that the causal graph does to a
causal query. In other words, this graph displays indepen-

dencies between counterfactual variables, in those hypo-
thetical worlds that are invoked by the query. We use the
counterfactual graph to give a complete graphical charac-
terization of those counterfactuals which can be identified
from experiments, and provide complete algorithms which
can express all identifiable counterfactuals in terms of ex-
perimental data.

2 Notation and Definitions

In this section we review the mathematical machinery of
causal reasoning, and introduce counterfactual distribu-
tions as well-defined objects obtained from causal models.

A probabilistic causal model is a tupleM =
〈U, V, F, P (U)〉, where V is a set of observable vari-
ables, U is a set of unobservable variables distributed
according toP (U), and F is a set of functions. Each
variableV ∈ V has a corresponding functionfV ∈ F that
determines the value ofV in terms of other variables inV
andU. The distribution onV induced byP (U) andF will
be denotedP (V).

The induced graphG of a causal modelM contains a node
for every element inV, a directed edge between nodes
X andY if fY possibly uses the values ofX directly to
determine the value ofY , and a bidirected edge between
nodesX andY if fX , andfY both possibly use the value
of some variable inU to determine their values. In this
paper we considerrecursive causal models, those mod-
els which induce acyclic graphs. We will use abbreviations
Pa(.)G, Ch(.)G, An(.)G, De(.)G to denote the set of par-
ents, children, ancestors and descendants of a given node
in G.

An actiondo(x) modifies the functions associated withX
from their normal behavior to outputting constant valuesx.
The result of an actiondo(x) on a modelM is asubmodel
which we denote byMx. Because the nodesX are now con-
stant, the graph induced byMx is G \ X. We denote the
event ”variableY attains valuey in Mx” by the shorthand
”yx”.

Consider a conjunction of eventsγ equal toy1
x1 ∧ ... ∧ yk

xk

in some modelM . If all subscriptsxi are the same and
equal tox, thisγ merely corresponds to value assignments
to a set of variables in a submodelMx. The probability of
this assignment is thenP (γ) = Px(y

1, ..., yk) which can
be easily computed fromPx. But what if the subscripts are
not the same, and possibly force conflicting values to the
same variable? A natural way to interpret our conjunction
in this case is to consider all submodelsMx1 , ..., Mxk at
once, and compute the joint probability over the counter-
factual variables in those submodels induced byU, the set
of exogenous variables all these submodels have in com-
mon. The probability of our conjunction is then given by
P (γ) =

∑
{u|u|=γ} P (u) whereu |= γ is taken to mean



that each variable assignment inγ holds true in the corre-
sponding submodel ofM when the exogenous variables
U assume valuesu. In this way,P (U) induces a distri-
bution on all counterfactual variables inM . In this paper,
we will represent counterfactual utterances by joint distri-
butions such asP (γ) or conditional distributions such as
P (γ|δ), whereγ andδ are conjunctions of counterfactual
events. See[Pearl, 2000a] for an extensive discussion of
counterfactuals, and their probabilistic representationused
in this paper.

We are interested in finding out when queries likeP (γ) can
be computed fromP∗, the set of all interventional distribu-
tions, and when they cannot. To get a handle on this ques-
tion, we turn to the notion of identifiability, which has been
successfully applied to similar questions involving causal
effectsPx(Y) [Pearl, 2000a].

Definition 1 (identifiability) Consider a class of models
M with a descriptionT , and objectsφ and θ computable
from each model. We say thatφ is θ-identified inT if φ is
uniquely computable fromθ in anyM ∈ M.

If φ is θ-identifiable inT , we writeT, θ ⊢id φ. Otherwise,
we writeT, θ 6⊢id φ. The above definition leads naturally to
a way to prove non-identifiability.

Lemma 1 Let T be a description of a class of modelsM.
Assume there existM1, M2 ∈ M that share objectsθ,
whileφ in M1 is different fromφ in M2. ThenT, θ 6⊢id φ.

