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Decision weights are an important component in recent theories of decision making under
uncertainty. To better explain these decision weights, a two-stage approach has been

proposed: First, the probability of an event is judged and then this probability is trans-
formed by the probability weighting function known from decision making under risk. We
extend the two-stage approach by allowing the probability weighting function to depend on
the type of uncertainty. Using this more general approach, properties of decision weights
can be attributed to properties of probability judgments and/or to properties of probability
weighting. We present an empirical study that shows that it is indeed necessary to allow
the probability weighting function to be source dependent. The analysis includes an exam-
ination of properties of the probability weighting function under uncertainty that have not
been considered yet.
(Ambiguity; Decision Weights; Prospect Theory )

1. Introduction
Expected utility theory (von Neumann and
Morgenstern 1947) offers a normative basis for
decision making under conditions of risk where prob-
abilities are given. As demonstrated by Allais (1953)
and many subsequent empirical studies (for an
overview see Camerer 1995), expected utility fails
as a descriptive theory of choice. New theories have
been developed to descriptively model decision mak-
ing under risk (for an overview, see Camerer 1995,
Starmer 2000), with rank-dependent models being
prominent among them (Quiggin 1982, Segal 1987,
Wakker 1994, Yaari 1987). The defining property of
rank-dependent models is that cumulative probabili-
ties are transformed by a weighting function, usually
so as to place more weight on the lowest-ranked
outcomes. Rank-dependent theories have been devel-
oped that also allow for sign dependence, so as
to treat gains and losses differently (Starmer and

Sugden 1989, Tversky and Kahneman 1992). Recently,
the probability weighting function under risk has
been studied intensively (Abdellaoui 2000, Bleichrodt
and Pinto 2000, Camerer and Ho 1994, Gonzalez and
Wu 1999, Prelec 1998, Tversky and Kahneman 1992,
Wu and Gonzalez 1996).

In most economic applications, however, prob-
abilities are not given, and the framework of
expected utility does not apply. For such applica-
tions, Savage (1954) developed subjective expected
utility theory. As demonstrated by Ellsberg (1961),
this theory also fails descriptively (for an overview,
see Camerer and Weber 1992). For example, there
are certain sources of uncertainty a decision maker
likes and certain others he or she does not like. Most
persons prefer to bet on the weather of their home
town rather than the weather of some unknown town;
i.e., they are typically averse to the ambiguity of bet-
ting on an unknown event. Schmeidler (1989), Gilboa
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(1987), and Sarin and Wakker (1992) have developed
Choquet expected utility theory (CEU) and Tversky
and Kahneman (1992), Luce and Fishburn (1991),
and Wakker and Tversky (1993) have developed
cumulative prospect theory (CPT), both of which
allow for nonneutral attitudes towards ambiguity.

Various factors have been shown to explain
the attitude towards ambiguity (see Camerer and
Weber 1992). In this paper, we will focus on the effect
of a decision maker’s perceived competence in eval-
uating the source of uncertainty. Research initiated
by Heath and Tversky (1991) showed that perceived
competence is an important factor in discriminat-
ing between different sources of uncertainty (see
also Keppe and Weber 1995, Fox and Tversky 1995).
The higher the perceived competence, the stronger
the preference for a source of uncertainty will be,
i.e., the weaker the ambiguity effect will be. Strong
perceived competence can even lead to ambiguity-
seeking behavior.

A key element in models of decision making under
uncertainty are decision weights that capture both the
perceived likelihood of the event and the preference
for betting on that event. Suppose you have to make a
bet on whether it rains tomorrow in your home town
or whether it rains tomorrow on some tropical island
in the South Pacific. Your decision weight might be
influenced by your probability judgment of rain in
each location and by your attitude towards ambigu-
ity. To disentangle probability judgment and attitude
towards ambiguity, Tversky and Fox (1995) and Fox
and Tversky (1998) have proposed a two-stage model
to explain decision weights: First, the decision maker
judges the probability of the event under consider-
ation, after which this probability is transformed by
the probability weighting function under risk (see also
Wu and Gonzalez 1999).

Our paper extends this two-stage approach and
empirically tests our extension. More specifically, we
will allow the probability judgments and the prob-
ability weighting function both to depend on the
source of uncertainty. Earlier studies have defined and
empirically validated properties of decision weights.
Using the extended two-stage approach, we are able
to ask if probability judgments and/or probability
weighting functions explain the properties of decision

weights. This decomposition of decision weights will
allow us to better understand decision weights and
to attribute important properties of decision weights
to properties of probability judgments and/or prop-
erties of probability weighting. After mathematically
deriving the relations between decision weights, prob-
ability judgments, and probability weighting under
uncertainty, we present an empirical study that shows
that it is indeed necessary to allow the probabil-
ity weighting function to be source dependent. The
analysis includes an examination of properties of the
probability weighting function under uncertainty that
have not been considered yet.

The paper is structured as follows: In §2, we set
up the theoretical background of the experimental
study and formulate three research hypotheses to be
tested subsequently. In §3, we describe the experimen-
tal design of our study in more detail. In §4, the key
results are presented. The paper concludes in §5 with
a brief summary and discussion of the main findings.

2. Theoretical Background
2.1. Choquet Expected Utility Theory and

Cumulative Prospect Theory
In the following, we will consider uncertain prospects
P = �x1�A1� � � � � xn�An	, where Ai are subsets of a set
S, the set of states of nature, which are called events,
and �A1� � � � �An	 forms a partition of S. Prospect
P yields the outcome xi if event Ai occurs, where
x1 ≤ · · · ≤ xi ≤ · · · ≤ xn. As our empirical part only
involves prospects with nonnegative outcomes, we do
not need to distinguish between CEU and the more
general CPT which allows for a different treatment of
gains and losses. Formally, the value of a prospect P
under CEU can be stated as follows:

CEU�P	= ��xn	 ·W�An	+
n−1∑
i=1
��xi	

·�W�Ai� ��� �n	−W�Ai+1� ��� �n	��

Here, � is a value function, W is a weighting function
or capacity, and Ai···j =Ai ∪· · ·∪Aj .

The weighting function W is a central element
in Choquet expected utility theory. It is defined on
the set of all subsets of S, with W��	 = 0�W�S	 =
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1, and W�Ai	 ≤ W�Aij	 for all i� j. The decision
weight associated with outcome xi is given by
W�Ai� ��� �n	 − W�Ai+1� ��� �n	, which is the difference
between the capacity of the event of receiving out-
come xi or better and the capacity of the event of
receiving outcome xi+1 or better.

