
What Distributed Software Teams need to know and

when: an Empirical Study

Kevin Dullemond, Ben van Gameren

Delft University of Technology

IHomer

The Netherlands

{k.dullemond, b.j.a.vangameren}@tudelft.nl

Abstract—Just like in co-located teams, software engineers
in distributed teams need a variety of information about the
project and their team members to collaborate effectively. In
contrast with the co-located situation however, acquiring and
maintaining sufficient awareness is more difficult. Therefore
technological support is developed to assist them with this.
However, such support walks a fine line: if it provides too little
information software engineers will not be able to collaborate
effectively, yet if it provides too much, an information overload
can occur. To further complicate matters, the information needs
of software engineers dynamically change based on their current
activity, context and focus. Therefore we assist tool developers by
investigating and reporting on the prioritization of information
for distributed software engineers based on their current activity
and status. Finally, we illustrate the applicability of the findings
by describing how to apply them in a support tool for distributed
software engineers.

I. INTRODUCTION

It is becoming increasingly common for collaborative
Software Engineering teams to no longer conduct their work
from a single office building. This happens both due to
the globalization of business [1], [2], [3] and because peo-
ple increasingly work from home [4]. Like their co-located
counterparts, members of distributed teams need access to
certain information to collaborate effectively [5], [6]. However,
while in a co-located setting gathering this information can be
done naturally with relatively little effort and obtrusion, the
distributed setting requires special care because information
that is necessary needs to be gathered explicitly.

Therefore, to support the information needs of distributed
software engineers, specialized tooling has been developed.
However the need to explicitly look up information can be
particularly obtrusive to software engineers because this re-
quires them to repeatedly interpreted the same information
and spend cognitive effort to decide if something noteworthy
has happened. This can be mitigated by making the changes
available and communicating these to the software engineers.
Even when taking this approach however, choices will need
to be made regarding what information is necessary to be
able to create a comprehensive Collaborative Development
Environment without overloading the software engineers with
information [7], [8]. To be able to make these choices it is
important to be able to prioritize the different information
needs of distributed software engineers.

Therefore, to be better able to support distributed software
engineering teams, the goal of this paper is:

”To investigate the prioritization of different information
needs of distributed software engineers.”

In this prioritization the importance of information is likely to
be strongly related to (i) how involved a software engineer is
with the project the information is about, (ii) his current status
and (iii) the frequency the information generally changes.
Therefore, to reach the goal we have defined the following
research questions:

RQ1 What is the most important information a distributed
software engineer needs to know to carry out his work
and collaborate effectively with his team members?

RQ2 What is the relation between the involvement of a
distributed software engineer with a project and the
information he needs to know about that project?

RQ2a What is the most important information a
distributed software engineer needs about a
project he is currently working on?

RQ2b What is the most important information a
distributed software engineer needs about a
project he is part of but not currently working
on?

RQ2c What is the most important information a dis-
tributed software engineer needs about another
project in the organization?

RQ3 Is there a difference between the information needs of
a software engineer when he is on holiday, enjoying
free time and commuting?

RQ3a What is the most important information a
distributed software engineer needs to know
when he is on holiday?

RQ3b What is the most important information a
distributed software engineer needs to know
when he is enjoying free time?

RQ3c What is the most important information a dis-
tributed software engineer needs to know when
he is traveling to or from his work location or
customers?

RQ4 Is there a relation between the importance of updates
about a specific type of information and the frequency
it changes?

Answering these research questions will help in reach-
ing the research goal by eliciting: the information needs of
distributed software engineers (RQ1), the mutual importance
of these both inside (RQ2) and outside of working hours
(RQ3), and the relation between the prioritization and the
frequency an information item changes (RQ4). We investigate
this empirically at a distributed Software Engineering company
by gathering a list of the most important information items in
a focus group and subsequently performing a questionnaire to
prioritize this list.

This paper is structured as follows. First in section II
we discuss background and related work of this research.
Following this, in section III we discuss the research site and
methods of data collection and analysis we used in the study.
Subsequently we present the results and findings in section IV
and a discuss how we intend to apply the findings in a tool we
are developing called Iris, in section V. Finally, we discuss the
threats to the validity of this study in section VI and present
conclusions and discuss future research in section VII.

II. BACKGROUND AND RELATED WORK

For Software Engineering teams it is vital to stay up to
date on each others’ status and the overall project status. This
knowledge provides a context for individual team members
to carry out their collaborative activities in coordination with
the rest of the team. It includes things such as information
about the other members in the project team, their activities
and the overall project status. Overall, this knowledge is often
referred to as awareness, defined by Dourish and Bly as: ”An
understanding of the activities of others which provides a
context for your own activity” [9].