In the remainder of the paper, we will construct an algo-
rithm which, for anyT = G, will identify φ = P (γ|δ)
(with δ possibly empty) fromθ = P∗, and prove that when-
ever the algorithm fails, the original query is not identifi-
able using Lemma 1.

3 The Counterfactual Graph

Solutions to the causal effect identification problem rely
on judging independencies among random variables in the
same submodelMx using d-separation[Pearl, 1988] in the
causal graphG \X. If we are dealing with a counterfactual
γ, more than one submodel is mentioned. Nevertheless, we
would like to use a similar technique, and construct a graph
which will allow us to reason about independencies among
the set of counterfactual variables in all submodels men-
tioned inγ.

The first attempt to construct such a graph was made in
[Balke & Pearl, 1994a] where atwin network graph was
constructed forγ which mention exactly two submodels.
The twin network graph consisted of two submodel graphs
which shared exogenous variablesU.

One problem with the twin network graph, of course, is
the restriction to two possible worlds. It can easily come
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Figure 1: Nodes fixed by actions not shown. (a) GraphG.
(b) Parallel worlds graph forP (yx|x′, zd, d) (the two nodes
denoted byU are the same). (c) Counterfactual graph for
P (yx|x

′, zd, d).

to pass that a counterfactual query of interest would in-
volve three or more worlds. For instance, we might be inter-
ested in how likely the patient would be to have a symptom
Y given a certain dosex of drug X , assuming we know
that the patient has taken dosex′ of drug X , dosed of
drugD, and we know how an intermediate symptomZ re-
sponds to treatmentd. This would correspond to the query
P (yx|x′, zd, d), which mentions three worlds, the original
modelM , and the submodelsMd, Mx.

This problem is easy to tackle – we simply add more than
two submodel graphs, and have them all share the same
U nodes. This simple generalization of the twin network
model was considered in[Avin, Shpitser, & Pearl, 2005],
and was called there the parallel worlds graph. Fig. 1 shows
the original causal graph and the parallel worlds graph for
γ = yx ∧ x′ ∧ zd ∧ d.

The other problematic feature of the twin network graph,
which is inherited by the parallel worlds graph, is that mul-
tiple nodes can sometimes correspond to the same random
variable. For example in Fig. 1 (b), the variablesZ and
Zx are represented by distinct nodes, although it’s easy
to show that sinceZ is not a descendant ofX , Z = Zx.
These equality constraints among nodes can make the d-
separation criterion misleading if not used carefully. For
instance,Yx 6⊥⊥ Z|Zx even though using d-separation in
the parallel worlds graph suggests the opposite. To handle
this problem, we use the following lemma which will tell
us when variables from different submodels are in fact the
same.

Lemma 2 LetG be a causal diagram withz observed and
x fixed. Then in all model inducingG where nodesα, β
share both the same functional mechanism and the same
exogenous parentsU , α, β are the same random variable if
all their corresponding parents are either shared or attain
the same value (either by intervention or observation).

Proof: This follows from the fact that variables in a causal
model are functionally determined from their parents.2



The parallel worlds graph can be thought of as a causal
diagram for a special kind of causal model where some
distinct nodes share the same functions. Using Lemma 2
as a guide, we want to modify such a diagram to rid our-
selves of duplicate nodes, while at the same time riddingγ
of syntactically distinct variables which represent the same
counterfactual variable. Since we need to establish same-
ness for parents before children, we apply Lemma 2 induc-
tively starting with the root nodes.

If two nodes are established to be the same, we want to
specify the rule for merging them in the graph. This rule
work as we would expect. If two nodes (say correspond-
ing to Yx, Yz) are established to be the same inG, they are
merged into a single node which inherits all the children
of the original two. These two nodes either share their par-
ents (by induction) or their parents attain the same values.
If a given parent is shared, it becomes the parent of the new
node. Otherwise, we pick one of the parents arbitrarily to
become the parent of the new node. The soundness of this
operation is simple to establish.

