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1 Introduction

This year about 2 million young American men will enter the labor market for the first

time. Over the next 40 years, each of these men will go through his unique adven-

ture in the labor market, involving a series of surprises—finding an attractive career,

being offered a dream job, getting promotions and salary raises, and so on—as well as

disappointments—experiencing unemployment, failing in one career and moving on to

another one, suffering health shocks, and so on. These events will vary not only in their

initial significance (upon impact), but also in how durable their effects turn out to be in

the long run.1

An enduring question for economists is whether these wide-ranging labor market

histories experienced by a diverse set of individuals display sufficiently simple regularities

that would allow researchers to characterize some general properties of earnings dynamics

over the life cycle. Despite a vast body of research since the 1970s, it is fair to say

that many aspects of this question still remain open. For example, What does the

probability distribution of earnings shocks look like? Is it more or less symmetric, or

does it display important signs of skewness? More generally, how well is it approximated

by a lognormal distribution, an assumption often made out of convenience? And, perhaps

more important, how do these properties differ across low- and high-income workers or

change over the life cycle? A host of questions also pertain to the dynamics of earnings.

For example, how sensible is it to think of a single persistence parameter to characterize

the durability of earnings shocks? Do positive shocks exhibit persistence that is different

from negative shocks? Or maybe small and large shocks display differences in persistence?

Clearly, we can add many more questions to this list, but we have to stop at some point.

If so, which of these many properties of earnings shocks are the most critical in terms of

their economic importance and therefore should be included in this short list, and which

are of second-order importance?

One major reason why many of these questions remain open has been the heretofore

unavailability of sufficiently rich panel data on individual earnings histories.2 Against

this backdrop, the goal of this paper is to characterize the most salient aspects of life-cycle

1In this paper, we focus on the earnings dynamics for men so as to abstract away from the com-
plexities of the female nonparticipation decision. We intend to undertake a similar study that focuses
on earnings dynamics for women.

2With few exceptions, most of the empirical work in this area has been conducted using the Panel
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Figure 1 – Histogram of Log Earnings Changes. Note: The first year t is 1995 and the data

are for all workers in the base sample defined in Section 2.

earnings risk, using a large and confidential panel data set from the U.S. Social Security

Administration. The substantial sample size—of more than 200 million individual-year

observations from 1978 to 2010—allows us to employ a fully nonparametric approach and

take “high-resolution pictures” of individual earnings histories. This analysis reaches

two broad conclusions. First, the distribution of individual earnings shocks displays

important deviations from lognormality. Second, the magnitude of these deviations (as

well as a host of other statistical properties of earnings shocks) varies greatly both over

the life cycle and with the earnings level of individuals. Under this broad umbrella of

“non-normality and life-cycle variation,” we establish four sets of empirical results.

First, earnings changes display very high kurtosis. What kurtosis measures is most

easily understood by looking at the histogram of log earnings changes, shown in Figure

1 (left panel: annual change; right panel: five-year change). Notice the sharpness in

the peak of the empirical density, how little mass there is on the “shoulders” (i.e., the

region around ±σ), and how long the tails are compared with a normal density chosen

to have the same standard deviation as in the data. Thus, there are far more people

with very small earnings changes in the data compared with what would be predicted

Study of Income Dynamics (including the previous work of the authors of this paper), which contains be-
tween 500 to 2000 households per year depending on the selection criteria, and suffers from shortcomings
that are typical of survey data, such as survey response error, attrition, and so on.
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by a normal density. For example, under the normal distribution, about 8 percent of

individuals would experience an annual earnings change (of either sign) smaller than 5%.

The true fraction of such individuals in the U.S. data is 35 percent. Furthermore, this

average kurtosis masks significant heterogeneity across individuals by age and earnings:

Prime-age males with recent earnings of $100,000 (in 2005 dollars) face earnings shocks

with a kurtosis as high as 35, whereas young workers with recent earnings of $10,000

face a kurtosis of only 5. This life-cycle variation in the nature of earnings shocks is one

of the key focuses of the present paper.

Second, earnings shocks are negatively skewed, and this skewness becomes more

severe as individuals get older or their earnings increase (or both). Furthermore, we

show that this increasing negativity is due entirely to upside earnings moves becoming

smaller before age 45 and to increasing “disaster” risk (the risk of a sharp fall in earnings)

after age 45. Although these implications are quite plausible, they are not captured by

a lognormal specification, which implies zero skewness and no excess kurtosis.

Third, average earnings growth over the life cycle (e.g., from ages 25 to 55) varies

strongly with the level of lifetime earnings. The median individual in the population (by

lifetime earnings) experiences an earnings growth of 38% from ages 25 to 55, whereas

for individuals in the 95th percentile, this figure is 230%; and for those in the 99th

percentile, this figure is almost 1500%. We show that the workhorse model in the

literature—a stochastic process featuring a persistent plus a transitory component with

normal innovations—fails to generate this heterogeneity for plausible parameter values.3

However, this heterogeneity can be matched more easily by either using a mixture of

autoregressive processes or allowing heterogeneity in earnings growth rates.

Fourth, we characterize the dynamics of earnings shocks by estimating non-parametric

impulse response functions conditional on the recent earnings of individuals and on the

size of the shock that hits them. We find two types of asymmetries. One, fixing the shock

size, positive shocks to high-earnings individuals are quite transitory, whereas negative

shocks are very persistent; the opposite is true for low-earnings individuals. Two, fixing

the earnings level of individuals, the strength of mean reversion differs by the size of the

shock: large shocks tend to be much more transitory than small shocks. These kinds of

3A positive relationship between lifetime earnings and life-cycle earnings growth is to be expected
(since, all else equal, those who experience fast earnings growth will have higher lifetime earnings).
What is surprising is the magnitudes involved, which turns out to be hard to match empirically.
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asymmetries are hard to detect via the usual approach, which relies on covariances of

earnings at different points in time.4 In this regard, our approach is in the spirit of the

recent macroeconomics literature that views impulse responses as key to understanding

time-series dynamics in aggregate data (e.g., Christiano et al. (2005), Borovicka et al.

(2014)).

While this nonparametric approach allows us to establish key features of earnings dy-

namics in a robust fashion, a tractable parametric process is indispensable for conducting

quantitative economic analyses. The standard approach in the earnings dynamics litera-

ture is to estimate the parameters of linear time-series models by matching the variance-

covariance matrix of log earnings residuals. There are two difficulties with this approach.

First, the strong deviations from lognormality documented in this paper calls into ques-

tion the wisdom of focusing exclusively on covariances at the expense of the rich variation

in higher-order moments, which will miss key features of earnings risk faced by workers.

Second, the covariance matrix approach makes it difficult to select among alternative

econometric processes, because it is difficult to judge the relative importance—from an

economic standpoint—of the covariances that a given model matches well and those that

it does not match well. This is an especially important shortcoming given that virtually

every econometric process used to calibrate economic models is statistically rejected by

the data.