Definition 1. W satisfies bounded subadditivity
�SAW	, if the following conditions hold:

(i) Lower subadditivity of the weighting function
�LSAW	: LSAW�Ai�Aj	 =W�Ai	+W�Aj	−W�Aij	 ≥ 0,
whenever W�Aij	 is bounded away from one.

(ii) Upper subadditivity of the weighting function
(USAW ): USAW�Ai�Aj	= 1+W�S−Aij	−W�S−Ai	−
W�S−Aj	≥ 0, whenever W�S−Aij	 is bounded away
from zero.

Lower subadditivity states that the impact of an
event is smaller when it is added to another event
than when it is added to the null event. Upper sub-
additivity states that the impact of an event is larger
when it is subtracted from the certain event than
when it is subtracted from some intermediate event.
Bounded subadditivity has been observed for weight-
ing functions on sporting events, events defined on
temperature ranges in college towns or events defined
on price ranges of a specific stock; see Tversky and
Fox (1995) and Fox et al. (1996). Both subadditivity
conditions are more general conditions than the con-
cavity and convexity conditions presented in Wu and
Gonzalez (1999).

What is needed in addition, are criteria to com-
pare the weighting functions for different sources
of uncertainty. Tversky and Wakker (1995) formalize
two source-dependent effects of weighting functions:
Source preference and source sensitivity. To define
these effects, let � and � be two distinct families
of events, i.e., two sources of uncertainty. Following
Tversky and Wakker (1995), we assume that the fam-
ilies are closed under union and complementation.

Definition 2. The decision maker exhibits a gen-
eral source preference (SPW ) for source � over source �
if, for any event Ai in � and Bi in ��W�Ai	 =W�Bi	
implies W�S−Ai	≥W�S−Bi	.

The definition implies a relation that can be easily
tested empirically (for W�Ai	=W�Bi		:
SUMW�Ai	 = W�S−Ai	+W�Ai	

≥W�S−Bi	+W�Bi	= SUMW�Bi	�

We will test if the average of SUMW , i.e., SUMW�A	

or SUMW�B	, satisfies this relation.
As a second source-dependent effect, which is log-

ically independent of source preference, Tversky and
Wakker (1995) define source sensitivity.

Definition 3. The decision maker exhibits less
source sensitivity (SSW ) to source � than to source � if
the two following conditions hold:

(i) If W�Ai	 = W�Bi	 and W�Aj	 = W�Bj	, then
W�Aij	≥W�Bij	.

(ii) If W�S−Ai	=W�S−Bi	 and W�S−Aj	=W�S−
Bj	, then W�S−Aij	≤W�S−Bij	, for all disjoint events
Ai�Aj in � and disjoint events Bi�Bj in � , with W�Aij	
bounded away from one and W�S −Aij	 bounded
away from zero.

The decision maker exhibits less source sensitivity
to source � than source � if the union of disjoint
events from � loses more relative to the correspond-
ing single events than the union of disjoint events
from �. Two testable conditions can be inferred (for
W�Ai	=W�Bi	 and W�Aj	=W�Bj		:

LSAW�Ai�Aj	≤ LSAW�Bi�Bj	

and

USAW�Ai�Aj	≤ USAW�Bi�Bj	�
Subsequently, it will be tested if the averages of LSAW
and USAW , i.e., LSAW�A	�LSAW�B	�USAW�A	, and
USAW�B	 match these conditions.

To derive testable hypotheses, we need to ex ante
differentiate between sources of uncertainty. As
explained in the introduction, we will hypothesize
that perceived competence is an important factor in
discriminating between different sources of uncer-
tainty. For simplicity, we will speak of the perceived
competence toward one source of uncertainty and
not distinguish between the perceived competence
toward different events of the same source.

The empirically testable properties of weighting
functions are summarized as follows:

Hypothesis 1. Properties of the Weighting
Function W .

(a) Subadditivity: W satisfies lower and upper
subadditivity.
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(b) Source Preference: W satisfies the relation
SUMW�A	 ≥ SUMW�B	 when perceived competence is
higher toward source � than source ��A ∈ �, and B ∈ � .

(c) Source Sensitivity: W satisfies the relation
LSAW�A	 ≤ LSAW�B	 and USAW�A	 ≤ USAW�B	 when
perceived competence is higher toward source � than source
��A ∈ �, and B ∈ � .

2.2. The Two-Stage Approach
Tversky and Fox (1995) and, in more detail, Fox and
Tversky (1998) suggest specifying the weighting func-
tion by a two-stage approach,

W�Ai	=wR�q�Ai		�
with W being the weighting function, q probabil-
ity judgments following support theory (Tversky and
Koehler 1994), Ai the event considered, and wR the
probability weighting function under risk. Fox and
Tversky (1998) present evidence for such a two-stage
specification. Wakker (2001) gives a formal justifica-
tion for this decomposition of the weighting function.

As anticipated by Fox and Tversky (1998), this two-
stage approach may be generalized by introducing
a more general probability weighting function under
uncertainty w of which wR may be seen as a spe-
cial case. The function w may be different for dif-
ferent sources of uncertainty. This leads to W�Ai	 =
w��q�Ai		 for a source of uncertainty �, or for short,

W�Ai	=w�q�Ai		�
In the following, we will assume that the weight-
ing function can be decomposed using the gener-
alized two-stage approach. As will be described in
more detail below, we will infer capacities from
choices (assuming CEU), and we will ask subjects for
probability judgments. Probability weighting func-
tions are derived as residuals using the two-stage
decomposition.

In §2.1, we have presented properties of weighting
functions. We will now derive similar properties for
judged probabilities q�A	 and for probability weight-
ing functions w, assuming the generalized two-stage
approach. The empirical tests of these properties will
allow us to understand to what extent judged proba-
bilities and/or probability weighting are responsible

for the observed properties of the weighting function.
If w proves to be different for different sources of
uncertainty, it will provide evidence in favor of the
generalized two-stage approach.1

Judged Probabilities: q�A	. The derivation of prop-
erties and hypotheses for judged probabilities is
straightforward. Judged probabilities are assumed to
follow support theory (Tversky and Koehler 1994), as
probability judgments are found to be generally sub-
additive, i.e., q�Ai	+q�Aj	≥ q�Aij	, for disjoint Ai�Aj ,
with q, a capacity (Wu and Gonzalez 1999).

Definition 4. Judged probabilities satisfy binary
complementarity (BC) for a source if q�Ai	+q�S−Ai	=
1 holds for all Ai.