Lemma 3 LetM be a causal model withz observed, andx
fixed such that Lemma 2 holds forα, β. LetM ′ be a causal
model obtained fromM by mergingα, β into a new node
ω, which inherits all parents and the functional mechanism
of α. All children ofα, β in M ′ become children ofω. Then
M, M ′ agree on any distribution consistent withz being
observed andx being fixed.

Proof: This is a direct consequence of Lemma 2. 2

The new nodeω we obtain from Lemma 3 can be thought
of as a new counterfactual variable. What should be its ac-
tion (subscript)? Intuitively, it is those fixed variables which
are ancestors ofω in the graphG′ of M ′. Formally the
subscript isw, whereW = An(ω)G′ ∩ sub(γ), where the
sub(γ) corresponds to those nodes inG′ which correspond
to subscripts inγ. Since we replacedα, β by ω, we replace
any mention ofα, β in our given counterfactual queryP (γ)
by ω. Note that sinceα, β are thesame, their value assign-
ments must be the same (say equal toy). The new counter-
factualω inherits this assignment.

We summarize the inductive applications of Lemma 2, and
3 by themake-cgalgorithm, which takesγ andG as argu-
ments, and constructs a version of the parallel worlds graph
without duplicate nodes. We call the resulting structure the
counterfactual graph of γ, and denote it byGγ . The al-
gorithm is shown in Fig. 2.

Note that there are three additional subtleties inmake-cg.
The first is that if variablesYx, Yz were judged to be the
same by Lemma 2, butγ assigns them different values, this
implies thatP (γ) = 0. The second is that due to the fac-
torization properties of causal graphs if we are interested
in identifiability of P (γ), we can restrict ourselves to the
ancestors ofγ in G′ [Tian, 2002]. Finally, because the al-

gorithm can make an arbitrary choice picking a parent of
ω each time Lemma 3 is applied, both the counterfactual
graphG′, and the corresponding modified counterfactual
γ′ are not unique. This does not present a problem, how-
ever, as any such graph is acceptable for our purposes.

It’s straightforward to verify that applyingmake-cgto the
causal graph in Fig. 1 (a) andγ = yx ∧ zd ∧ x′ ∧ d, one of
the graphs that can be obtained is one in Fig. 1 (c).

4 Identification of Counterfactual Queries

Having constructed a graphical representation of worlds
mentioned in counterfactual queries, we can turn to identifi-
cation. We construct two algorithms for this task, the first is
calledID* and works for unconditional queries, while the
second,IDC* , works on queries with counterfactual evi-
dence and calls the first as a subroutine. These are shown
in Fig. 2.

These algorithms make use of the following notation:
sub(.) returns the set of subscripts,var(.) the set of vari-
ables, andev(.) the set of values (either set or observed) ap-
pearing in a given counterfactual, whileval(.) is the value
assigned to a given counterfactual variable.C(G′) is the set
of C-components, andV (G′) is the set of observable nodes
of G′. Following[Pearl, 2000a], G′

yx
is the graph obtained

from G′ by removing all outgoing arcs fromYx; γ′
yx

is ob-
tained fromγ′ by replacing all descendant variablesWz of
Yx in γ′ by Wz,y. A counterfactualsr , wheres, r are value
assignments to sets of nodes, represents the event ”the node
setS attains valuessunder interventiondo(r).”

We illustrate the operation of these algorithms by consid-
ering the identification of a queryP (yx|x′, zd, d) consid-
ered in the previous section. SinceP (x′, zd, d) is not incon-
sistent, we proceed to construct the counterfactual graph
on line 2. Suppose we produce the graph in Fig. 1 (c),
where the corresponding modified query isP (yx|x

′, z, d).
Since P (yx, x′, z, d) is not inconsistent we proceed to
the next line, which movesz, d (with d being redun-
dant due to graph structure) to the subscript ofyx, to
obtain P (yx,z|x′). Finally, we call ID* with the query
P (yx,z, x

′). The first interesting line is 6, where the query
is expressed as

∑
w P (yx,z,w, x′)P (wx). Note thatx is re-

dundant in the first term, so a recursive call reaches line
9 with P (yz,w, x′), which is identifiable asPz,w(y, x′)
from P∗. The second term is trivially identifiable as
Px(w), which means our query is identifiable asP ′ =∑

w Pz,w(y, x′)Px(w), and the conditional query is equal
to P ′/P ′(x′).