With these considerations in mind, in Section 5, we follow a different route and target

the four sets of empirical moments described above, employing a method of simulated

moments (MSM) estimator. We believe this is a more transparent approach: economists

can more easily judge whether or not each of these moments is relevant for the economic

questions they have in hand. Therefore, they can decide whether the inability of a

particular stochastic process to match a given moment is a catastrophic failure or an

tolerable shortcoming. They can similarly judge the success of a given stochastic process

in matching some moments and not others. We estimate a set of stochastic processes

with increasing generality to provide a reliable “user’s guide” for applied economists. We

find that a stochastic process that features a heterogenous growth component and, more

importantly, a mixture of AR(1) processes where the mixture probabilities are age- and

earnings-dependent can match most of the documented features fairly well.

4Covariances lump all sorts of shocks—large, small, positive, negative—to produce a single statistic.
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Related Literature

There is a vast literature on earnings dynamics that goes back to the 1970s (Lillard and

Willis (1978); Lillard and Weiss (1979); Hause (1980); MaCurdy (1982)). Despite con-

sidering quite general error components models (some of them allowing for ARMA(p,q)

processes), the vast majority of these analyses have been conducted with the implicit

or explicit assumption of a Gaussian framework, thereby making no use of higher-order

moments beyond the variance-covariance matrix.

One of the few exceptions is Geweke and Keane (2000) who emphasized the non-

Gaussian nature of earnings shocks and fit a normal mixture model to earnings innova-

tions. In this paper, we go beyond the overall distribution and establish the substan-

tial variation in the degree of non-normality (in terms of variation both in skewness

and kurtosis) with age and earnings levels. Furthermore, the impulse response analysis

shows the need for a different persistence parameter for large and small shocks, which

is better captured as a mixing of AR(1) processes, which is a step beyond the normal

mixture model.5 Bonhomme and Robin (2010) propose a deconvolution-based estimator

for earnings processes with non-Gaussian factor distributions and show that it performs

well unless earnings shocks have excess kurtosis. In this context, they also document the

excess kurtosis of earnings change in the PSID. Probably because of measurement error

and non-random attrition in the PSID, the kurtosis they report is about two-thirds of

the level we find in the SSA data for the overall sample.

Methodologically, our work is most closely related to two important recent contribu-

tions. Altonji et al. (2013) estimate a joint process for earnings, wages, hours, and job

changes, targeting a rich set of moments via indirect inference. Browning et al. (2010)

also employ indirect inference to estimate an earnings process featuring “lots of het-

erogeneity” (as they call it). However, neither paper explicitly focuses on higher-order

moments or their life-cycle evolution. The latter paper does model heterogeneity across

individuals in innovation variances, as do we, and finds a lot of heterogeneity along that

dimension in the data.

Relatively little work has been done on the life-cycle evolution of earnings dynamics,

which is the main focus of this paper. A few papers, including Baker and Solon (2003),

5Geweke and Keane (2007) study how regression models can be smoothly mixed. The process we
estimate can be viewed as a special case of their framework with some qualifications.
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Meghir and Pistaferri (2004), and Karahan and Ozkan (2013), allow age-dependent inno-

vation variances, but do not explore variation in higher-order moments. Our conclusion

on the variance is consistent with this earlier work, indicating a decline in variance from

ages 25 to 50, with a subsequent rise. However, quantitatively, the decline is modest

relative to the variation in other moments.6

2 Empirical Analysis

2.1 The SSA Data

The data for this paper come from the Master Earnings File (MEF) of the US Social

Security Administration records. The MEF is the main source of earnings data for the

SSA and contains information for every individual in the United States who was ever

issued a Social Security number. Basic demographic variables, such as date of birth,

place of birth, sex, and race, are available in the MEF along with several other variables.

The earnings data in the MEF are derived from the employee’s W-2 forms, which U.S.

employers have been legally required to send to the SSA since 1978. The measure of

labor earnings is annual and includes all wages and salaries, bonuses, and exercised

stock options as reported on the W-2 form (Box 1). Furthermore, the data are uncapped

(no top coding) since 1978. We convert nominal earnings records into real values using

the personal consumption expenditure (PCE) deflator, taking 2005 as the base year. For

background information and detailed documentation of the MEF, see Panis et al. (2000)

and Olsen and Hudson (2009).

Constructing a nationally representative panel of males from the MEF is relatively

straightforward. The last four digits of the SSN are randomly assigned, which allows us

to pick a number for the last digit and select all individuals in 1978 whose SSN ends

with that number.7 This process yields a 10% random sample of all SSNs issued in the

United States in or before 1978. Using SSA death records, we drop individuals who are

deceased in or before 1978 and further restrict the sample to those between ages 25 and

6Meghir and Pistaferri (2004) allow for a GARCH component in earnings, but they do not discuss
the implications of the estimated process for higher-order moments.

7In reality, each individual is assigned a transformation of their SSN number for privacy reasons,
but the same method applies.
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60. In 1979, we continue with this process of selecting the same last digit of the SSN.

Individuals who survived from 1978 and who did not turn 61 continue to be present in

the sample, whereas 10% of new individuals who just turn 25 are automatically added

(because they will have the last digit we preselected), and those who died in or before

1979 are again dropped. Continuing with this process yields a 10% representative sample

of U.S. males in every year from 1978 to 2010. Finally, the MEF has a small number

of extremely high earnings observations. In each year, we cap (winsorize) observations

above the 99.999th percentile in order to avoid potential problems with these outliers.

Base Sample. Sample selection works in two steps. First, for each year we define a

base sample, which includes all observations that satisfy three criteria, to be described in

a moment. Second, to select the final sample for a given statistic that we analyze below,

we select all observations that belong in the base sample in a collection of years, the

details of which vary by the statistic and the year for which the statistic is constructed.

For a given year, the base sample is constructed as follows. First, we restrict attention

to individuals between the ages of 25 and 60 to focus on working-age population. Second,

we select workers whose annual wage/salary earnings exceeds a time-varying minimum

threshold, denoted by Ymin,t, defined as one-fourth of a full-year full-time (13 weeks at 40

hours per week) salary at half of the minimum wage, which amounts to annual earnings

of approximately $1,300 in 2005. This condition helps us avoid issues with taking the

logarithm of small numbers and makes our analysis more comparable to the empirical

earnings dynamics literature, where this condition is fairly standard (see, among others,

Abowd and Card (1989), Meghir and Pistaferri (2004), and Storesletten et al. (2004)).

Third, the base sample excludes individuals whose self-employment earnings exceed a

threshold level, defined as the maximum of Ymin,t and 10% of the individual’s wage/salary

earnings in that year. These steps complete the selection of the base sample. The

selection of the final sample for a given statistic is described further below.