Much of such information is propagated naturally in the
software team when working co-located, although specific
mechanisms such as stand-up meetings in Scrum [10] are used
as well. However, when the software team works distributed
this complicates making the information available in the team
significantly and much attention needs to be placed in keeping
each other up to date on changes that have occurred or are
occurring [11]. This has been recognized by tool developers
in the GSE domain, who attempt to resolve this by making use
of shared artifacts [12]. Firstly, there exist formal development
tools which are also commonly used by co-located software
teams such as issue management systems (e.g. Fogbugz1 and
Bugzilla2) and code repositories (e.g. Subversion3 and Git4).
Secondly, there are specialized tools for distributed software
engineers. Examples are FastDash [13] and Expertise Browser
[14]. FastDash provides a spatial representation of a shared
code base to the team members and displays such things as
which team members have source files checked out, which files
are being viewed, and what methods and classes are currently
being changed. Expertise Browser is a tool to find domain
experts for a set of software artifacts and to inspect their
expertise profile. Another good example of a technique used
by tooling to support the sharing of awareness information
using shared artifacts is social tagging. Social tagging is the
collaborative activity of marking shared content with tags as

1http://www.fogcreek.com/fogbugz/
2http://www.bugzilla.org/
3http://www.subversion.tigris.org
4http://www.git-scm.com

a way to organize content for future navigation, filtering, or
search [15]. It can be found in Jazz5 and TagSEA [16].

This is just a sample of many of such tools with quite
diverse isolated purposes. Instead of using a high variety
of different single purpose tools, Booch and Brown [17]
propose the use of a Collaborative Development Environment:
”a virtual space wherein all the stakeholders of a project
- even if distributed by time or distance - may negotiate,
brainstorm, discuss, share knowledge, and generally labor
together to carry out some task, most often to create an
executable deliverable and its supporting artifacts”. When
moving to such an integrated solution, however, there exists a
threat in overloading the software engineers with information
(although one could argue this is already the case with the set
of specialized tools).

The threat of an overload of information has long been
recognized in computer mediated information systems [7]. In
the general context it is defined as ”information presented at
a rate too fast for a person to process” [18]. The existence
of information overload has been shown in many disciplines.
Eppler and Mengis [8] for example provide a review of
literature about information overload in organization science,
accounting, marketing and Management Information Systems.
Researchers in the field of tool support for sharing awareness
have also recognized the threat of information overload (e.g.
[19], [20]). One method of dealing with the overload of
information is the use of the delta mechanism as introduced in
the 1970s in the context of version control systems to save on
bandwidth usage [21], [22]. In the same fashion the mechanism
can also be used to save ’cognitive bandwidth’ of software
engineers by only communicating the changes to them. These
changes will frequently provide the software engineer with suf-
ficient information as Biehl et al. [13] states: ”Key information
items are the items that change on a daily, hourly, or minute-
by-minute basis” and ”while most information items change on
a weekly or monthly basis, the most often used are those that
change on a daily, hourly or minute-by-minute basis”. In fact,
some tool developers have recognized this. For example, Jazz
[23] uses RSS feeds to allow software developers to subscribe
to a range of workspace-related events of potential interest,
e.g. that a change has been made to a project artifact or that
a project build has failed.

Using the delta mechanism however does not resolve
the need to decide what information is important. With so
many diverse topics covered by these specialistics tools it is
important to decide what information is important and when.
Holmes and Walker agree [24]: ”Awareness is often impeded
at two ends of the spectrum: a lack of information, when the
changes only become apparent when a build breaks or bugs
appear; or an excess of information, where the changes are
announced but the majority of the changes are not relevant
to the developer in her particular project and context. The
middle-ground is unpopulated: we lack automated support
for developer-specific awareness (DSA)”. Additionally in their
paper on information overload from 1985 Hiltz and Turoff
[7] already recognized that computer mediated communication
systems need structuring to avoid an overload of information
and that this structuring should be imposed by individuals and

5http://www-01.ibm.com/software/rational/jazz/

user groups according to their needs and abilities, rather than
through general software features.

The study in this paper aims to find out what information
needs distributed software engineers have, what their mutual
prioritization is and how this prioritization changes. Related to
this research Aranda et al. [25] have researched the specific
information needs distributed software engineers have about
their co-workers. The research presented in this paper mainly
differs from this research in two ways: (i) in scope as we
aim to present a prioritization of all information important to
distributed software engineers and (ii) the fact that our research
includes the status of software engineers and their involvement
with the context the information is about.

III. RESEARCH SITE AND METHOD

A. Research Site

This study is carried out at IHomer, a Dutch Software Engi-
neering company which exists since August of 2008 in which
it is common practice to work from home. All employees are
Dutch and live in the Netherlands therefore challenges caused
by different timezones and by different cultural backgrounds
are rare. The company uses a flat organizational structure in
which all employees are responsible for all business decisions
such as the strategy, vision and core values. Because of this
approach, all employees have a relatively high entrepreneurial
spirit. The flat organizational structure differs with the more
common hierarchical structure in which employees are mainly
responsible for the specific role they fulfill. In the company
however cross functional teams are the standard and the
different roles are shared between team members.

At the moment the company employs 21 people who work
on a variety of products, projects and contracts. These people
maintain close personal relationships with each other. While
it is common practice to work from home, the employees try
to get together once a week on Tuesdays to meet face-to-face
at an office to stay connected. The company has grown over
the past years and initially on Tuesdays everyone discussed
what they were doing. This worked well until the company
size reached 16, and then sub teams were formed to keep
this face-to-face communication more tractable. Teams cluster
according to various factors: projects and related technologies
being two of them. The largest team consists of 7 people
but the overall team is still very close with personnel moving
between teams and teams exchanging projects as needed.

B. Research Method

To reach the research goal and answer the research ques-
tions we used two methods to acquire the empirical data in
this study: a focus group and a questionnaire.