When considering the soundness of our algorithms, the key
observation is that the counterfactual graph which is out-
put bymake-cgis a causal diagram for a particular causal
model. Thus, all the theorems that have been developed for
ordinary causal models work for the counterfactual graph.



functionmake-cg(G, γ)
INPUT:G a causal diagram,γ a conjunction of counterfac-
tual events
OUTPUT: A counterfactual graphGγ , and either a set of
eventsγ′ s.t.P (γ′) = P (γ) or INCONSISTENT

1 Construct a submodel graphGxi
for each action

do(xi) mentioned inγ. ConstructG′ by having all
such graphs share their correspondingU nodes.

2 Letπ be a topological ordering of nodes inG′. Apply
Lemmas 2 and 3, in orderπ, to each node pairα, β
sharing functions. If at any pointval(α) 6= val(β), but
α = β by Lemma 2, returnG′, INCONSISTENT .

3 return(An(γ′)G′ , γ′).

functionID* (G, γ)
INPUT:G a causal diagram,γ a conjunction of counterfac-
tual events
OUTPUT: an expression forP (γ) in terms ofP∗ or FAIL

1 if γ = ∅, return 1

2 if (∃xx′.. ∈ γ), return 0

3 if (∃xx.. ∈ γ), returnID* (G, γ \ {xx..})

4 (G′, γ′) = make-cg(G, γ)

5 if γ′ = INCONSISTENT , return 0

6 if C(G′) = {S1, ..., Sk},
return

∑
V(G′)\γ

∏
i ID* (G, si

v(G′)\si)

7 if C(G′) = {S} then,

8 if (∃x, x′) s.t.x 6= x′, x ∈ sub(S), x′ ∈ ev(S),
throwFAIL

9 else, letx =
⋃

sub(S)
returnPx(var(S))

functionIDC* (G, γ, δ)
INPUT: G a causal diagram,γ, δ conjunctions of counter-
factual events
OUTPUT: an expression forP (γ|δ) in terms ofP∗, FAIL ,
or UNDEFINED

1 if ID* (G, δ) = 0, returnUNDEFINED

2 (G′, γ′ ∧ δ′) = make-cg(G, γ ∧ δ)

3 if γ′ ∧ δ′ = INCONSISTENT , return 0

4 if (∃yx ∈ δ′) s.t.(Yx ⊥⊥ γ′)G′
yx

,

returnIDC* (G, γ′
yx

, δ′ \ {yx})

5 else, letP ′ = ID* (G, γ ∧ δ). returnP ′/P ′(δ)

Figure 2: Counterfactual identification algorithms.

Thus, we reproduce a number of definitions and lemmas
which hold for causal models which will help us in our
proof.

Definition 2 (c-component) G is a C-component if any
two nodesX, Y in G are connected by a path where no
observable node on the path has any outgoing arrows in
the path. (such a path is called a confounding path).

C-components partition a causal diagram into a set of frag-
ments where the distribution corresponding to each frag-
ment is identifiable.

Lemma 4 For any G and any effectPx(y), Px(y) =∑
v\(y∪x)

∏
i Pv\si

(si), where{S1, ..., Sk} is the set of C-
components ofG \ X.

Proof: See[Tian, 2002], [Shpitser & Pearl, 2006b]. 2

The truly new operation specific to identification inP∗ ap-
pears in line 9. We justify this operation with the following
lemma.

Lemma 5 If the preconditions of line 7 are met,P (S) =
Px(var(S)), wherex =

⋃
sub(S).

Proof: Let x =
⋃

sub(S). Since the preconditions are met,
x does not contain conflicting assignments to the same vari-
able, which meansdo(x) is a sound action in the original
causal model. Note that for any variableYw in S, any vari-
able in(Pa(S) \ S) ∩ An(Yw)S is already inw, while any
variable in(Pa(S)\S)\An(Yw)S can be added to the sub-
script ofYw without changing the variable. SinceY ∩X = ∅
by assumption,Yw = Yx. SinceYw was arbitrary, our result
follows. 2

Theorem 1 If ID* succeeds, the expression it returns is
equal toP (γ) in a given causal graph.