2.2 Empirical Approach

In the nonparametric analysis conducted in Sections 3 to 5, our main focus will be

on individual-level log earnings changes (or growth) at one-year and five-year horizons.

These earnings changes provide a simple and useful construct for discussing the dynamics

7



Figure 2 – Timeline For Rolling Sample Construction

of earnings without making strong parametric assumptions. In Section 6, we will link

these “changes” to underlying “shocks” or “innovations” to an earnings process by means

of a parametric estimation.

To examine how the properties of earnings growth vary over the life cycle and in the

cross section, we proceed as follows. Let ỹit,h denote the log earnings of individual i who

is h years old in year t. For each one- and five-year horizon starting in period t, we

group individuals based on their age and recent earnings (hereafter, RE—to be defined

precisely in a moment) as of time t − 1. If these groupings are done at a sufficiently

fine level, we can think of all individuals within a given age/recent-earnings group to be

ex ante identical (or at least very similar). Then, for each such group, we can compute

the cross-sectional moments of earnings changes between t and t+ k (k = 1, 2...), which

can then be viewed as corresponding to the properties of shocks that individuals within

each bin can expect to face (see Figure 2 for this rolling sample construction). This

approach has the advantage that we can compute higher-order moments precisely, as

each bin contains several hundred thousands of individuals.8 (Table I reports sample

size statistics.)

We implement this approach by first grouping workers into five-year age bins based

on their age in year t−1: 25–29, 30–34,..., 50–54, and 55–60. Then taking all individuals

within an age group in a given year t, we compute each worker’s average past earnings

between years t− 1 and t− 5, denoted with Ỹ i
t�1 ≡

P5
s=1 exp(ỹ

i
t�s,h�s). We set earnings

observations below Ymin,t to the threshold for this computation. We also further control

8A second possibility is that shocks are more intimately related to individuals, and different types of
workers—for example, identified by their lifetime earnings—might face shocks with different properties.
This suggests that we should group workers based on their lifetime earnings and study the properties
of shocks for each group. We have an analogous set of results obtained by adopting this alternative
perspective. It turns out that both approaches yield similar substantive conclusions, so we omit these
results from the main text.
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for age effects, because even within these narrowly defined age groups, age differences of

a few years can systematically skew rankings in favor of older workers. To avoid this, we

first estimate age dummies, denoted dh, corresponding to log average earnings at each

age,9 and construct five-year average earnings from ages h− 5 to h− 1:
P5

s=1 exp(dh�s).

We then normalize Ỹ i
t�1 with this measure to clean age effects. Thus, our measure of

recent earnings (hereafter, RE) is

Ȳ i
t�1 ≡

Ỹ i
t�1P5

s=1 exp(dh�s)
.

In much of the subsequent analysis, we shall group workers based on this variable—

typically into 100 percentile bins—and will refer to these as “recent earnings groups.”

3 Cross-sectional Moments of Earnings Growth

We begin our analysis by documenting empirical facts about the first four moments

of earnings growth at short (one-year) and long (five-year) horizons. For computing

moments of earnings growth, we work with the time difference of yit, which is log earnings

net of the age effect. Thus:

∆ky
i
t ≡ (yit+k,h+k − yit,h) = (ỹit+k,h+k − dh+k)− (ỹit,h − dh).

We compute the cross-sectional moments of∆ky
i
t for each year, t = 1980, 1981, ..., 2009

and then average these across all years.10

Final Sample for Cross-Sectional Moments. To construct these moments, our

final sample includes all observations that are in the base sample in t− 1 and in at least

two more years between t − 5 and t − 2, and furthermore satisfies the age (25–60) and

no-self-employment condition in years t and t+k. We also drop the oldest age group (55-

9These are estimated from a pooled regression of log earnings on age and cohort dummies. Further
details are given later in Section 3.2.

10We use t = 1980 as the first year of our analysis and therefore group individuals in 1979 based on
their recent earnings computed over 1978 and 1979. Similarly, 2009 is the last feasible year for t, which
allows us to construct the moments of one-year earnings changes between 2009 and 2010.
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Table I – Sample Size Statistics for Cross-Sectional Moments

# Observations in Each RE Percentile Group

Age group Mean Median Min Max

25-29 408,713 381,606 337,603 674,986

30-34 638,350 640,596 566,235 712,307

35-39 618,909 642,226 441,425 721,966

40-44 571,512 606,344 356,700 707,502

45-49 506,989 524,177 320,935 686,753

50-54 425,539 383,887 291,117 619,987

55-59 276,340 240,273 215,842 407,997

Note: Each entry reports the statistics of the number of observations in each of the 100 RE percentile

groups for each age. Cross-sectional moments are computed for each year and then averaged over all years,

so sample sizes refer to the sum across all years of a given age by percentile group.

to 60-year-olds) and assign individuals within each group into 100 percentile bins based

on their recent earnings, Ȳ i
t�1. Table I reports the summary statistics of the number of

observations in each age/earnings cell (summed over all years). As seen here, the sample

size is very large—the smallest cell size exceeds 200,000 observations and the average is

close to 500,000—which allows us to compute all statistics very precisely.

3.1 First Look at Data

Before delving into a disaggregated analysis of the data, we take a first look at some broad

statistics. First, recall that the left panel of Figure 1 plotted the histogram of annual

earnings changes in the U.S. data (solid blue line), superimposed with the histogram of a

normal distribution with the same mean and standard deviation. The contrast is rather

striking: the data histogram looks nothing like normal, with a substantial peak, very

long tails, and very low shoulders (mass near ±σ). The figure also reports the second

to fourth moments of the data, revealing a very high (annual) standard deviation of

0.48, a negative skewness of –1.35, and most strikingly, an extremely high kurtosis of

17.80.11 The right panel plots the histogram for five-year earnings changes. Although

the distribution is a little less concentrated around zero, it is still far from a normal

11A distribution with a kurtosis of 5 or 6 is considered to be highly leptokurtic.
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distribution, with a kurtosis of 11.55 and a negative skewness of –1.01; it also has a large

standard deviation of 0.68.

However, if we stop here we will be missing lots of heterogeneity that lies underneath

this overall picture. To show what we mean, Figure 3 plots 12 histograms, each for a

different age and RE percentile group. The top row plots annual earnings changes for

young workers (ages 25 to 34), and the next row plots the same for prime-age males (ages

45 to 50). From left to right, the three panels plot the histograms for individuals who are

in the 10th, 50th, and 90th percentiles of the past average earnings distribution (indicated

with P10, P50, and P90 in the figure). Although we will elaborate on these features in the

coming sections, at this point it suffices to observe how much the histograms change with

these two characteristics. Therefore, simply saying that earnings changes have negative

skewness and excess kurtosis misses important variation over the life cycle and across

earnings levels.