1) Focus Group: We performed a focus group [26] to
discover the information needs in a specific distributed Soft-
ware Engineering company. The main advantage of using this
method is that it enables the participants to build on the
responses and ideas of others, which increases the richness of
the information gained and the chance of reaching a complete
set of information needs [27].

The focus group we performed lasted approximately 1.5
hours and we selected 4 out of the 21 software engineers

based on availability. We The first two authors are employees
of the company but were explicitly excluded in the selection
process. Additionally, the first author moderated the focus
group. In carrying out the focus group we followed a structured
approach6. We asked the participants about the most important
information items in their work on three consecutive levels
of abstraction: information about a project, information about
the organization and information about people. We used this
structuring to assist participants in arriving at an as complete
set of important information items as possible. Finally, the
focus group was conducted in a separate closed office to
protect the focus group from outside influences.

2) Questionnaire: We choose to use a questionnaire [28]
because this method makes it feasible to include the opinions
of a relatively large group of people by using a standardized set
of questions. In this case we were able to include the opinions
of everyone in the company. In the questionnaire7 we asked
the respondents to rate how important they consider receiving
updates on each of the information items found in the focus
group, based on their current activity or status. Additionally we
asked for their perception of how often each of the information
items generally changes. Finally, we also asked whether they
thought there were information items missing from the lists
because not everyone could participate in the focus group. To
determine the relative importance we asked the respondents
to rate it on a 5-point Likert scale [29] ranging from ’very
unimportant’ to ’very important’. We included a ’no-opinion’
option to prevent people with no opinion on a specific question
to answer it anyway and ’pollute’ the data in this fashion
[30]. We sent the questionnaire to all 19 employees of the
company who are not authoring this paper and all 19 returned
the questionnaire. The results of the questionnaire are available
online in anonymized form8.

Because of the limited size of our sample we cannot draw
statistically significant conclusions. We have chosen to use
an approach analogous to the approach taken by Aranda et
al. [25]. In this study they conducted a questionnaire with a
sample size similar to ours (23 participants) about how useful it
is to know certain characteristics of your distributed colleagues
and define a ”Usefulness indicator” (UI) to rank the different
data items in their questionnaire. Analogous to this we define
the ”Importance Indicator” (II) as follows:

IIi = (V Ii + Ii)/(V Ii + Ii+Ni +NV Ii +NIi) where:

1) i indicates the data item identification
2) V Ii indicates the number of people that considered

data i ”Very Important”
3) Ii indicates the number of people that considered data

i ”Important”
4) Ni indicates the number of people that considered

data i ”Neutral”
5) NV Ii indicates the number of people that considered

data i ”Not Very Important”
6) NIi indicates the number of people that considered

data i ”Not Important at all”

6See http://www.aspic.nl/ICGSE2013/FocusGroupGuide.pdf for a transla-
tion

7See http://www.aspic.nl/ICGSE2013/Questionnaire.pdf for a translation
8See http://aspic.nl/ICGSE2013/QuestionnaireResults.csv for the question-

naire results in a comma separated file which can for instance be opened with
Microsoft Excel

IV. FINDINGS

In this section present the results and findings of the
study to answer the research questions defined in section I.
We structure this section based on the research questions,
answering each of the four main research questions in a
separate subsection.

A. The most important information items

Research question 1 is: ”What is the most important
information a distributed software engineer needs to know to
carry out his work and collaborate effectively with his team
members?”

We answer this research question directly by presenting the
lists of most important information items found in the focus
group in tables I, II and III respectively:

TABLE I. PROJECT SPECIFIC INFORMATION ITEMS

Technological agreements

e.g. on programming language, frameworks or standards to use

Requirements

Risks (project specific)

Process agreements

e.g. roles, stakeholders, the process type

Issues (tasks)

System under construction

Source (repository)

Build status

e.g. build succeeded/failed

Deployment Status

e.g. currently deployed version, is it running?

Planning

Deadlines

Meetings

Status

Hours worked on the project

Milestones

Phase of project

e.g. starting up, active, commissioning, done

Project related communication with the customer

e.g. mail, phone calls, transcripts

Project related communication with the team

e.g. mail, phone calls, transcripts

TABLE II. ORGANIZATION SPECIFIC INFORMATION ITEMS

Risks (organization specific)

Customer relations

Billing status

e.g. sent out, paid, overdue

Organizational development

Action points

e.g. things that need to be prepared or researched

Planning

Organizational meetings

e.g. date, content

Business opportunities

e.g. possible new customers or projects

Applicants

e.g. possible new colleagues

Financials

e.g. liquidity, investments, Year-To-Date figures, forecast

Additionally, in the questionnaire we asked the respondents
to indicate whether they thought there were information items
missing from the list. The most answers given here indicated
the information items are quite broad and therefore more
specific items are missing (e.g. splitting financials and adding
communication with subcontractors). This is true but inten-
tional because the scope of this study is wide and the size of the

TABLE III. PERSONAL INFORMATION ITEMS

Contact information

e.g. mail, phone number, preferred means of contact based on specific situations

Approachability

e.g. what means of contact are available? Can he/she be disrupted?

Current activity

Planning

Agenda

e.g. planned activities

Holidays

Idleness

e.g. when is there no billable work available for him/her?