Proof: The first line merely states that the probability of
an empty conjunction is 1, which is true by convention.
Lines 2 and 3 follow by the Axiom of Effectiveness[Galles
& Pearl, 1998]. The soundness ofmake-cg has already
been established in the previous section, which implies the
soundness of line 4. Line 6 follows by Lemma 4, and line
9 by Lemma 5. 2

The soundness ofIDC* is also fairly straightforward.

Theorem 2 If IDC* does not outputFAIL, the expression
it returns is equal toP (γ|δ) in a given causal graph, if that
expression is defined, andUNDEFINED otherwise.

Proof: [Shpitser & Pearl, 2006a] shows how an operation
similar to line 4 is sound by rule 2 of do-calculus[Pearl,
1995] when applied in a causal diagram. But we know
that the counterfactual graph is just a causal diagram for
a model where some nodes share functions, so the same
reasoning applies. The rest is straightforward. 2



5 Completeness

We would like to show completeness ofID* andIDC* . To
do so, we show non-identifiability in increasingly complex
graph structures, until we finally encompass all situations
whereID* andIDC* fail. Since we will be making heavy
use of Lemma 1, we first prove a utility lemma that makes
constructing counterexamples which agree onP∗ easier.

Lemma 6 Let G be a causal graph partitioned into a set
{S1, ..., Sk} of C-components. Then two modelsM1, M2

which induceG agree onP∗ if and only if their submodels
M1

v\si
, M2

v\si
agree onP∗ for every C-componentSi, and

value assignmentv \ si.

Proof: This follows from C-component factorization:
P (v) =

∏
i Pv\si

(si). This implies that for everydo(x),
Px(v) can be expressed as a product of termsPv\(si\x)(si \
x), which implies the result. 2

The simplest non-identifiable counterfactual graph is the
so called ’w-graph’[Avin, Shpitser, & Pearl, 2005], as the
following lemma shows.

Lemma 7 AssumeX is a parent of Y in G. Then
P∗, G 6⊢id P (yx, y′

x′), P (yx, y′) for any value pairy, y′.

Proof: See[Avin, Shpitser, & Pearl, 2005]. 2

Intuitively, the problem with the ’w-graph’ is that a variable
X is treated inconsistently in different worlds, while at the
same time variables derived fromY share the background
contextU , andX is a direct parent of these variables. This
means that it is not possible to use independence informa-
tion to reconcile the inconsistency. This suggests the fol-
lowing generalization.

Lemma 8 AssumeG is such thatX is a parent ofY and
Z, andY andZ are connected by a bidirected path with
observable nodesW 1, ..., W k on the path. ThenP∗, G 6⊢id

P (yx, w1, ..., wk, zx′), P (yx, w1, ..., wk, z) for any value
assignmentsy, w1, ..., wk, z.

Proof: We construct two models with graphG as follows.
In both models, all variables are binary, andP (U) is uni-
form. In M1, each variable is set to the bit parity of its
parents. InM2, the same is true exceptY andZ ignore the
values ofX . To prove that the two models agree onP∗, we
use Lemma 6. Clearly the two models agree onP (X). To
show that the models also agree onPx(V \ X) for all val-
ues ofx, note that inM2 each value assignment overV \X
with even bit parity is equally likely, while no assignment
with odd bit parity is possible. But the same is true inM1

because any value ofx contributes to the bit parity ofV \X
exactly twice. The agreement ofM1

x , M2
x onP∗ follows by

the graph structure ofG.