3.2 First Moment: Mean of Log Earnings Growth

We begin our analysis with the first moment—average earnings growth—and examine

how it varies with age (i.e., over the life cycle) and, for reasons that will become clear

in a moment, across groups of individuals that differ in their lifetime earnings (and not

recent earnings). But first, to provide a benchmark, we follow the standard procedure in

the literature, (e.g., Deaton and Paxson (1994)) to estimate the average life-cycle profile

of log earnings. Although the procedure is well understood, its details matter for some

of the discussions below, so we go over it in some detail.

The average life-cycle profile is obtained from panel data or repeated cross sections

by first grouping earnings observations of all individuals with the same age and in the

same birth cohort into age-cohort cells. If there is a maximum of H ages and C cohorts,

there are a maximum of H × C non-empty such cells. We then compute mean earnings

within each cell and then regress the logarithm of these means (H × C observations)

on H age dummies and C cohort dummies. The estimated age dummies are plotted

as circles in Figure 4 and represent the average life-cycle profile of log earnings. It has

the usual hump-shaped pattern that peaks around age 50. (On a side note, these age

dummies turn out to be indistinguishable from a fourth order polynomial of age,12 a

12Regressing the age dummies on a fourth order polynomial of age yields an R2 of 0.999.
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Figure 3 – Histogram of Log Earnings Growth, by RE and Age Groups
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Figure 4 – Life-Cycle Profile of Average Log Earnings
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point also observed by Murphy and Welch (1990) in Current Population Survey data.)

One of the most important aspects of a life-cycle profile is the implied growth in

average earnings over the life cycle (e.g., from ages 25 to 55). It is well understood that

the magnitude of this rise matters greatly for many economic questions, because it is a

strong determinant of borrowing and saving motives.13 In our data, this rise is about

80 log points, which is about 127%.14 Notice that feeding this life-cycle profile into a

calibrated life-cycle model will imply that the median individual in the simulated sample

experiences (on average) a rise of this magnitude from ages 25 to 55. One question we

now address is whether this implication is consistent with what we see in the data. In

other words, if we rank male workers in the U.S. data by their lifetime earnings, does

the median worker experience an earnings growth of approximately 127%?

This question can be answered directly with our data. First, we need to compute life-

time earnings for each individual. For this purpose, we select a subsample of individuals

that have at least 32 years of data between the ages of 25 and 60. We further restrict our

sample to individuals who (i) have earnings above Ymin,t for at least 15 years and (ii) are

13See, for example, Deaton (1991); Attanasio et al. (1999); and Gourinchas and Parker (2002), among
others.

14This figure lies on the high end of previous estimates from datasets such as the PSID, but not
unseen before (cf. Attanasio et al. (1999)).
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not self-employed for more than 8 years.15 We rank individuals based on their lifetime

earnings, computed by summing their earnings from ages 25 through 60. Earnings ob-

servations lower than Ymin,t are set to this threshold. For individuals in a given lifetime

earnings (hereafter, LE) percentile group, denoted LEj, j = 1, 2, ..., 99, 100, we compute

growth in average earnings between any two ages h1 and h2 as log(Y h2,j) − log(Y h2,j),

where Y h,j ≡ E(Y i
h |i ∈ LEj) and Y i

h for a given individual may be zero.

Figure 5 plots the results for h1 = 25 and h2 = 55. Here, there are several takeaways.

First, individuals in the median lifetime earnings group experience a growth rate of 38%,

about one-third of what was predicted by the profile in Figure 4. Moreover, we have to

look all the way above LE90 to see individuals who experience an average growth rate of

127%. Second, and however, earnings growth is very high for high-income individuals,

with those in the 95th percentile experiencing a growth rate of 230% and those in the 99th

percentile experiencing a growth rate of 1450%. Although some of this variation could

be expected simply due to endogeneity (i.e., that those individuals with high earnings

growth are more likely to have high lifetime earnings), the magnitude observed here is

too large to be accounted for by that channel, as we show later below.

Earnings Growth by Decades. How is earnings growth over the life-cycle distributed

over different decades of the life cycle? Figure 6 answers this question by plotting,

separately, earnings growth from ages 25 to 35, 35 to 45, and 45 to 55. Across the board,

the bulk of earnings growth happens during the first decade. In fact, for the median LE

group, average earnings growth from ages 35 to 55 is zero (notice that the solid blue line

and grey line with circles overlap at LE50). Second, with the exception of those in the

top 10% of the LE distribution, all groups experience negative growth from ages 45 to

55. So, the peak year of earnings is strongly related to the lifetime earnings percentile.

After age 45, the only groups that are experiencing growth on average are those who are

in the top 2% of the LE distribution.

How do the results change if we consider a slightly later starting age? To answer

this question, Figure 7 plots earnings growth over the life cycle starting at age 30 (solid

15Notice that these additional sample selection criteria lead to a different and somewhat smaller
sample than what is used to extract the life-cycle profile in Figure 4. However, adopting the same
sample as the one used before would lead to the inclusion of more workers from the bottom of the
earnings distribution, drawing the median worker down and strengthening the point made here.
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Figure 5 – Life-Cycle Earnings Growth Rates, by Lifetime Earnings Group

blue line) and 35 (dashed red line). As can be anticipated from the previous discussion,

from ages 35 to 55, average earnings growth for the median LE group is zero and is very

low for all workers below L70. Top earners still do very well though, experiencing a rise

of 200 log points (or 640%) from ages 30 to 55 and a rise of 90 log points (or 146%)

from ages 35 to 55. Those at the bottom of the lifetime earnings distribution display

the opposite pattern, with earnings losses experienced throughout the life cycle: average

earnings drops by 70 log points (or 50%) from ages 35 to 55.

3.3 Second Moment: Variance

How does the dispersion of earnings shocks vary over the life cycle and by earnings

groups? To answer this question, Figure 8 plots the standard deviation of one-year and

five-year earnings growth by age and recent earnings (hereafter, RE) groups (as defined

above, Section 2.2). The following patterns hold true for both short- and long-run growth

rates. First, for every age group, there is a pronounced U-shaped pattern by RE levels,

implying that earnings changes are less dispersed for individuals with higher RE up to

about the 90th percentile (along the x-axis). This pattern reverts itself inside the top

10% as dispersion increases rapidly with recent earnings. Second, over the life cycle,

the dispersion of shocks declines monotonically up to about age 50 (with the exception
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Figure 6 – Earnings Growth Rates in Each Decade of the Life Cycle

of very top earners) and then rises slightly for middle- to high-earning individuals from

ages 50 to 55.16

The life-cycle pattern is quite different for top earners who experience a monotonic

increase in dispersion of shocks over the life cycle. In particular, for one-year changes,

individuals at the 95th percentile of the RE distribution experience a slight increase from

0.45 in the youngest age group up to 0.51 in the oldest group (50–54). Those in the top

1% experience a larger increase from 0.62 in the first age group up to 0.75 in the oldest.