Seniority

e.g. junior, senior, years of experience

Happiness

e.g. mood, is he/she content in general?

Personal situation

e.g. what is going on in his/her life?

Personal information

e.g. hobbies, name of spouse and children, age

Team

e.g. in what team does he/she work?

Knowledge/Skills/Expertise

questionnaire needed to stay manageable. It is a good idea to
repeat the questionnaire in a more confined context with more
detailed information items. Finally, one of the respondents
indicated he found it important to include the severity of the
change in an information item in the decision whether it is
important to him. He stated: ”If there are problems then I want
to know about it even when on holiday or when I’m enjoying
my free time, but for other things there need to be boundaries
between my work and private life.”.

B. Project involvement and the importance of information

Research question 2 is: ”What is the relation between the
involvement of a distributed software engineer with a project
and the information he needs to know about that project?”

We answer this by presenting figure 1. In this figure we
show the Importance Indicator of each of the information items
for each of three categories of involvement:

• Category 1 Means the information is directly related
to a project the engineer is working on right now

• Category 2 Means the information is directly related
to a project the engineer is part of. However the en-
gineer is not working on that project at this moment

• Category 3 Means the information is related to a
project in the company, but the engineer is not a part
of that project

In this figure we see a couple of things. Firstly we see that
the more information lies outside of the context of distributed
software engineers, the less important it is to stay up-to-date
on it. We can see this from the gradual decrease in importance
across the three categories. Secondly we see the reduction in
importance is larger between the second and third category
than between the first and second ones. From this we can
conclude information about projects people are part of but not
working on at the moment, is still quite important. Finally, we
see that the reduction in importance across the three categories
is lowest for information items related to the organization.
This makes sense because, out of the three categories, these

Information item Category 1 Category 2 Category 3

Technological agreements 0.89 0.72 0.21

Requirements 0.94 0.89 0.21

Risks (project specific) 0.94 0.78 0.21

Process agreements 0.88 0.61 0.11

Issues 0.63 0.58 0.00

Source 0.37 0.26 0.05

Build 0.63 0.47 0.00

Deployment 0.74 0.42 0.05

Deadlines 0.95 0.95 0.21

Meetings 0.84 0.84 0.00

Worked hours 0.42 0.42 0.11

Milestones 0.84 0.84 0.11

Phase of project 0.58 0.58 0.11

Customer communication 0.95 0.95 0.11

Team member communication 0.95 0.95 0.00

Risks (organization specific) 0.94 0.94 0.72

Billing status 0.83 0.78 0.56

Action points 0.88 0.65 0.35

Organizational meetings 0.47 0.41 0.35

Business opportunities 0.89 0.83 0.47

Applicants 0.61 0.50 0.29

Financials 0.83 0.78 0.67

Contact information 0.95 0.79 0.50

Approachability 0.84 0.68 0.33

Current activity 0.63 0.42 0.17

Agenda 0.68 0.53 0.17

Holidays 0.79 0.63 0.22

Idleness 0.72 0.61 0.35

Seniority 0.39 0.33 0.18

Happiness 0.68 0.58 0.33

Personal situation 0.53 0.42 0.33

Personal information 0.47 0.47 0.22

Team 0.63 0.53 0.22

Knowledge/Skills/Expertise 0.79 0.68 0.39

P
ro

je
ct

O
rg

a
n

iz
a

ti
o

n
P

e
rs

o
n

a
l

Importance Indicator (II)

Fig. 1. Importance of information based on project involvement

information items are the least tied to the project setting9. Even
so, we still see a reduction in importance as these information
items get less related to the projects respondents are involved
in.

In section I we defined three subquestions:

RQ2a What is the most important information a distributed
software engineer needs about a project he is currently
working on?

RQ2b What is the most important information a distributed
software engineer needs about a project he is part of
but not currently working on?

RQ2c What is the most important information a distributed
software engineer needs about another project in the
organization?

With respect to RQ2a we see updates on quite a lot of
information items are considered important or very important.
If we take the (arbitrary) Importance Indicator value of 0.9 as
a cut-off point we get a top-7 of most important information
items: Updates on (1) Requirements, (2) Risks, (3) Deadlines,
(4) Customer Communication and (5) Team Communication
from project, Organizational Risks from Organization and
Contact Information from Personal. If we move our attention
to the second category for RQ2b we see a slight reduction in
the importance of the information items. Now only four items
make the cut-off of 0.9, namely (1) Deadlines, (2) Customer
Communication and (3) Team Communication from project
and Risks from organization. Updates on information about
colleagues that are not working on the same project at the
moment seem to be less important. Finally, with respect to
RQ2c we see no items are left that have a score higher than 0.9.

9to see that organizational information items are tied to the project setting,
imagine someone applying for a job opening connected to a specific project.

The three most important information items to receive updates
on when the information is not related to a project a distributed
software engineer is a part of, are all organizational in nature:
Risks (0.72), Financials (0.67) and Billing status (0.32). It is
also quite interesting to see all updates on information items
about projects in which a distributed software engineer is not
a member are considered to be unimportant.

C. The importance of information outside of working hours

Research question 3 is: ”Is there a difference between
the information needs of a software engineer when he is on
holiday, enjoying free time and traveling to and from his work
location or customers?”