To see that the result is true, we note firstly thatP (ΣiW
i +

Yx +Zx′ (mod 2) = 1) = P (ΣiW
i +Yx+Z (mod 2) =

1) = 0 in M2, while the same probabilities are pos-
itive in M1, and secondly that in both models distri-
butionsP (yx, w1, ..., wk, zx′) andP (yx, w1, .., wk, z) are
uniform. Note that the proof is easy to generalize for posi-
tiveP∗ by adding a small probability forY to flip its normal
value. 2

To extend our results to more complex graph structures we
need lemmas that allow us to make changes to the causal
graph that preserve non-identification. It should be noted
that versions of the following two lemmas also hold for
identifying causal effects fromP .

Lemma 9 (contraction lemma) AssumeP∗, G 6⊢id P (γ).
Let G′ be obtained fromG by merging some two nodes
X, Y into a new nodeZ whereZ inherits all the parents
and children ofX, Y , subject to the following restrictions:

• The merge does not create cycles.

• If (∃ws ∈ γ) wherex ∈ s, y 6∈ s, andX ∈ An(W )G,
thenY 6∈ An(W )G.

• If (∃ys ∈ γ) wherex ∈ s, thenAn(X)G = ∅.

• If (Yw, Xs ∈ γ), thenw and s agree on all variable
settings.

Assume|X | × |Y | = |Z| and there’s some isomorphismf
assigning value pairsx, y to a valuef(x, y) = z. Letγ′ be
obtained fromγ as follows. For anyws ∈ γ:

• If W 6∈ {X, Y }, and valuesx, y occur in s, replace
them byf(x, y).

• If W 6∈ {X, Y }, and the value of one ofX, Y occur
in s, replace it by somez consistent with the value of
X or Y .

• If X, Y do not occur inγ, leaveγ as is.

• If W = Y andx ∈ s, replacews byf(x, y)s\{x}.

• otherwise, replace every variable pair of the form
Yr = y, Xs = x byZr,s = f(x, y).

ThenP∗, G
′ 6⊢id P (γ′).

Proof: Let Z be the Cartesian product ofX, Y , and fixf .
We want to show that the proof of non-identification of
P (γ) in G carries over toP (γ′) in G′.

We have four types of modifications to variables inγ.
The first clearly results in the same counterfactual vari-
able. For the second, due to the restrictions we imposed,
wz = wz,y,x, which means we can apply the first modifica-
tion.

For the third, we haveP (γ) = P (δ, yx,z). By our restric-
tions, and rule 2 of do-calculus[Pearl, 1995], this is equal



to P (δ, yz|xz). Since this is not identifiable, then neither is
P (δ, yz, xz). Now it’s clear that our modification is equiva-
lent to the fourth.

The fourth modification is simply a merge of events con-
sistent with a single causal world into a conjunctive event,
which does not change the overall expression. 2

Intuitively, the Contraction Lemma states thatknowing
less about the model, by having a coarser graph which con-
siders two distinct nodes as one, will not help identification,
as you would expect.

Lemma 10 (downward extension lemma)Assume
P∗, G 6⊢id P (γ). Let {y1

x1 , ..., y
n
xm} be a subset of

counterfactual events inγ. Let G′ be a graph obtained
from G by adding a new childW of Y 1, ..., Y n. Let
γ′ = (γ \ {y1

x1 , ..., yn
xm}) ∪ {wx1 , ..., wxm}, wherew is an

arbitrary value ofW . ThenP∗, G
′ 6⊢id P (γ′).

Proof: Let M1, M2 witnessP∗, G 6⊢id P (γ). We will ex-
tend these models to witnessP∗, G

′ 6⊢id P (γ′). Since the
function of a newly addedW will be shared, andM1, M2

agree onP∗ in G, the extensions will agree onP∗ by
Lemma 6. We have two cases.

Assume there is a variableY i such thatyi
xj , yi

xk are inγ. By
Lemma 7,P∗, G 6⊢id P (yi

xj , yi
xk). Then letW be a child of

just Y i, and assume|W | = |Y i| = c. Let W be set to the
value ofY i with probability1 − ǫ, and otherwise it is set
to a uniformly chosen random value ofY i among the other
c− 1 values. Sinceǫ is arbitrarily small, and sinceWxj and
Wxk pay attention to the sameU variable, it is possible to
set ǫ in such a way that ifP 1(Y i

xj , Y i
xk) 6= P 2(Y i

xj , Y i
xk),

however minutely, thenP 1(Wxj , Wxk) 6= P 2(Wxj , Wxk).