Tversky and Koehler (1994) provide empirical sup-
port for binary complementarity to hold. Following
support theory, judged probabilities should satisfy
bounded subadditivity of judged probabilities (SAq), i.e.,
lower subadditivity of judged probabilities (LSAq) and
upper subadditivity of judged probabilities (USAq). Addi-
tionally, source sensitivity of judged probabilities (SSq)
has yet to be investigated. We will test if the aver-
age lower (upper) subadditivity of one source �, i.e.,
LSAq�A	�USAq�A	 for A ∈ �, is equal to the average
lower (upper) subadditivity of another source � , i.e.,
LSAq�B	 and USAq�B	 for B ∈ � .

The empirically testable properties of judged prob-
abilities can be summarized by the following hypoth-
esis. Hypotheses 2a and 2b reflect the current status
of the literature.

Hypothesis 2. Properties of Judged Probabilities.
(a) Subadditivity: Judged probabilities satisfy upper and

lower subadditivity.
(b) Binary Complementarity: Judged probabilities satisfy

binary complementarity.
(c) Source (In-) Sensitivity: Judged probabilities satisfy

LSAq�A	= LSAq�B	 and USAq�A	=USAq�B	 for sources
� and � ; A ∈ � and B ∈ � .

1 It is well known that the simple two-color Ellsberg paradox
(Ellsberg 1961) cannot be explained by the original two-stage
approach. Both for the known and unknown urn, judged probabil-
ities will be 0.5, so they will be transformed to the same decision
weights, contrary to empirical evidence. As a referee pointed out,
the results of Heath and Tversky (1991) cannot be explained by the
simple two-stage model either.
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Probability Weighting Function: w. Up to this
point, we have considered two variables: capacities
and judged probabilities. Now we are going to ana-
lyze the probability weighting function, which, in
light of the two-stage approach, is defined as the
residual of capacities and judged probability. A prob-
ability weighting function w is a nondecreasing func-
tion from �0�1� to �0�1�, with w�0	= 0 and w�1	= 1.

First we will consider lower subadditivity. The devi-
ation from additivity of capacities can be separated
into two components: LSAW = LSAw+LSAwq , with

LSAw�Ai�Aj	 = w�q�Ai		+w�q�Aj		
−w�q�Ai	+ q�Aj		

and

LSAwq�Ai�Aj	=w�q�Ai	+ q�Aj		−w�q�Aij		�
The term LSAw captures the subadditivity of the prob-
ability weighting function given additivity of judged
probabilities. LSAwq is the weighted probability loss
due to violation of additivity of judged probabil-
ities.2 LSAw eliminates the impact of subadditivity
of judged probabilities and captures subadditivity of
probability weighting exclusively. If a person applies
expected utility maximization to support theory prob-
abilities, then LSAw = 0, while, if q is an additive
probability measure, then LSAwq = 0. A similar sep-
aration exists for upper subadditivity of capacities.
Here, w�q�Ai		 has to be replaced by the dual func-
tion ŵ�q�Ai		 = 1−w�q�S−Ai		. Again the equation
USAW =USAw+USAwq holds with the same meaning
of the components.

We expect empirical results for the weighted prob-
ability judgments to be similar to the nonweighted
probability judgments. SAw corresponds to the def-
inition of bounded subadditivity of the probability
weighting function under risk in Tversky and Wakker
(1995). If the weighting function satisfies source sen-
sitivity, it can be determined to what extent this result
is driven by subadditivity of probability weighting or
subadditivity of judged probability.

2 The index W subsequently refers to the weighting function, the
index w to the probability weighting function, and the index wq to
the weighted probability judgments.

Finally, we look at source preference. If W reveals
source preference, again this result may be driven by
judged probabilities and/or by the shape of the prob-
ability weighting function. If binary complementarity
holds, different SUMW will be exclusively determined
by the probability weighting function. However, if
binary complementarity does not hold, SUMW cap-
tures the impact of differential probability weighting
as well as the impact of failure of binary comple-
mentarity. To separate the pure impact of probability
weighting, judged probabilities have to be normalized
such that they satisfy binary complementarity, i.e.,

SUMw�Ai	 = w

(
q�Ai	

q�Ai	+ q�S−Ai	
)

+w
(

q�S−Ai	
q�Ai	+ q�S−Ai	

)
�

SUMw exclusively captures the effect of probabil-
ity weighting. The weighted impact of differential
binary complementarity is captured by �SUMwq =
SUMW − SUMw. For binary complementarity, we
have �SUMwq = 0. With �SUMW = SUMW − 1
and �SUMw = SUMw − 1, the equation �SUMw +
�SUMwq = �SUMW holds. Comparing SUMw for dif-
ferent sources of uncertainty, we are able to check
for source preference of the probability weighting
function.

The testing of probability weighting functions can
be summarized in the following.

Hypothesis 3. Properties of the Probability
Weighting Function w under Uncertainty.

(a) Subadditivity: w satisfies lower and upper subaddi-
tivity.

(b) Source Preference: w satisfies SUMw�A	 ≥
SUMw�B	 when perceived competence is higher toward
source � than source ��A ∈ � and B ∈ � .

(c) Source Sensitivity: w satisfies LSAw�A	 ≤ LSAw�B	
and USAw�A	 ≤ USAw�B	 when perceived competence is
higher toward source � than source ��A ∈ � and B ∈ � .

Estimating the Probability Weighting Function.
The two-stage approach allows the determination
of the functional relation W = w�q�Ai		. The proba-
bility weighting functions for different sources can
be estimated from certainty equivalents of uncertain
prospects and corresponding judged probabilities q,

1716 Management Science/Vol. 47, No. 12, December 2001



KILKA AND WEBER
The Shape of the Probability Weighting Function Under Uncertainty

as will be explained in detail in §4.4. To estimate
the probability weighting function, various functional
specifications originally suggested to describe the
probability weighting function under risk may be
used. As we consider two independent concepts to
characterize sources of uncertainty, source preference,
and source sensitivity, we will use the following func-
tional forms, which both have two free parameters.3

(1) Linear-in-log-odds form: w�q	 = � · q�/�� · q� +
�1− q	�� with � and � allowing for different sources
of uncertainty.4 The parameter � primarily controls
elevation, i.e., source preference, and the parameter
� primarily controls curvature, i.e., source sensitivity
(Gonzalez and Wu 1999).