We answer this by presenting figure 2. In this figure we
show the Importance Indicator of each of the information items
dependent on three statuses of a software engineer in which
he is not performing his core activity: (i) being on holiday, (ii)
enjoying free time and (iii) performing work-related traveling.

Again, in this figure we can see a couple of things. Firstly,
we see the importance of all items is generally far lower than
when the distributed software engineers are performing their
core activity (compare with the values in figure 1). Secondly
we see that in general, updates on the information items are
considered more important during work-related travel than
during free time or a holiday. This could indicate that people
feel closest to their work during work-related travel followed
by free time and finally holiday. There is a notable exception
to this trend as the importance indicators for updates about
organizational information items are relatively stable across
the three categories. This can be because the people in the
company we performed the study at are entrepreneurial and
therefore find organizational updates equally significant no
matter what non-work related activity they are doing.

Information item On holiday Free time Work-related traveling

Technological agreements 0.17 0.24 0.25

Requirements 0.17 0.18 0.25

Risks (project specific) 0.28 0.28 0.35

Process agreements 0.17 0.18 0.25

Issues 0.11 0.12 0.13

Source 0.11 0.06 0.19

Build 0.17 0.24 0.19

Deployment 0.21 0.18 0.35

Deadlines 0.26 0.22 0.26

Meetings 0.11 0.11 0.17

Worked hours 0.11 0.06 0.06

Milestones 0.16 0.11 0.11

Phase of project 0.16 0.11 0.11

Customer communication 0.21 0.22 0.17

Team member communication 0.05 0.11 0.06

Risks (organization specific) 0.42 0.42 0.32

Billing status 0.26 0.32 0.32

Action points 0.22 0.28 0.22

Organizational meetings 0.11 0.17 0.11

Business opportunities 0.28 0.39 0.28

Applicants 0.28 0.33 0.17

Financials 0.42 0.47 0.32

Contact information 0.06 0.21 0.26

Approachability 0.21 0.21 0.26

Current activity 0.11 0.11 0.21

Agenda 0.06 0.21 0.21

Holidays 0.11 0.21 0.21

Idleness 0.11 0.21 0.26

Seniority 0.00 0.11 0.21

Happiness 0.16 0.26 0.26

Personal situation 0.11 0.21 0.26

Personal information 0.05 0.05 0.16

Team 0.05 0.05 0.16

Knowledge/Skills/Expertise 0.05 0.05 0.21

1.00

P
ro

je
ct

O
rg

a
n

iz
a

ti
o

n
P

e
rs

o
n

a
l

Importance Indicator (II)

Fig. 2. Importance of information based on whether the software engineer is on holiday, enjoying free time or doing work-related traveling

Finally we want to emphasize that even though the im-
portance indicator values are significantly lower than for the
categories looked at for the previous research question, the
values are still considerable. Take note that the value indicates
the ratio of respondents that indicated they find updates on
that information item in that situation either important or very
important. We find it noteworthy that for instance 42% of the
respondents considered it important or very important to stay
up-to-date on organization-wide risks and financials during
their holiday.

In section I we defined three subquestions:

RQ3a What is the most important information a distributed
software engineer needs to know when he is on
holiday?

RQ3b What is the most important information a distributed
software engineer needs to know when he is enjoying
free time?

RQ3c What is the most important information a distributed
software engineer needs to know when he is traveling
to or from his work location or customers?

With respect to all three of the subquestions we see
the values are far lower than for RQ2. The most important
information items are:

• For holiday
Organization specific risks, Financials, Project spe-
cific risks, Business opportunities and Applicants

• For free time
Financials, Organization specific risks, Business op-
portunities, Applicants and Billing status

• For work-related travel
Project specific risks, Deployment, Organization spe-
cific risks, Billing status and Financials

The main things we notice in these three lists is that while
for holiday and free time the emphasis lies on updates on
organizational information items, this is slightly less the case
for work-related traveling where the first two in the list are
project related. We think this is because, out of the three
categories, work-related travel is generally closest to starting
to do your core activity and that is when the practicalities of
project related information gain importance in relation to the
more general organizational information items.

D. Relation between importance of updates and frequency of
change

Research question 4 is: ”Is there a relation between the
importance of updates about a specific type of information
and the frequency it changes?”

To answer this research question we present figure 3. In
this figure we show for each of the information items the
median frequency the respondents indicated the item changes.
The options the respondents could choose from are: ’minute-
to-minute’, ’hourly’, ’daily’, ’monthly’ and ’less frequently’.
In the figure, we see most items change on a weekly basis
on aggregate while some items also change daily or hourly.
We also see the organization related information items change
relatively less frequently, while the project-related information
items overall change more frequently.