Otherwise, let|W | =
∏

i |Y
i|, and letP (W |Y 1, ..., Y n)

be an invertible stochastic matrix. Our result follows.2

Intuitively, the Downward Extension Lemma states
that non-identification of causes translates into non-
identification of effects (because the distribution over the
latter can be in a one-to-one relationship with the distribu-
tion over the former). We are now ready to tackle the main
results of the paper.

Theorem 3 ID* is complete.

Proof: We want to show that if line 8 fails, the original
P (γ) cannot be identified. There are two broad cases to
consider. IfGγ contains the w-graph, the result follows by
Lemmas 7 and 10. If not, we argue as follows.

Fix someX which witnesses the precondition on line 8.
We can assumeX is a parent of some nodes inS. Assume
no other node insub(S) affectsS (effectively we delete all
edges from parents ofS to S except fromX). Because the
w-graph is not a part ofGγ , this has no ramifications on
edges inS. Further, we assumeX has two values inS.

If X 6∈ S, fix Y, W ∈ S ∩ Ch(X). AssumeS has no
directed edges at all. ThenP∗, G 6⊢id P (S) by Lemma 8.
The result now follows by Lemma 10, and by construction
of Gγ , which implies all nodes inS have some descendant
in γ.

If S has directed edges, we want to showP∗, G 6⊢id

P (R(S)), whereR(S) is the subset ofS with no children
in S. We can recover this from the previous case as follows.
AssumeS has no edges as before. For a nodeY ∈ S, fix
a set of childless nodesX ∈ S which are to be their par-
ents. Add a virtual nodeY ′ which is a child of all nodes
in X. ThenP∗, G 6⊢id P ((S \ X) ∪ Y ′) by Lemma 10.
ThenP∗, G 6⊢id P (R(S′)), whereS′ is obtained fromS
by adding edges fromX to Y by Lemma 9, which applies
because no w-graph exists inGγ . We can apply this step
inductively to obtain the desired forest (all nodes have at
most one child)S while making sureP∗, G 6⊢id P (R(S)).

If S is not a forest, we can simply disregard extra edges so
effectively it is a forest. Since the w-graph is not inGγ this
does not affect edges fromX to S.

If X ∈ S, fix Y ∈ S ∩ Ch(X). If S has no directed edges
at all, replaceX by a new virtual nodeY , and makeX
be the parent ofY . By Lemma 8,P∗, G 6⊢id P ((S \ x) ∪
yx). We now repeat the same steps as before, to obtain that
P∗, G 6⊢id P ((R(S) \ x) ∪ yx) for generalS. Now we use
Lemma 9 to obtainP∗, G 6⊢id P (R(S)). Having shown
P∗, G 6⊢id P (R(S)), we conclude our result by inductively
applying Lemma 10. 2

Theorem 4 IDC* is complete.

Proof: The difficult step is to show that after line 5 is
reached, ifP∗, G 6⊢id P (γ, δ) thenP∗, G 6⊢id P (γ|δ). If
P∗, G ⊢id P (δ), this is obvious. AssumeP∗, G 6⊢id P (δ).
Fix theS which witnesses that forδ′ ⊆ δ, P∗, G 6⊢id P (δ′).
Fix someY such that a backdoor, i.e. starting with an in-
coming arrow, path exists fromδ′ to Y in Gγ,δ. We want to
show thatP∗, G 6⊢id P (Y |δ′). Let G′ = An(δ′) ∩ De(S).