(2) Linear approximation: w�q	 = � + � · q� q ∈
�0�1	�w�0	 = 0�w�1	 = 1 with � and � allowing for
different sources of uncertainty. The slope parameter
� controls curvature, i.e., source sensitivity. A suitable
measure of elevation, i.e., source preference, is given
by �+�/2.

3. Experimental Design
To test the hypotheses, we conducted an experiment
at the University of Mannheim, Germany, in May
1997. Fifty-five students of graduate finance classes
participated in the study. The study took them about
one hour and was run voluntarily after class using
a multipage questionnaire, which were filled out
completely.

Subjects were asked to judge the stock price
changes of two stocks with potentially different famil-
iarity levels. As in Mangelsdorff and Weber (1994),
we chose the stocks to be from Deutsche Bank, which
is Germany’s largest and probably most well-known
banking group, and from Dai-Ichi Kangyo Bank,
which was one of the largest Japanese banks. We
expected people to consider themselves to be more
competent in estimating future prices of domestic

3 We also did the analysis presented in §4 with the one-parameter
function of Tversky and Kahneman (1992) and with the two-
parameter function of Prelec (1998). Results are very much in line
with what we present here.
4 The linear-in-log-odds property of w�q	 is demonstrated in
Gonzalez and Wu (1999). This specification was used by Goldstein
and Einhorn (1987) and Lattimore et al. (1992), among others.

Figure 1 Events in the Stock Price Continuum

stocks, i.e., the Deutsche Bank, than estimating future
prices of foreign stocks. Both corporations were com-
parable in size and importance. Each preference and
probability judgment refers to the closing price of the
stock at July 8, 1997, in local currency, i.e., the German
stock in Deutsche mark and the Japanese stock in yen.
Hence, the forecasting period was about two months.

To test the hypotheses, we partitioned the stock
price space in four intervals similar to the approach
taken by Tversky and Fox (1995) and Fox et al. (1996).
We defined 12 relevant events over these intervals in
Figure 1. The 12 events consist of six partitions (event
and complementary event) of the event space. The
reference point Y0 refers to the actual stock price of
each stock at the time of the experiment in the stock’s
local currency. The interval boundaries Y + and Y − are
chosen such that they yield a return of +5% or −5%
relative to Y0. A test of Hypotheses 1–3 requires the
elicitation of three groups of data. Correspondingly,
the questionnaire consists of three sections that were
presented in the following order:

Section 1: Competence ratings
Section 2: Certainty equivalents for uncertain

prospects
Section 3: Direct judgment of probabilities
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Capacities can be calculated from the corresponding
certainty equivalents and a particular value function.
The experimental design is similar to the design
applied in Fox et al. (1996) and Fox and Tversky
(1998).

Section 1. Competence Ratings. First, the subjects
were asked to rate their competence in estimating the
stock price of the Deutsche Bank stock on July 8, 1997,
on a scale from 0 (not competent at all) to 6 (very com-
petent); the same was done for the Dai-Ichi Kangyo
Bank. Such competence judgments express the indi-
vidually perceived level of competence.

Section 2. Certainty Equivalents. We considered
assets PA = (120 DM, A; 0 DM, otherwise), $1 ≈ 1�80
DM. The event A was defined by a range of the actual
stock price of one of the two stocks on July 8, 1997,
e.g., A was true if the closing price of the underlying
stock on July 8, 1997, was between Y1 and Y2. Alter-
natively, the participants were offered a sure amount
of money X. Each participant had to decide whether
he or she preferred the claim PA or the sure payment
X. The sure payment X was varied in steps of 10 DM
from 10 DM to 110 DM, such that, for each asset PA,
a sequence of 11 preference choices had to be made.
This procedure ensures that the certainty equivalent
of claim PA is elicited in a sequence of choice deci-
sions. Finally, subjects were asked to indicate the exact
certainty equivalent, which, according to the instruc-
tions, should be between the last preference for asset
PA and the first preference for the sure payment X.

Altogether, subjects evaluated 24 claims PA. For
both stocks, subjects had to evaluate one prospect
PA�i = (120 DM, Ai; 0 DM, otherwise) for each of
the 12 events specified in Figure 1. The prospects
referring to the Deutsche Bank stock are called
PD�1� � � � �PD�12; the prospects referring to the Dai-
Ichi Kangyo Bank stock are called PJ�1� � � � �PJ�12.5 The
prospects were given in a fixed order that was ran-
domly determined.

5 The prospect PD�10 was described as follows (translation from
German): The asset PD�10 pays 120 DM, if the stock price of the
Deutsche Bank on July 8, 1997, will be below 94 DM or above 99
DM, i.e., if relative to the price of 99 DM on May 16, 1997, the
stock has risen or it has fallen for more than 5%, otherwise PD�10

pays nothing. Some events overlap (depending on whether abso-
lute prices or percentages are considered).

Section 3. Direct Judgment of Probabilities. For
each of the 12 events specified in Figure 1, subjects
were asked to directly assess the probability that the
event occurs. Hence, each subject gave 24 probability
judgments. Again, the events were given in a fixed
order that was randomly determined.

Summarizing, a participant’s data set for one
type of stock consists of competence judgment,
certainty equivalents over 12 prospects per stock
CE�PA�1	� � � � �CE�PA�12	, and probability judgments
over 12 events per stock q�A1	� � � � � q�A12	.

Besides a fixed fee of 10 DM for participation,
subjects were paid a variable fee. The payment
scheme, which was explained to the participants in
advance, ensures that it is optimal for participants
to reveal their true preference. After finishing the
study, one-fifth of the participants were randomly
selected to play one randomly selected preference
choice for real money. For each of the selected
players, one PA�i was randomly drawn out of the
PD�1� � � � �PD�12�PJ�1� � � � �PJ�12. Since for each PA�i sub-
jects had to make a sequence of choices between the
claim PA�i and various sure payments X, it also had
to be randomly determined which of the preference
choices of PA�i was played. In case the participant
had chosen the asset PA�i, he or she received 120 DM
or 0 DM on July 8, 1997, depending on the closing
price of the underlying stock on this day. If he or she
had chosen the indicated sure payment X, he or she
got this amount instead. The respective amounts were
paid in class on July 9, 1997. All random draws were
taken by drawing numbered balls from an urn.6

4. Results7

4.1. Competence Judgments
Our study is based on two real stocks: Deutsche
Bank and Dai-Ichi Kangyo Bank. How competent

6 The payment mechanism is incentive compatible for the choice
questions. The elicitation of the actual certainty equivalent was not
enforced by the mechanism.
7 As explained in §3, the uncertain prospects in our study had a sin-
gle nonzero outcome. If Ai denotes the event in which the nonzero
outcome is received, its decision weight, which is W�Ai	−W��	,
equals W�Ai	, the capacity of event Ai , as W��	 = 0. In what fol-
lows, we will use the more intuitive term “decision weight” instead
of “capacity.”
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Table 1 Subadditivity of Decision Weights for v�x�= x� with Different Values of �

�= 0�76 �= 0�88 �= 1�00

Deutsche Dai-Ichi Deutsche Dai-Ichi Deutsche Dai-Ichi
Bank Kangyo p-value Bank Kangyo p-value Bank Kangyo p-value

SUMW 1�097 1�001 ** 1�016 0�899 ** 0�944 0�811 **
LSAW 0�255 0�325 ** 0�205 0�273 ** 0�154 0�231 **
USAW 0�267 0�359 * 0�302 0�399 * 0�342 0�435 *
SSW 0�456 0�344 ** 0�483 0�333 ** 0�496 0�333 **

Note. Entries are medians over all participants for v�x�= x� with different values of �� p-values refer to one-sided Wilcoxon rank sum tests Deutsche Bank
vs. Dai-Ichi Kangyo Bank over all participants �∗ � p < 0�05
 ∗∗ � p < 0�01�.

do the (German) participants feel about these two
stocks? Subjects feel much more competent judging
future stock price changes of the domestic Deutsche
Bank stock than judging future stock price changes of
the foreign Dai-Ichi Kangyo Bank stock. On a scale
from 0–6, subjects give mean ratings of 2.87 for the
Deutsche Bank and of 1.00 for the Dai-Ichi Kangyo
Bank. Of 55 participants, 51 judged their competence
concerning the Deutsche Bank stock to be higher than
concerning the Dai-Ichi Kangyo Bank stock; 4 judged
their competence as equally high.

4.2. Decision Weights
First, we calculate the decision weights from the cor-
responding certainty equivalents for each event for
each person. Remember that a prospect PA�i pays
120 DM if the event Ai occurs, and 0 DM oth-
erwise. Consequently, given a person’s value func-
tion �, the decision weight W�Ai	 of the event Ai
can be calculated from ��CE�PA� i		 = ��120	 ·W�Ai	.
This calculation requires the specification of the value
function ��·	. Following the literature, e.g., Tversky
and Kahneman (1992), we use the form ��x	= x%. For
convenience, we did not estimate individual parame-
ters %, but used a common parameter % for all sub-
jects and did sensitivity analysis on that parameter.
As Tversky and Kahneman (1992) found %= 0�88, we
did all the analysis for 0�76≤%≤ 1, varying % in steps
of 0.06. The decision weights of the events D1 to D12

for the Deutsche Bank and the events J1 to J12 for
the Dai-Ichi Kangyo Bank can be calculated from the
certainty equivalents assigned to the corresponding
prospects PD�1 to PD�12 and PJ�1 to PJ�12, respectively,
and the value function.

First, Hypothesis 1a claims that the weighting
function satisfies lower and upper subadditivity. To
test for lower subadditivity, we consider the deci-
sion weights of the event pairs �D1�D2	� �D2�D3	,
�D3�D4	� �D1�D4	, and the corresponding joint events
D5�D6�D7�D8. For example, LSAW�D1�D2	=W�D1	+
W�D2	 − W�D5	 can be calculated for each par-
ticipant from D1 and D2, and the corresponding
joint event, D5. Similar calculations are made for
�D2�D3	� �D3�D4	� �D1�D4	, and the corresponding
joint events, D6�D7�D8. The average over these four
values, LSAW�D	, describes the degree of lower sub-
additivity of a specific participant. The LSAW�J 	 num-
bers are calculated in a similar way.

To test for upper subadditivity, we consider
the decision weights of the event pairs �D11�D12	,
�D9�D12	� �D9�D10	� �D10�D11	, and the corresponding
events, D5�D6�D7�D8. For example, USAW�D11�D12	=
1 +W�D5	−W�D11	−W�D12	 can be calculated for
each participant from D11�= S−D3	�D12�= S−D4	 and
the corresponding D5�= S−D3 −D4	. Similar calcula-
tions are made for �D9�D12	� �D9�D10	� �D10�D11	, and
the corresponding events, D6�D7�D8. The average
over these four values USAW�D	 describes the degree
of upper subadditivity of a specific participant. The
USAW�J 	 numbers are calculated in a similar way.8

Table 1 shows that, for both stocks, independently
of %, the weighting function reveals lower subadditiv-
ity as well as upper subadditivity. In each case, i.e., for
each of LSAW�D	�LSAW�J 	�USAW�D	, and USAW�J 	,
more than 90% of the subjects reveal this pattern

8 Comparing LSAW for different sources, decision weights W�A	
and W�B	 have to be equal. Even if W�J	 in general is a bit smaller
than W�D	, this effect is negligible.
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(sign test: p < 0�01 in each case). This result sup-
ports Hypothesis 1a. It also replicates earlier results
by Tversky and Fox (1995) and Fox et al. (1996).

Hypothesis 1b states that the weighting func-
tion satisfies source preference. As perceived compe-
tence for the Deutsche Bank is greater than for the
Dai-Ichi Kangyo Bank, we check whether SUMW�D	≥
SUMW�J	 holds. For each subject SUMW�D	 equals the
average SUMW�Di	 = W�S−Di	+W�Di	 over all six
partitions (event and complementary event) accord-
ing to Figure 1. Similar calculations apply to the
Japanese stock. Table 1 shows that SUMW are (sig-
nificantly) higher for the Deutsche Bank than for
the Dai-Ichi Kangyo Bank. Subjects reveal source
preference for the domestic stock over the foreign
stock independently of %. 70% (sign test p < 0�01) of
the subjects show this pattern. This result supports
Hypothesis 1b. It shows that the competence effect
found by Heath and Tversky (1991) is also valid in
the domain of subjective stock evaluations.