Therefore, we conclude that the lower 95 percentiles and the top 5 percentiles display

patterns with age and recent earnings that are the opposite of each other. The same

theme will emerge again in our analysis of higher-order moments.

3.4 Third Moment: Skewness (or Asymmetry)

The lognormality assumption implies that the skewness of earnings shocks is zero. Figure

9 plots the skewness, measured here as the third central moment, of one-year (top) and

five-year (bottom) earnings growth. The first point to observe is that every graph in

both panels of Figure 9 lie below the zero line, indicating that earnings changes are

16Chamberlain and Hirano (1999) seems to be the first paper to allow for heterogeneity in variances
across individuals.
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Figure 7 – Life-Cycle Earnings Growth Rates, Different Starting Ages

negatively skewed at every stage of the life cycle and for all earnings groups. The second

point, however, is that skewness is increasingly more negative for individuals with higher

earnings and as individuals get older. Thus, it seems that the higher an individual’s

current earnings, the more room he has to fall down, and the less room he has left to

move up. And this is true for both short-run and long-run earnings changes. Curiously,

and as was the case with the standard deviation, the life-cycle pattern in skewness

becomes much weaker at the very top of the earnings distribution.

Another measure of asymmetry is provided by Kelly’s measure of skewness, which is

defined as

SK =
(P90− P50)− (P50− P10)

P90− P10
, (1)

where Pxy refers to percentile xy of the distribution under study. So, basically SK

measures the relative fractions of the overall dispersion (P90–P10) accounted for by the

upper and lower tails. An appealing feature of Kelly’s skewness relative to the third

central moment is that a particular value is easy to interpret. To see this, rearrange (1)

to get
P90− P50

P90− P10
=

SK + 1

2
.

Thus, a negative value of SK implies that the lower tail (P50-P10) is longer than the

upper tail (P90-P50), indicating negative skewness. Another property of Kelly’s measure
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Figure 8 – Standard Deviation of Earnings Growth

(a) One-year Growth
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(b) Five-Year Growth
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is that it is less sensitive to extremes (above the 90th or below the 10th percentile of

the shock distribution). Instead, it captures the weight distribution in the middling

section of the shock distribution, whereas the third moment also puts a large weight on

the relative lengths of each tail. (We shall examine the tails in more detail in the next

subsection.)

In the top panel of Figure 10, we plot Kelly’s skewness, which is also negative through-

out and becomes more negative with age, especially below RE60. However, it does not

always get more negative with higher RE. This difference from the third central moment

(Fig. 9a) indicates that as RE increases, it is mostly the extreme shocks (measured in

the third moment) that become more negatively skewed, rather than the more middling

shocks.

Figure 10b plots Kelly’s skewness for five-year changes, which reveals essentially the

same pattern as with the third moment in Figure 9b: each measure shows a strong in-

crease in left-skewness with both age and earnings (except for the very-high earners).

Furthermore, the magnitude of skewness is substantial. For example, the Kelly’s skew-

ness for five-year earnings change of –0.35 for individuals aged 45–49 and in the 80th

percentile of the RE distribution implies that the P90-P50 accounts for 32% of P90-P10,

whereas P50-P10 accounts for the remaining 68%. This is clearly different from a log-

normal distribution, which is symmetric, and therefore both tails contribute 50% of the
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Figure 9 – Skewness (Third Moment) of Earnings Growth

(a) One-Year Change
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(b) Five-Year Change
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total.

While the preceding decomposition is useful, it does not answer a key question: is the

increasingly more negative skewness over the life cycle primarily due to a compression

of the upper tail (fewer opportunities to move up) or due to an expansion in the lower

tail (increasing risk of falling a lot)? For the answer, we need to look at the levels of

the P90-50 and P50-P10 separately over the life cycle. The left panel of Figure 11 plots

P90-50 for different age groups minus the P90-50 for 25- to 29-year-olds, which serves as

a normalization. The right panel plots the same for P50-P10. One way to understand the

link between these two graphs and skewness is that keeping P50-P10 fixed over the life

cycle, if P90-P50 (left panel) declines with age, this causes Kelly’s skewness to become

more negative. Similarly, keeping P90-P50 fixed, a rise in P50-P10 (right panel) has the

same effect.

Turning to the data, up until age 45, both P90-P50 and P50-P10 decline with age

(across most of the RE distribution). This leads to the declining dispersion that we have

seen above. The shrinking P50-P10 would also lead to a rising skewness if it were not

for the faster compression of P90-P50 during the same time. Therefore, from ages 25

to 45, the increasing negativity of skewness is entirely due to the fact that the upper

end of the shock distribution compresses more rapidly than the compression of the lower

end. After age 45, P50-P10 starts expanding rapidly (larger earnings drops becoming

more likely), whereas P90-P50 stops compressing any further (stabilized upside). Thus,

during this phase of the life cycle, the increasing negativity in Kelly’s skewness is due

to increasing downward risks and not the disappearance of upward moves. The only

exception to this pattern is, again, the top earners (RE95 and above) for whom P90-50

actually never compresses over the life cycle, whereas the P50-P10 gradually rises as

they get older. Therefore, as they climb the wage ladder, these individuals do not face a

tightening ceiling, but do suffer from an increasing risk of falling a lot.

3.5 Fourth Moment: Kurtosis (Peakedness and Tailedness)

Kurtosis is not a household name, especially in the earnings dynamics literature, so it is

useful to begin by discussing what kurtosis measures. A useful interpretation of kurtosis

has been suggested by Moors (1986, 1988), who described it as measuring how dispersed
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Figure 10 – Kelly’s Skewness of Earnings Growth

(a) One-year Change

0  20 40 60 80 100
−0.3

−0.2

−0.1

0

Percentiles of Recent Earnings (RE) Distribution

K
e
ll
y
S
k
e
w
n
e
ss

o
f
(y

t
+
1
−

y
t
)

25-29
30-34
35-39
40-44
45-49
50-54

(b) Five-Year Change
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Figure 11 – Kelly’s Skewness Decomposed: Change in P90-P50 and P50-P10 Relative
to Age 25-30 ; Five-Year Earnings Growth

(a) P90-P50
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(b) P50-P10
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a probability distribution is away from µ±σ.17 This is consistent with how a distribution

with excess kurtosis often looks like: a sharp/pointy center, long tails, and little mass

near µ± σ. A corollary to this description is that for a distribution with high kurtosis,

the usual way we think about standard deviation—as representing the size of the typical

17This can easily be seen by introducing a standardized variable Z = (x − µ)/σ and noting that
kurtosis is κ = E(Z4) = var(Z2) + E(Z2)2 = var(Z2) + 1. So κ can be thought of as the dispersion of
Z2 around its expectation, which is 1, or the dispersion of Z around +1 and −1.
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Figure 12 – Kurtosis of Earnings Changes

(a) Annual Change
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(b) Five-Year Change
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Table II – Fraction of Individuals with Selected Ranges of Log Earnings Change