Subsequently, we present the aggregate importance in-
dicators across the core-activity-related categories discussed
in subsection B and the non-core-activity-related categories
discussed in subsection C (holiday, free time and work-related
travel). Similarly to the importance indicators presented in
the previous sections, the aggregate importance indicator is
calculated for each information item by computing the relation
of the number of ’Very Important’ and ’Important’ votes to the

Information item Aggregate core activity Aggregate holiday, free-time and travel

Technological agreements 0.60 0.22 Weekly

Requirements 0.67 0.20 Weekly

Risks (project specific) 0.64 0.30 Weekly

Process agreements 0.52 0.20 Weekly

Issues 0.40 0.12 Daily

Source 0.23 0.12 Hourly

Build 0.37 0.20 Daily

Deployment 0.40 0.25 Daily

Deadlines 0.70 0.25 Weekly

Meetings 0.56 0.13 Daily

Worked hours 0.32 0.07 Daily

Milestones 0.60 0.13 Weekly

Phase of project 0.42 0.13 Weekly

Customer communication 0.67 0.20 Daily

Team member communication 0.63 0.07 Daily

Risks (organization specific) 0.87 0.39 Weekly

Billing status 0.72 0.30 Weekly

Action points 0.63 0.24 Weekly

Organizational meetings 0.41 0.13 Weekly

Business opportunities 0.74 0.31 Weekly

Applicants 0.47 0.26 Weekly

Financials 0.76 0.40 Weekly

Contact information 0.75 0.18 Weekly

Approachability 0.63 0.23 Daily

Current activity 0.41 0.14 Hourly

Agenda 0.46 0.16 Daily

Holidays 0.55 0.18 Weekly

Idleness 0.57 0.19 Weekly

Seniority 0.30 0.11 Weekly

Happiness 0.54 0.23 Daily

Personal situation 0.43 0.19 Weekly

Personal information 0.39 0.09 Weekly

Team 0.46 0.09 Weekly

Knowledge/Skills/Expertise 0.63 0.11 Weekly

1.00

Importance Indicator (II)

P
ro

je
ct

O
rg

a
n

iz
a

ti
o

n
P

e
rs

o
n

a
l

Median change frequency

Fig. 3. Importance of information based on whether the software engineer is on holiday, enjoying free time or doing work-related traveling

total number of responses excluding ’No opinion’. We present
this metric to try and draw conclusions regarding the relation
between the importance of information items and the frequency
in which they change as predicted by Biehl et al. [13]. They
state: ”Key information items are the items that change on
a daily, hourly, or minute-by-minute basis” and ”while most
information items change on a weekly or monthly basis, the
most often used are those that change on a daily, hourly or
minute-by-minute basis”. However, we cannot find evidence
in our data that such a relation exists. Additional research is
required to find whether it does indeed exist.

V. APPLYING THE FINDINGS IN IRIS

As we have discussed previously, one of the reasons for
performing this study is to help ourselves in the development of
a tool called Iris. We present this application to illustrate how
the findings in this paper can be applied. Iris is a Collaborative
Development Environment we are currently developing, with
support for collaboration at its core. We have reported on an
earlier version of Iris before in [31] and a screenshot of the
current version of Iris can be seen in figure 4. In this figure
it can be seen the user interface is split in three sections. The
left section depicts the different contexts a user is part of and
allows the user to navigate between these. A context can be
defined on a variety of abstraction levels as long as it confines
some sort of activity. In the current version of Iris we have
configured contexts to be the different projects that exist in
the company. When the user navigates to a certain context
he moves into it and automatically moves out of his previous

context. Subsequently, the interface is altered to reflect the
information that is applicable to the context he moved to. For
example the user can see the users that are members of the
context he switched to and who of them is active in the same
context at the moment.

The middle section of the user interface is intended to show
information specific to the selected context. As can be seen in
the screenshot we are still working on this. Examples of things
that can be shown here are the issues in the Issue Management
system and information about the latest build associated with
the project. Finally, in the section on the right, updates on
information items are shown. Again these information items
are confined by the context in which the user is currently
active. So, it is possible to see updates on: (i) people that
enter or leave the context, (ii) builds that succeed or fail,
(iii) commits that are made on the code repository and (iv)
issues that are assigned and resolved in the Issue Management
System.

We intend to apply the findings of the study reported on
in this paper in a number of ways. Firstly, we intend to use
the list of prioritized information items to decide for which
information items we should build support first. We are devel-
oping the system incrementally and want to add functionality
that brings the most value to the end users. Subsequently, as
we add more and more types of information to the system,
users will have to configure what types of information they
consider interesting in what particular situation. The reason
users will have to configure this themselves is because what
information is important will differ individually between users.

Fig. 4. The user interface of Iris

Configuring such a list, however, can require a lot of effort
from a user. Therefore it is highly valuable to provide users
with a default configuration which is right for the majority of
the settings. Subsequently they can tweak the settings to match
their individual preferences, which requires far less effort.

Furthermore, we are still discovering what statuses and
contexts are valuable to recognize in the system. The results
of this study provide us with valuable insights on what people
find important, both when performing their core activity and
when traveling or going on holiday. For instance, we found
evidence that updates on certain organizational information
items are equally important no matter how related it is to the
project a distributed software engineer is currently working on.
In contrast to this, we found the importance of information
about projects and people is far higher if it is related to a
project a distributed software engineer is currently working on
or at least part of. Both these findings are valuable insights to
decide what information should be blocked by a ’virtual office
wall’ [32] and what information should be allowed to pass.

Subsequently, also data on the relative value of different
types of information outside of office hours can be applied
to Iris. For instance, the data showed updates on project and
personal information items to be more valuable during work-
related travel than during free time or holidays. Further we
found the value of updates about organizational information
types to be relatively stable across these three categories.
Finally, we learned there is not much difference between free-
time and holiday when it comes to the importance of updates
on the information types we researched.