Finally, Hypothesis 1c states that the weight-
ing function reveals higher source sensitivity for
sources that subjects feel more competent about.
It has to be tested whether LSAW�D	 ≤ LSAW�J 	
and USAW�D	 ≤ USAW�J 	 hold. The variable
SSW �·	 = 1−LSAW�·	−USAW�·	 can be interpreted as
a measure of sensitivity. The larger SSW , the larger
the sensitivity of the weighting function with respect
to the underlying events. Results show that LSAW ,
as well as USAW , are significantly smaller for the
Deutsche Bank than for the Dai-Ichi Kangyo Bank
(LSAW true for at least 65%� p < 0�02; USAW true for
at least 60%� p < 0�10). Accordingly, SSW is larger for
the Deutsche Bank than for the Dai-Ichi Kangyo Bank
(at least 69%� p < 0�01). People reveal lower source
sensitivity for less familiar stocks, i.e., weighting
functions are more “subadditive” for less familiar
sources. Tversky and Fox (1995) show that source
sensitivity is smaller for uncertain events than for
risky events. Our results show that there are also
differences in sensitivity between various sources of
uncertainty. Fox et al. (1996) conducted a study sim-
ilar to ours in a stock market framework. They did
not find systematic source dependence in their data,
however, which might be because the differences in
perceived competence between the underlying stocks
were too small.

4.3. Judged Probabilities
Hypothesis 2a states that probability judgments sat-
isfy lower and upper subadditivity. We consider the
same pair of events and corresponding joint events
as in the analysis of the weighting function. For
each of the four pairs, we calculate LSAq�Di�Dj	 =
q�Di	+ q�Dj	− q�Dij	 with Dij = Di ∪Dj . The average
over these four values, LSAq�D	, describes the degree
of lower subadditivity of a specific participant. The
LSAq�J 	 numbers are calculated in a similar way. For
example, to test for upper subadditivity as in the
last section, we calculate USAq�D11�D12	= 1+q�D5	−
q�D11	− q�D12	 from D11�= S−D3	�D12�= S−D4	, and
D5�= S−D3 −D4	. The average over the four values,
USAq�D	, describes the degree of upper subadditivity
of a specific participant (respectively USAq�J 	 for the
Japanese stock). Table 2 shows that for both stocks,
judged probabilities reveal lower and upper subaddi-
tivity. For both stocks, 83% of all subjects satisfy lower
subadditivity (sign test: p < 0�01), and at least 91%
of all subjects satisfy upper subadditivity (sign test:
p < 0�01). This result supports Hypothesis 2a. More-
over, it corresponds to the findings by Tversky and
Fox (1995), Fox et al. (1996), Fox and Tversky (1998),
and particularly Tversky and Koehler (1994) in sup-
port theory.

Moreover, Tversky and Koehler (1994) suggest
that probability judgments of complementary events
add to one (Hypothesis 2b). To test Hypothesis
2b, we consider the average over the six parti-
tions of the event space, which is termed SUMq�D	.
SUMq�D	 expresses a subject’s degree of binary
complementarity. The same applies to the Dai-Ichi
Kangyo Bank. Table 2 shows that probability judg-
ments for the Deutsche Bank approximately satisfy

Table 2 Subadditivity of Judged Probabilities

Deutsche Dai-Ichi
Bank Kangyo p-value

SUMq 0�992 0�933 **
LSAq 0�038 0�050 n.s.
USAq 0�145 0�238 **
SSq 0�800 0�675 **

Note. Entries are medians over all participants; p-values refer to one-sided
Wilcoxon rank sum tests Deutsche Bank vs. Dai-Ichi Kangyo Bank over all
participants (n.s.: not significant, ∗∗ � p < 0�01).
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binary complementarity. For 54.5% of the subjects,
SUMq�D	 < 1 and for 45�5%� SUMq�D	 > 1 (sign test:
p= n.s.), 69% are within �0�95�1�05�. However, for the
Dai-Ichi Kangyo Bank, this pattern does not hold. For
80% of the subjects, SUMq�J 	 < 1 (sign test: p < 0�01	,
and only 40% are within [0�95�1�05]. Additionally,
SUMq is significantly smaller for the Dai-Ichi Kangyo
Bank than for the Deutsche Bank (p< 0�01	�85% of the
subjects show this pattern. This result might be rather
surprising. It reminds us of the source preference
property of the weighting function, which might be
caused by the lack of binary complementarity in the
underlying probability judgments. This pattern might
be due to the very low perceived competence for
Dai-Ichi Kangyo Bank; see also Macchi et al. (1999).
Other studies do not report a similar discrepancy (see
the summary in Fox and Tversky 1998, who in Study
2, find a failure of binary complementarity).

Hypothesis 2c claims that probability judgments do
not reveal source-dependent differences in subaddi-
tivity, i.e., LSAq�D	=LSAq�J 	 and USAq�D	=USAq�J 	.
The variable SSq�·	 = 1 − LSAq�·	 − USAq�·	 can be
interpreted as a measure of sensitivity. The larger
SSq�·	, the larger the sensitivity of judged probabili-
ties with respect to additional events. It can be seen
that LSAq�p= n.s.) and USAq�p < 0�01	 are smaller for
the Deutsche Bank than for the Dai-Ichi Kangyo Bank.
Accordingly, SSq is larger for the Deutsche Bank than
for the Dai-Ichi Kangyo Bank (p < 0�01).

4.4. Probability Weighting Function
Using certainty equivalents and corresponding prob-
ability judgments for the uncertain prospects, we can
estimate the parameters of the probability weighting
function. If prospect PA�i = (120 DM, Ai; 0 DM, oth-
erwise) is evaluated according to CEU and the two-
stage decomposition of decision weights applies, the
following equation can be derived:

CE�PA� i	= �−1�w�q�Ai		 ·��120DM		�

To estimate the parameters of w, we assumed v�x	=
x% for different values of % and employed a nonlinear
regression procedure minimizing squared deviations
in terms of CE.

The weighting function can be estimated indi-
vidually for each participant for each underlying

source of uncertainty. For comparison, we estimate a
pooled probability weighting function for each source
of uncertainty from the pooled data of all partici-
pants’ judgments about that source of uncertainty.
The probability weighting function will be formalized
by the two functional specifications mentioned before,
i.e., the linear-in-log-odds-form and a simple linear
approximation. Table 3 shows the medians of the indi-
vidually estimated parameters over all subjects and
the parameter values of the pooled estimations.

The parameter values given in Table 3A show
systematic differences between the two probability
weighting functions for both parametric specifica-
tions. The linear-in-log-odds-function shows larger �
values and larger � values for the Deutsche Bank than
for the Dai-Ichi Kangyo Bank (� larger for at least
54%, p = n.s.; � larger for at least 59%, p < 0�11). �
and � thus increase with increasing competence judg-
ments. Lower � values correspond to less pronounced
source sensitivity, whereas lower � values correspond
to a generally lower curve indicating lower source
preference. The parameter values of the linear approx-
imation can be interpreted similarly. These findings
are affirmed by the estimated parameter values of the
pooled regressions (Table 3B).