Prob(|yit+1 − yit| < x) Prob((yit+1 − yit) ∈ Range)

x : Data⇤ N (0, 0.482) Ratio Range:† Data N (0, 0.482) Ratio

0.05 0.35 0.08 4.38 Center 0.653 0.250 2.61

0.10 0.54 0.16 3.38 Shoulders 0.311 0.737 0.42

0.20 0.71 0.32 2.23 Tails 0.036 0.013 2.77

0.50 0.86 0.70 1.22

1.00 0.94 0.96 0.98

Notes: ∗The empirical distribution used in this calculation is for 1995-96, the same as in Figure 1.
†The intervals are defined as follows: “Center” refers to the area inside the first intersection between the

two densities in Figure 1 [-0.122 to 0.187]. “Tails” refer to the areas outside the intersection point at the

tails: (�1,�1.226] [ [1.237,1). “Shoulders” refer to the remaining areas of the densities.

shock—is not very useful. This is because very few realizations will be of a magnitude

close to the standard deviation; instead, most will be either close to zero (or the mean)

or in the tails.

With this definition in hand, let us now examine the earnings growth data. Figure

12a plots the kurtosis of annual earnings changes. First, notice that kurtosis increases

monotonically with recent earnings up to the 80th to 90th percentiles for all age groups.

That is, high-earnings individuals experience even smaller earnings changes of either sign,

with few experiencing very large changes. Second, kurtosis increases over the life cycle,

for all RE levels, except perhaps the top 5 percent. Furthermore, and most significantly,

the peak levels of kurtosis range from a low of 20 for the youngest group, all the way up

to 30 for the middle-age group (40–54).

To provide a more familiar interpretation of these kurtosis values, it is useful to

calculate measures of concentration. The first three columns of Table II report the

fraction of individuals experiencing a log earnings change (of either sign) of less than a

threshold x = 0.05, 0.10, 0.20, 0.50, and 1.00, under alternative assumptions about the

data-generating process. For the entire sample, the standard deviation of yit+1 − yit is

0.48. Assuming that the data-generating process is a Gaussian density with this standard

deviation, only 8 percent of individuals would experience an annual earnings change of

less than 5%. The true fraction in the data is 35 percent. Similarly, the Gaussian density
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predicts a fraction of 16 percent when the threshold is 0.10, whereas the true fraction is

54 percent. As an alternative calculation, we calculate the areas under the densities in

three different ranges determined by the intersections of the two densities in the left panel

of Figure 1. The center is the area inside the first set of intersections, and the Gaussian

density has 25% of its mass in this area compared with 65% in the data. The shoulders

are the second set of areas, marked again by the intersections, and the Gaussian density

has almost three-quarters of its mass in this area, compared with only 31% in the data.

Finally, the Gaussian density has only 1.3% of its mass in the tails compared with almost

three times that amount in the data.

We now take a closer look at the tails of the earnings growth distribution compared

with a normal density. Figure 13 plots the log density of the one-year change in the data

versus the Gaussian density. This is essentially the same as the left panel of Figure 1

but with the y-axis now in logs. The lognormal density is an exact quadratic, whereas

the data display a more complex pattern. Two points are worth noting. One, the data

distribution has much thicker and longer tails compared with a normal, and the tails

decline almost linearly, implying a Pareto distribution at both ends, with significant

weight at extremes.18 Two, the tails are asymmetric, with the left tail declining much

more slowly than the right, contributing the negative third central moment documented

above. In fact, fitting linear regression lines to each tail yields a tail index of 2 for the

right tail and 1.2 for the left tail—the latter showing especially high thickness.19

Overall, these findings show that earnings changes in the U.S. data exhibit important

deviations from lognormality and raise serious concerns about the focus in the current

literature on the covariances (second moments) alone. In particular, targeting the covari-

ances alone can vastly overestimate the typical earnings shock received by the average

worker and miss the substantial but infrequent jumps experienced by few.

Economic Models behind Skewness and Kurtosis. While the lognormal frame-

work is often adopted for technical and empirical tractability, negative skewness and

excess kurtosis are naturally generated by standard structural models of job search over

the life cycle. For example, job ladder models in which workers do on-the-job search

18Double Pareto distribution is when both tails are Pareto with different tail indices.
19Notice that while the Pareto tail in the earnings distribution is well known, here the Pareto tails

emerges in earnings changes, on which there is a lot less empirical evidence exists.
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Figure 13 – Tails of the Distributions: U.S. Data vs. Normal Density
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and move from job to job as they receive better offers and fall off the job ladder due to

unemployment not only will generate negative skewness but also will imply that skew-

ness becomes more negative with age. This is because as the worker climbs the job

ladder, the probability of receiving a wage offer much higher than the current wage will

be declining. At the same time, as the worker is higher up in the wage ladder, falling

down to a flat unemployment surface (or disability) implies that there is more room to

fall. Furthermore, as the attractiveness of job offers declines with the current wage, more

job offers will be rejected, and therefore job to job transitions will also decline with age,

implying that most wage changes will be small (within-job) changes. This increases the

concentration of earnings changes near zero, which in turn raises the kurtosis of changes.

Having said that, the magnitudes of variation over the life cycle and by earnings levels

that we documented in these moments are so large that it is an open question whether

existing models of job search can be consistent with these magnitudes, and, if not, what

kinds of modifications should be undertaken to make them consistent.20

20A high kurtosis in earnings changes could partly be due to heterogeneity across individuals in
shock variances, as documented by Chamberlain and Hirano (1999) and Browning et al. (2010). We
have explored this possibility by estimating earnings shock variances for each individual. While we do
find significant heterogeneity in variances, consistent with these papers, the remaining kurtosis is still
substantial. We do model and estimate individual-specific variances in Section 5.
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3.6 Robustness and Extensions

The results documented in the previous sections show important deviations from log-

normality as well as clear patterns with age and past earnings. This raises the question

whether some of these findings are due to simple statistical artifacts—say, due perhaps

to extreme shocks experienced by few individuals—and whether the age and earnings

patterns might be due to sample selection or other assumptions made in the construction

of these statistics. In this section, we explore several of these possibilities.

Decomposing Moments: Job-Stayers vs. Job-Switchers. Going back to Topel

and Ward (1992), economists have found important differences between the earnings

changes that occur during an employment relationship and those that occur across jobs

(see, more recently, Low et al. (2010), Altonji et al. (2013), and Bagger et al. (2014)).

Therefore, it is of interest to ask how the empirical patterns we documented so far relate

to within- and between-job earnings changes. Our dataset contains a unique employer

identification number (EIN) for each job that a worker holds in a given year, which allows

us to conduct such an analysis. In the interest of space, we report those statistics in

Appendix A.1.