AssumeY is a parent of a nodeD ∈ δ′, andD ∈ G′.
Augment the counterexample models which induce coun-
terfactual graphG′ with an additional binary node forY ,
and let the value ofD be set as the old value plusY
modulo |D|. Let Y attain value 1 with vanishing proba-
bility ǫ. That the new models agree onP∗ is easy to estab-
lish. To see thatP∗, G 6⊢id P (δ′) in the new model, note
that P (δ′) in the new model is equal toP (δ′ \ D, D =
d)∗(1−ǫ)+P (δ′\D, D = (d−1) (mod |D|))∗ǫ. Because
ǫ is arbitrarily small, this implies our result. To show that
P∗, G 6⊢id P (Y = 1|δ′), we must show that the models dis-
agree onP (δ′|Y = 1)/P (δ′). But to do this, we must sim-
ply find two consecutive values ofD, d, d + 1 (mod |D|)
such thatP (δ′ \ D, d + 1 (mod |D|))/P (δ′ \ D, d) is
different in the two models. But this follows from non-
identification ofP (δ′).



If Y is not a parent ofD ∈ G′, then either it is further
along on the backdoor path or it’s a child of some node in
G′. In case 1, we must construct the distributions along the
backdoor path in such a way that ifP∗, G 6⊢id P (Y ′|δ′)
thenP∗, G 6⊢id P (Y |δ′), whereY ′ is a node precedingY
on the path. The proof follows closely the one in[Shpitser
& Pearl, 2006a]. In case 2, we duplicate the nodes inG′

which lead fromY to δ′, and note that we can show non-
identification in the resulting graph using reasoning in case
1. We obtain our result by applying Lemma 9. 2

We conclude the paper by giving a graphical characteri-
zation of counterfactuals on whichID* fails. Intuitively,
the condition says thatP (γ) cannot be identified if ac-
tions and observations set variables in some C-component
to conflicting values, and the conflicting variable is a par-
ent of some node in the C-component. The properties of
C-components then ensure that this conflict cannot be re-
solved using independence information in the model, re-
sulting in non-identification.

Theorem 5 Let Gγ , γ′ be obtained frommake-cg(G, γ).
ThenG, P∗ 6⊢id P (γ) iff there exists a C-componentS ⊆
An(γ′)Gγ

where someX ∈ Pa(S) is set tox while at
the same time eitherX is also a parent of another node in
S and is set to another valuex′, or S contains a variable
derived fromX which is observed to bex′.

Proof: This follows from Theorem 3 and the construction
of ID* . 2

6 Conclusions

In his critique of counterfactuals,[Dawid, 2000] argues that
since counterfactuals cannot be directly tested, the use of
counterfactual notation and counterfactual analysis should
be avoided, lest it produces metaphysical or erroneous con-
clusions, unsubstantiated by the data. Our analysis proves
the opposite[Pearl, 2000b]; only by taking counterfactual
analysis seriously is one able to distinguish testable from
untestable counterfactuals, then posit the more advanced
question: what additional assumptions are needed to make
the latter testable. We know, for example, that every coun-
terfactual query is empirically identifiable in linear models.
This implies that no counterfactual query is metaphysical if
one can justify the assumption of linearity. Therefore, ask-
ing such queries in a non-linear context is not in itself meta-
physical, but reduces to a mathematical question of whether
the scientific knowledge at hand is sufficient for discerning
the queries from the data.

In this paper we have provided a complete graphical cri-
terion and associated algorithms for deciding whether an
arbitrary counterfactual query of the formP (Yx|e) is dis-
cernible from experimental data when scientific knowledge
is expressed in the form of an acyclic causal graph. Some
counterfactual queries (e.g., the effect of binary treatment

on the untreated patients) can be shown to be identifiable
in general, with no additional assumptions needed. Oth-
ers (e.g., the effect of a multi-valued treatment on the un-
treated), are identifiable only if the causal graph has a cer-
tain structure (e.g., Figure 1 (a)). The sensitivity of the re-
sults to graphical assumptions can be assessed using the
bounding method of[Balke & Pearl, 1994a] which, again,
is made feasible by the calculus of counterfactuals and their
semantics.

Since all counterfactuals are empirically identifiable in lin-
ear systems, an interesting challenge would be to deter-
mine what properties of linear system can be given up with-
out sacrificing empirical identifiability. Another interesting
question is examine how these results can be carried over
to the case of cyclic graphs.
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