Summarizing, the probability weighting function
for less familiar sources of uncertainty is characterized
by more subadditivity. Some of our results suggest
a lower curve relative to the probability weighting
function for more familiar sources of uncertainty.
These results support Hypothesis 3 in tendency. These
results also stress the necessity of modeling the
source dependence of probability weighting, e.g., by
the extended two-stage approach, w�q�·		, introduced
above.

Subsequently, the three parts of Hypothesis 3 will
be tested explicitly. Hypothesis 3 is based on the
separation of LSAW�USAW��SUMW = SUMW −1 into
LSAw�USAw��SUMw, and LSAwq�USAwq��SUMwq ,
described in §2. Subadditivity of the weighting func-
tion (index W ) can be induced by weighted subad-
ditivity of probability judgments (index wq) and/or
by subadditivity of the probability weighting func-
tion (index w), with LSAW = LSAw+LSAwq , and cor-
responding equations for the other terms.
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Table 3A Estimation of the Probability Weighting Function for v�x�= x� with Different Values of � � Individual Regressions

�= 0�76 �= 0�88 �= 1�00

Deutsche Dai-Ichi Deutsche Dai-Ichi Deutsche Dai-Ichi
Bank Kangyo p-value Bank Kangyo p-value Bank Kangyo p-value

Linear-in
log-odds

� 1�315 1�167 n.s. 1�096 0�953 m.s. 0�891 0�790 m.s.
�0�221� �0�191� �0�190� �0�163� �0�163� �0�136�

� 0�467 0�389 * 0�489 0�415 * 0�506 0�442 *
�0�148� �0�145� �0�153� �0�153� �0�161� �0�162�

linear
approx.

+ �/2 0�560 0�535 m.s. 0�517 0�485 * 0�479 0�442 *
�0�041� �0�037� �0�041� �0�039� �0�043� �0�041�

� 0�567 0�439 ** 0�601 0�466 ** 0�607 0�481 **
�0�136� �0�149� �0�141� �0�154� �0�144� �0�157�

Note. Entries are medians of the estimated parameters of individual regressions for each participant and median standard errors of
these estimates (in parentheses). The assumed value function is v�x� = x� with different values of � as indicated. p-values refer
to one-sided Wilcoxon rank sum tests Deutsche Bank vs. Dai-Ichi Kangyo Bank for the estimated parameters (n.s.: not significant,
m.s.: marginally significant, p < 0�1
∗ � p < 0�05
∗∗ � p < 0�01).

Table 3B Estimation of the Probability Weighting Function for v�x�= x� with Different Values of �: Pooled Regressions

�= 0�76 �= 0�88 �= 1�00

Deutsche Dai-Ichi Deutsche Dai-Ichi Deutsche Dai-Ichi
Bank Kangyo Bank Kangyo Bank Kangyo

Linear-in
log-odds

� 1�268 1�138 1�036 0�928 0�861 0�770
�0�041� �0�036� �0�035� �0�031� �0�030� �0�027�

� 0�425 0�298 0�443 0�312 0�461 0�326
�0�023� �0�025� �0�024� �0�027� �0�025� �0�028�

linear
approx.

+ �/2 0�555 0�532 0�510 0�483 0�469 0�439
�0�007� �0�007� �0�007� �0�008� �0�008� �0�008�

� 0�540 0�389 0�569 0�407 0�587 0�417
�0�024� �0�029� �0�025� �0�030� �0�026� �0�031�

Note. Entries are the estimated parameters of pooled regressions over all participants’ data and corresponding standard errors (in
parentheses). The assumed value function is v�x�= x� with different values of � as indicated.
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Table 4 Subadditivity of the Probability Weighting Function for v�x�= x� with Different Values of �

�= 0�76 �= 0�88 �= 1�00

Deutsche Dai-Ichi Deutsche Dai-Ichi Deutsche Dai-Ichi
Bank Kangyo p-value Bank Kangyo p-value Bank Kangyo p-value

Linear-in
log-odds

LSAw 0�220 0�265 * 0�172 0�211 * 0�129 0�160 *
LSAwq 0�011 0�010 n.s. 0�008 0�011 n.s. 0�008 0�007 n.s.
USAw 0�143 0�192 * 0�159 0�249 * 0�197 0�289 **
USAwq 0�082 0�086 n.s. 0�070 0�087 n.s. 0�073 0�076 n.s.
SSw 0�624 0�503 ** 0�655 0�521 * 0�662 0�530 **
�SUMw 0�131 0�071 * 0�041 −0�022 * −0�049 −0�107 *
�SUMwq −0�003 −0�029 ** −0�002 −0�029 ** −0�002 −0�025 **

linear
approx.

LSAw 0�246 0�275 * 0�192 0�216 m.s. 0�137 0�169 m.s.
LSAwq 0�008 0�008 n.s. 0�008 0�008 n.s. 0�008 0�008 n.s.
USAw 0�155 0�205 * 0�187 0�243 * 0�218 0�283 *
USAwq 0�057 0�061 n.s. 0�062 0�067 n.s. 0�061 0�072 n.s.
SSw 0�584 0�505 * 0�601 0�512 * 0�607 0�522 *
�SUMw 0�120 0�070 m.s. 0�034 −0�029 * −0�043 −0�116 *
�SUMwq −0�004 −0�023 ** −0�004 −0�024 ** −0�004 −0�024 **

Note. Entries are medians of the individual values assuming the specified probability weighting function with individually estimated parameters and value
function v�x� = x� with different values of � as indicated. p-values refer to one-sided Wilcoxon rank sum tests Deutsche Bank vs. Dai-Ichi Kangyo Bank
parameters (n.s.: not significant, m.s.: marginally significant, p < 0�1
 ∗ � p < 0�05
 ∗∗ � p < 0�01).

Hypothesis 3a states that the probability weight-
ing function satisfies lower and upper subadditivity,
i.e., LSAw�·	 ≥ 0 and USAw�·	 ≥ 0, for both sources
of uncertainty. The tests of subadditivity are based
on the same set of events as in the case of decision
weights and probability judgments. LSAwq�Di�Dj	 can
be calculated using the individually estimated para-
metric probability weighting functions by plugging
in the corresponding probability judgments. LSAw�D	
and LSAwq�D	 are calculated for each participant as
the average of the four event pairs. The calculation
of LSAw�J 	 and LSAwq�J 	 is done similarly. A test of
upper subadditivity is performed similarly based on
the dual function.