VI. THREATS TO VALIDITY

Threats to external validity can exist at each of the levels
of generalization in a study. In our study, a threat to external
validity exists in the generalization of the single distributed

Software Engineering company to all distributed Software En-
gineering companies. Furthermore the company we performed
the study at is only geographically distributed and does not
encounter working in different time zones or people with dif-
ferent cultural backgrounds because every employee is Dutch
and works from the Netherlands. Finally, results are also more
difficult to generalize beyond this single company because the
company is setup in a uncommon fashion. The company is a
flat organization (non-hierarchical), all employees own part of
company and all decisions relevant to the entire company are
taken jointly by all employees. This could have, for instance,
resulted in the relatively high amount of entrepreneurial infor-
mation items. To be able to better generalize beyond the setting
we performed the study in, the study should be repeated in
other companies as well. With respect to the generalization of
the sampled data to the population of the company, our work
is much less threatened. For the focus group we sampled 4 out
of the 19 applicable people (the first two authors are excluded
from taking part) in the company and for the questionnaire our
response rate was 100% (19 out of 19).

Furthermore, there exist threats to construct validity in our
study. Firstly, we attempted to mitigate threats to reliability
by describing our research site and methods and making the
focus group guide and questionnaire design available. Next to
this we also make all the returned questionnaires available in
anonymized form. We do this to make both our data gathering
methods and the analysis of our data, repeatable. A final
threat to construct validity is that two of the main authors of
this paper are also employees of the company. An advantage
of this is that the researchers posses insight knowledge and
can leverage this to analyze the data more accurately. A
disadvantage is that the researchers might not be completely
impartial due to their involvement in the setting. Overall, it is
our opinion the advantages outweigh the disadvantages.

Finally, there is also a threat to internal validity, because

the people that participated in the focus group also participated
in the subsequent questionnaire. This could have biased the
results due to a learning effect caused by repeated testing.

VII. CONCLUSIONS AND FUTURE WORK

The main contributions of this paper are the answers to
the research questions. First, we showed the most important
information items for distributed software engineers to receive
updates on in tables I, II and III respectively. Subsequently,
we researched the mutual importance of these. Firstly, we did
this depending on the involvement of the distributed software
engineers with the project the information is related to. We
recognized three involvement levels: (i) a project an engineer
is working on right now, (ii) a project an engineer is part of
but not working on right now and (iii) a project an engineer
is not part of. The most interesting findings based on this are:

• The more related something is to the context of a
distributed software engineer, the higher the value to
receive updates on it

• Receiving updates on a project a distributed software
engineer is part of, but not currently working on, is
still valuable

• Receiving updates on organizational information items
is valuable no matter what relation the information
has to the project a distributed software engineer is
currently working on

• A large and diverse set of information items is very
important if they are related to the project a distributed
software engineer is currently working on

• Project specific updates of projects in which someone
is not a member are considered unimportant

Similarly, we also investigated the mutual importance of
the information items when a distributed software engineer
is not performing his core activity. We did this for three
specific cases: (i) when the engineer is on holiday, (ii) when
the engineer is enjoying free time and (iii) when the engineer
is performing work-related traveling. The most interesting
findings based on this are:

• The importance of updates on the information items
is far lower when a distributed software engineer is
not performing his core activity

• Updates on project-related information are considered
more important during work-related travel than during
free time or holiday

• Updates on organizational information are considered
equally important during free time, holiday and work-
related travel

Following this, we also investigated the relation between
the importance of updates on a specific type of information and
the frequency it changes, but could not find such a relation.
We did present how frequent the information items researched
in this study change, as perceived by the participants of the
study. We found that most of the investigated information types
change weekly, while some change daily and hourly as well.

Concerning future work, it is interesting to repeat the study
in more settings and compare the results. We are particularly
interested whether results will differ in: (i) larger organizations,
(ii) more hierarchical organizations and (iii) teams spread
across different time zones and cultures. Finally, we illustrated
how the findings in this paper can be applied, by discussing
how we intend to apply them ourselves in the development
of a Collaborative Development Environment called Iris. Fol-
lowing this implementation we intend to evaluate its value to
distributed software engineers in a practical case setting.

REFERENCES

[1] E. Carmel, Global software teams: collaborating across borders and

time zones. Upper Saddle River: Prentice Hall PTR, 1999.

[2] J. Herbsleb and D. Moitra, “Guest Editors’ Introduction: Global Soft-
ware Development,” IEEE Software, vol. 18, no. 2, pp. 16–20, 2001.

[3] J. Herbsleb, “Global Software Engineering: The Future of Socio-
technical Coordination,” in Proceedings of the IEEE 2007 Workshop on

the Future of Software Engineering. IEEE Computer Society Press,
2007, pp. 188–198.

[4] The Dieringer Research Group Inc., “Telework Trendlines 2009: A
Survey Brief by WorldatWork,” 2009.

[5] K. Schmidt, “The Problem with ‘Awareness’: Introductory Remarks
on ‘Awareness in CSCW’,” Computer Supported Cooperative Work,
vol. 11, no. 3-4, pp. 285 – 298, 2002.