Disentangling The Effects of Age and Recent Earnings. Recall that in the

analysis so far, we have grouped workers first by age, and then within each age group,

we have ranked and divided them into recent earnings percentiles. The implication is

that RE percentiles in these figures are age-group-dependent. So when we fix an RE

percentile and examine how statistics vary with age, we are simultaneously looking at

changes with earnings, since earnings vary with age. The advantage of this approach was

that it ensured each RE group contained (more or less) the same number of observations,

whereas grouping workers based on the RE distribution in the overall sample will result

in too many younger workers appearing in lower RE percentiles and vice versa for middle-

age workers. As a consequence, the latter approach might result in different sampling

variability in different parts of each graph, which we wished to avoid. Despite this

concern, it is useful to check what the results would look like under this alternative

approach.

In Figures 14 and 15, we plot 3-D graphs of skewness and kurtosis, where we first
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Figure 14 – Skewness of One-year Earnings Change, Jointly Conditioning on Age and
Recent Earnings
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group workers based on the RE distribution in the overall sample, then within each RE

group, we classify workers by age. Inspecting these graphs carefully and comparing with

their counterparts above shows that the main substantive conclusions described above

are robust.

Averaging Earnings Over Neighboring Years. Recall that the statistics above

were constructed by taking differences between two years, t and t + k. One concern is

that some of the interesting findings could be due to the timing of earnings. For example,

suppose that an individual’s income has been shifted from the last few months of year

t+ k into the beginning of t+ k+1. If true, this would represent an earnings fluctuation

that is easy to smooth, but could appear as a big negative shock between t and t+ k. A

similar comment applies to period t.

To address this issue, we have constructed the same set of statistics for the second

to fourth moments by using two-year average earnings. For the short-run and long-run

variations, we use, respectively

∆̃yit = log(Y i
t+3 + Y i

t+2)− log(Y i
t + Y i

t+1)
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Figure 15 – Kurtosis of One-year Earnings Change, Joint Conditioning on Age and
Recent Earnings
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and

∆̃5yt = log(Y i
t+5 + Y i

t+6)− log(Y i
t + Y i

t+1).

Notice that the first measure is not a one-year difference but is more like a two-year

difference, whereas the second one is closer to a five-year difference as before. However,

we are mostly interested in whether statistics are broadly robust and the qualitative

patterns remain unchanged, so these are reasonable choices.

Difference from Usual Earnings. Even though we condition on recent earnings

over the past five years and require all individuals in the sample to be employed in year

t − 1, it is conceivable that some individuals receive large positive shocks in period t,

and the subsequent drop in earnings from t to t + k is simply mean reversion—and not

a new shock. The same argument applies for a large negative shock in t. To see if this

might be important we also construct the same statistics using an alternative difference

measure, again for the short-run and long-run variations:

∆shorty
i = log(Y i

t+1)− log(Y
i

t�1),
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and

∆longy
i = log(Y i

t+5)− log(Y
i

t�1).

These are longer differences than before, since the base year is now centered around

t− 3.

Trimming the Tails. As noted before, earnings growth displays very long tails, and

even though measurement error is unlikely to explain it, it is still of interest to know,

for example, how much of the very large kurtosis and negative skewness is due to the

extreme observations and how much is due to the bulk of the distribution. Since the

third and fourth moments are sensitive to tails, this is worth exploring (although Kelly’s

skewness is already reassuring for the skewness). Therefore, we construct the statistics

in two different ways. First, we drop all observations in the top and bottom 1% of the

earnings growth distribution by age and RE percentiles, and then calculate the third and

fourth moments.

Second, recall that we consider an individual to be non-employed and drop from the

computation of a statistic if his earnings is below Ymin,t in periods t or t+k. Because this

threshold does not vary with earnings, high-income individuals can experience a larger

fall in earnings and still remain in the sample, whereas low-income individuals would

exit the sample with the same fall. This asymmetry might give the appearance of a

more negative skewness for higher-income individuals. To explore this issue, we drop all

observations in which an individual’s earnings in period t or t+k is below 5% of his own

recent earnings. Because the threshold is now indexed to the level of his earnings, the

mechanical relationship is no longer a concern.

In Appendix A, we report the figures analogous to those above under these three

robustness checks. Although the figures are quantitatively different, the difference is

almost always small, and therefore the substantive conclusions of this analysis remain

intact.

4 Dynamics of Earnings

A key dimension of life-cycle earnings risk is the persistence of earnings changes. Typ-

ically, this persistence is modeled as an AR(1) process or a low-order ARMA process
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(typically, ARMA(1,1)), and the persistence parameter is pinned down by the rate of

decline of autocovariances with the lag order. The AR(1) structure, for example, pre-

dicts a geometric decline and the rate of decline is directly given by the mean reversion

parameter. While this approach might be appropriate in survey data with small sample

sizes, it imposes restrictions on the data that might be too strong, such as the uniformity

of mean reversion for positive and negative shocks, for large and small shocks, and so on.

Here, the substantial sample size allows us to characterize persistence without making

parametric assumptions.

Final Sample for Impulse Response Analysis

The final sample for this analysis is slightly different from the one used in the previous

section. In particular, our final sample includes all observations that are in the base

sample in t− 1 and in at least two more years between t− 5 and t− 2, and furthermore

satisfies the age (25–60) and no-self-employment condition in years t through t+ 3, and

in t+5 and t+10. To reduce the number of graphs to a manageable level, we aggregate

individuals across demographic groups. First, we combine the first two age groups (ages

25 to 34) into “young workers,” and the last four groups (ages 35 to 55) into “prime-age

males.”

To this end, we rank and group individuals based on their average earnings from

t − 5 to t − 1, then within each such group, we rank and group again by the size of

the earnings change between t − 1 and t. Hence, all individuals within a given group

obtained by crossing the two conditions have the same average earnings up to time

t− 1 and experience the same earnings “shock” from t− 1 to t. For each such group of

individuals, we then compute their average earnings change from t to t+k, for all values

of k = 1, 2, 3, 5, 10. Specifically, we construct 8 groups based on their RE percentiles:

1–5, 6–10, 11–30, 31–50, 51–70, 71–90, 91–95, 96–100. Then, we construct 14 groups

based on the percentiles of the shock, yit− yit�1: percentiles 1–2, 3–5, 6–10, 11–20, 21–30,

31–40, 41–50, 51–60, 61–70, 71–80, 81–90, 91–95, 96–98, 99–100. Therefore, for every

year t, we have 2 age groups, 8 RE groups and 14 groups for shock size (for a total of

2 × 8 × 14 = 224 groups). As before, we compute these groups for every t and assign

workers based on these averages. Then, for workers in each group, we compute the

average of log k-year earnings growth, E
h
yit+k − yit|Y

i

t�1, y
i
t − yit�1

i
, for k = 1, 2, 3, 5, 10.
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Figure 16 – Impulse Response to Earnings Shocks, with Median Recent Earnings,
Prime-Age Workers
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4.1 Impulse Response Functions

For prime-age males with median RE level (as of t − 1), Figure 16 plots 14 impulse

response functions (one for each “shock” size, yit − yit�1). As seen here, the most positive

5% of shocks at time t are about 140 log points and the most negative are about –180

log points. Notice that the mean reversion pattern varies with the size of the shock, with

much stronger mean reversion in t+ 1 for large shocks and smaller reversion for smaller

shocks. Furthermore, even at the 10-year horizon, a nonnegligible fraction of the shocks’

effect is still present, indicating a permanent component to these shocks.