Table 4 shows that for both probability weighting
functions, LSAw ≥ 0 and USAw ≥ 0 (sign test: LSAw
true for at least 84%� p < 0�01; USAw true for at least
82%� p < 0�01). This result supports Hypothesis 3a,
the probability weighting functions under uncertainty
satisfy lower and upper subadditivity. Additionally,
it should be noted that on average, LSAwq ≥ 0 and

USAwq ≥ 0, although the absolute values are much
smaller than the corresponding LSAw- and USAw- val-
ues. LSAwq ≥ 0 and USAwq ≥ 0 reflect the subadditivity
of weighted probability judgments shown in Table 2.
So it should be kept in mind that the subadditiv-
ity of the weighting function is driven by the cur-
vature of the probability weighting function as well
as, to a much smaller degree, by the subadditivity of
judged probabilities. Such a decomposition of deci-
sion weights is directly connected to the two-stage
specification proposed by Fox and Tversky (1998)
and Wu and Gonzalez (1999). In accordance with the
results presented above, both studies find first evi-
dence for subadditivity of the probability weighting
function in the two-stage framework. However, the
empirical parts of these studies do not explicitly dis-
tinguish between the probability weighting function
under risk and under uncertainty.

Hypothesis 3b states that the probability weight-
ing function satisfies source preference. To test this
condition, we take the average SUMw�·	 over the
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considered six partitions of the event space for
each participant for each stock. The resulting terms,
SUMw�D	 and SUMw�J 	, should satisfy SUMw�D	 ≥
SUMw�J 	 according to Hypothesis 3b. SUMw�·	 is
calculated using the individually estimated specifi-
cations of the probability weighting function and
q, the corresponding judged probabilities. SUMw�·	
captures only the impact of the source-dependent
shape of the probability weighting function, with
�SUMw�·	= SUMw�·	−1. Departures of the probabil-
ity judgments from binary complementarity are con-
trolled for by the normalization of probabilities. The
term �SUMwq�·	 captures the part of the source pref-
erence effect caused by the departure of probability
judgments from binary complementarity.

Table 4 shows that the median of �SUMw is larger
for the Deutsche Bank than for the Dai-Ichi Kangyo
Bank (at least 51% of the subjects show that pattern,
p = n.s.). This suggests that the curve of the probabil-
ity weighting function for the Dai-Ichi Kangyo Bank
is “below” the curve for the Deutsche Bank (see also
the results in Table 3). Moreover, �SUMwq is signifi-
cantly smaller for the Dai-Ichi Kangyo Bank than for
the Deutsche Bank. This can be explained by a signif-
icantly lower sum of judged probabilities for binary
complementary events for the Dai-Ichi Kangyo Bank
than for the Deutsche Bank (see Table 2). However,
in absolute magnitude �SUMwq values are smaller
than corresponding �SUMw values. Source preference
of the weighting function, as reported in Table 1, is
driven by both the lack of binary complementarity of
judged probabilities and the elevation of the probabil-
ity weighting function.

Hypothesis 3c states that the probability weight-
ing function reveals higher source sensitivity for more
familiar sources of uncertainty than for less familiar
sources of uncertainty, i.e., LSAw�D	 ≤ LSAw�J 	 and
USAw�D	 ≤ USAw�J 	. This leads to SSw�D	 ≥ SSw�J 	

with SSw�·	 = 1 − LSAw�·	−USAw�·	. Table 4 shows
that the median of LSAw is smaller for the Deutsche
Bank than for the Dai-Ichi Kangyo Bank (true for at
least 56%, p = n.s.). Similarly, USAw is smaller for
the Deutsche Bank than for the Dai-Ichi Kangyo Bank
(true for at least 56%, p = n.s.). Accordingly, SSw of
the Deutsche Bank is significantly larger than of the

Dai-Ichi Kangyo Bank. These results support Hypoth-
esis 3c. For the linear-in-log-odds-form at least 63% of
the subjects show that pattern (p < 0�05), while for the
linear approximation at least 61% show it (p < 0�07).
The probability weighting function of the more famil-
iar source reveals less subadditivity and higher source
sensitivity than the probability weighting function of
the less familiar source of uncertainty. In contrast,
the differences between the two stocks are not sig-
nificant for LSAwq and USAwq . This result reflects the
nonsignificant differences in subadditivity of proba-
bility judgments between the two stocks reported in
Table 2. Summarizing, the difference in source sensi-
tivity of the weighting function reported in Table 1
is primarily driven by the shape of the probability
weighting function.

5. Summary
In this paper, we have presented a two-stage
approach to explain decision weights in the context
of decision making under uncertainty. We assumed
and discussed a model for decision weights, where
decision makers first judge the probability of an event
and then transform this probability using a proba-
bility transformation function under uncertainty. This
transformation function was allowed to vary with the
degree of ambiguity of the event. The decomposi-
tion of decision weights into probability judgments
and probability transformation made it possible to
derive hypotheses about the relative influence of both
components assumed to be contributing to decision
weights.

In the empirical part of our study, we tested for
the relative effects of and interactions among all
three types of variables: decision weights, probability
judgments, and probability transformation. Decision
weights (using sequences of choices) and probabili-
ties (asking subjects to judge uncertain events) formed
the primitives of our analysis, which considered two
types of uncertain events: bets on the stock price of
Deutsche Bank and bets on the stock price of Dai-Ichi
Kangyo Bank. We confirmed the usual findings for
decision weights. In addition, our data indicate that
properties of probability judgments were partially
influenced by the source of uncertainty. The proper-
ties of the probability weighting function were also
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significantly influenced by the source of uncertainty.
We therefore concluded that source dependence influ-
ences probability judgments as well as probability
transformation (as assumed in our model).

To understand more about the two-stage model, in
future research, it would be interesting to manipu-
late the source preference within subjects, to see how
the different components of the model react. It would
also be worthwhile to extend the formal treatment in
the light of Wakker (2001), who presented a theoreti-
cal foundation for the simple two-stage approach. In
addition, a joint estimation of a subject’s value func-
tion and decision weights should be performed.

The decomposition of decision weights advocated
here might lead to a better understanding of some
economic phenomena. In a cross-cultural study with
subjects from the United States and Germany, Kilka
and Weber (2000) asked subjects to give probability
estimates on future stock prices in the United States
and Germany. They found that subjects were more
optimistic about those stocks they felt more compe-
tent about than about those they felt less competent
about. This dependency of properties of probability
judgment on sources of uncertainty can be under-
stood in the light of a two-stage model. The model
should also be applicable to economic situations
where probability judgments and choices are made by
different agents.
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