[6] A. Syri, “Tailoring cooperation support through mediators,” in Pro-

ceedings of the 1997 European Conference on Computer Supported

Cooperative Work. Kluwer Academic Publishers, 1997, pp. 157–172.

[7] S. R. Hiltz and M. Turoff, “Structuring computer-mediated communi-
cation systems to avoid information overload,” Communications of the

ACM, vol. 28, no. 7, pp. 680–689, 1985.

[8] M. J. Eppler and J. Mengis, “The concept of information overload: A
review of literature from organization science, accounting, marketing,
mis, and related disciplines,” The information society, vol. 20, no. 5,
pp. 325–344, 2004.

[9] P. Dourish and S. Bly, “Portholes: supporting awareness in a distributed
work group,” in Proceedings of the ACM CHI 1992 Conference on

Human Factors in Computing Systems. ACM Press, 1992, pp. 541–
547.

[10] K. Schwaber and J. Sutherland, “Scrum guide,” Scrum Alliance, 2011.

[11] C. Dentel, M. Nordio, and B. Meyer, “News and notification: Propagat-
ing relevant changes to developers,” Software Engineering Laboratory:

Open Source Eiffel Studio, ETH Zürich, 2012.

[12] J. C. Tang, “Findings from observational studies of collaborative work,”
International Journal of Man-machine studies, vol. 34, no. 2, pp. 143–
160, 1991.

[13] J. T. Biehl, M. Czerwinski, G. Smith, and G. Robertson, “Fastdash:
a visual dashboard for fostering awareness in software teams,” in
Proceedings of the SIGCHI conference on Human factors in computing

systems. ACM, 2007, pp. 1313–1322.

[14] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative ap-
proach to identifying expertise,” in Proceedings of the 24th International

Conference on Software Engineering. ACM, 2002, pp. 503–512.

[15] J. Yew, F. Gibson, and S. Teasley, “Learning by tagging: group
knowledge formation in a self-organizing learning community,” in
Proceedings of the 7th international conference on Learning sciences.
International Society of the Learning Sciences, 2006, pp. 1010–1011.

[16] M. Storey, L. Cheng, I. Bull, and P. Rigby, “Shared waypoints and
social tagging to support collaboration in software development,” in
Proceedings of the 2006 20th anniversary conference on Computer

supported cooperative work. ACM, 2006, pp. 195–198.

[17] G. Booch and A. W. Brown, “Collaborative development environments,”
Advances in Computers, vol. 59, pp. 1–27, 2003.

[18] T. B. Sheridan and W. Ferrell, “Man machine system: Information
control and decision models of human performance,” 1974.

[19] L. Hattori and M. Lanza, “Syde: A tool for collaborative software devel-
opment,” in Software Engineering, 2010 ACM/IEEE 32nd International

Conference on, vol. 2. IEEE, 2010, pp. 235–238.

[20] K. Dullemond and B. van Gameren, “An industrial evaluation of
technological support for overhearing conversations in global software
engineering,” in Proceedings of the 2012 International Conference on

Global Software Engineering. IEEE Computer Society Press, 2012,
pp. 65–74.

[21] M. J. Rochkind, “The source code control system,” Software Engineer-

ing, IEEE Transactions on, no. 4, pp. 364–370, 1975.

[22] W. F. Tichy, “Design, implementation, and evaluation of a revision
control system,” in Proceedings of the 6th international conference on

Software engineering. IEEE Computer Society Press, 1982, pp. 58–67.

[23] R. Frost, “Jazz and the eclipse way of collaboration,” Software, IEEE,
vol. 24, no. 6, pp. 114–117, 2007.

[24] R. Holmes and R. J. Walker, “Promoting developer-specific awareness,”
in Proceedings of the 2008 international workshop on Cooperative and

human aspects of software engineering. ACM, 2008, pp. 61–64.

[25] G. N. Aranda, A. Vizcaino, R. R. Palacio, and A. L. Moran, “What
information would you like to know about your co-worker? a case
study,” in Global Software Engineering (ICGSE), 2010 5th IEEE

International Conference on. IEEE, 2010, pp. 135–144.

[26] J. Kontio, L. Lehtola, and J. Bragge, “Using the focus group method
in software engineering: Obtaining practitioner and user experiences,”
Empirical Software Engineering, International Symposium on, vol. 0,
pp. 271–280, 2004.

[27] J. Langford and D. McDonaugh, Focus Groups: Supporting Effective

Product Development. Taylor and Francis, 2003.

[28] A. Fink, How to manage, analyze, and interpret survey data, 2nd ed.
London: Sage, 2003.

[29] R. Likert, “A technique for the measurement of attitudes.” Archives of

psychology, vol. 22, no. 140, pp. 1–55, 1932.

[30] K. D. Bailey, Methods of Social Research. New York: Free Press,
1978.

[31] K. Dullemond, B. van Gameren, and R. van Solingen, “Collaboration
should become a first-class citizen in support environments for software
engineers,” in Proceedings of the 2012 International Conference on

Collaborative Computing: Networking, Applications and Worksharing.
IEEE, 2012, pp. 398–405.

[32] B. van Gameren, K. Dullemond, and R. van Solingen, “Auto-erecting
virtual office walls,” in Proceedings of the 2012 International Con-

ference on Collaborative Computing: Networking, Applications and

Worksharing. IEEE, 2012, pp. 391–397.