In the next figure (17), we plot the same kind of impulse response functions but now

for workers that are in the 10th percentile (top panel) and 90th percentile (bottom) of RE

distribution. Notice that, for low-income individuals, negative shocks mean-revert much

more quickly, whereas positive shocks are more persistent than before. The opposite is

true for high-income individuals.

To illustrate these patterns more clearly, Figure 18 plots the shock, yit − yit�1, on the

x -axis and the fraction of each shock that has mean-reverted, yit+k − yit, on the y-axis for

the median RE group. Thus, this figure contains the same information as in Figure 16

but is reported differently. Several remarks are in order. First, negative earnings changes
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Figure 17 – Impulse Response Functions, Prime-Age Workers with Low and High
Recent Earnings
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tend to be less persistent than positive earnings changes. For example, a worker whose

earnings rise by 100 log points between t − 1 and t loses about 50% of this gain in the

following 10 years. It is also interesting to note that almost all of this mean reversion

happens after one year, implying that whatever mean reversion there is happens very

quickly. Turning to earnings losses: a worker whose earnings fall 100 log points recovers

one-third of that loss by t + 1 and recovers more than two-thirds of the total within

10 years. Moreover, unlike with positive shocks, the recovery (hence mean reversion) is

more gradual in response to negative shocks.

Second, the degree of mean reversion varies with the magnitude of earnings shocks.

This is evident in Figure 18, where small shocks (e.g., those less than 10 log points

in absolute value) look very persistent, whereas there is a substantial amount of mean

reversion following larger earnings changes. A univariate autoregressive process with a

single mean reversion parameter will fail to capture this behavior. In the next section,

we will allow for multiple AR(1) processes to accommodate the variation in persistence

by shock size.

Next, we investigate how these mean reversion patterns vary across workers that

differ in their recent earnings, which is a proxy for where these individuals rank overall

relative to their peers. To make the comparison clear, we focus on a fixed horizon, 10
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Figure 18 – Impulse Response to Earnings Shocks for Workers at Median Past Earnings,
Prime-Age Workers
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years, and plot the total mean reversion between t and t + 10 for the 8 RE groups in

Figure 19. Starting from the lowest RE group (those individuals in the bottom 5% of

the recent earnings distribution), notice that negative shocks are transitory, with an

almost 80% mean reversion rate at the 10-year horizon. But positive shocks are quite

persistent, with only about 20% mean reversion at the same horizon. As we move up

the RE distribution, the positive and negative branches of each graph start rotating in

opposite directions, so that for the highest RE group, we have the opposite pattern: only

20 to 25% of negative shocks mean-revert at the 10-year horizon, whereas almost 75% of

positive shocks mean-revert at the same horizon. We refer to this shape as the “butterfly

pattern.”

5 Estimation

With the few exceptions noted above, the bulk of the literature relies on the (often

implicit) assumption that earnings shocks can be approximated reasonably well with a

lognormal distribution. This assumption, combined with linear time series models (such

as an ARMA(p,q) process) to capture the accumulation of such shocks, has made higher-

order moments irrelevant and allowed researchers to focus their estimation to match the
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Figure 19 – Asymmetric Mean Reversion: Butterfly Pattern, Baseline
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covariance matrix of log earnings either in levels or in first difference form, with very few

exceptions.21

There are two problems with this approach. First, the broad range of evidence

presented in the previous sections implies that this approach is likely to miss important

aspects of the data and produce a picture of earnings risk that does not capture salient

features of the risks faced by workers. Second, the covariance matrix estimation method

makes it difficult to select among various models of earnings risk, because it is difficult

to judge the relative importance—from an economic standpoint—of the covariances that

a given model matches well and those that it does not match well. This is an especially

important shortcoming given that virtually every econometric process used to calibrate

economic models is statistically rejected by the data.

With these considerations in mind, we propose and implement a different approach

that relies on matching the kinds of moments presented above. We believe that economists

21Exceptions include Browning et al. (2010), Altonji et al. (2013), and Guvenen and Smith (2014).
Clearly, GMM or minimum distance estimation that is used to match such moments does not require the
assumption of lognormality for consistency. But abstracting away from moments higher than covariances
is a reflection of the belief that higher-order moments do not contain independent information, which
does require the lognormality assumption.
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can much more easily judge whether or not each one of these sets of moments is relevant

for the economic questions they have in hand. Therefore, they can decide whether the

inability of a particular stochastic process to match a given moment is a catastrophic

failure or a acceptable shortcoming. They can similarly judge the success of a given

stochastic process in matching some moments and not others.

More concretely, in the first stage, we use each set of moments presented above

as diagnostic tools to determine the basic components that should be included in the

stochastic process that we will then fit to the data. Clearly, this stage requires exten-

sive pre-testing and exploratory work. For example, in Section 3.2 we focused on the

first moment—average earnings growth over the life cycle—and considered three basic

ingredients: (i) an AR(1) + i.i.d process, (ii) a quadratic HIP process with no shocks,

and (iii) a mixture of two AR(1) process where each component receives a non-zero in-

novation with a certain probability. We picked the first two ingredients because of the

widespread attention they garnered in the previous literature, and the third one based on

our conjecture that it might perform well. We found that the first ingredient, on its own,

could not generate the rich patterns of earnings growth revealed by the data, whereas

the HIP process performed fairly well, and the normal mixture process performed the

best. Therefore, we concluded that a stochastic process for earnings should include ei-

ther (ii) or (iii) as one of its components. Although earnings growth data on its own

could not determine which one of these pieces is more important, together with the other

moments, we will be able to obtain sharper identification of the parameters of these two

components.

We conducted similar diagnostic analyses on the other cross-sectional moments (stan-

dard deviation, skewness, and kurtosis) as well as on impulse response moments. The

variation in the second to fourth moments over the life cycle and with earnings levels

seemed impossible to match without introducing explicit dependence of shocks on these

two characteristics. Instead, making the mixing probabilities depend on age and earnings

delivered much better results and we make this specification part of our benchmark. We

then estimate the parameters of such a process to target moments whose economic sig-

nificance is more immediate, including the distribution of lifetime earnings, the kurtosis

and skewness of earnings changes, as well as how these moments vary with age and rising

earnings. These moments are used as targets using a method of simulated moments (or

more generally, an indirect inference) estimator.
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5.1 A Flexible Stochastic Process

The extensive preliminary analyses we conducted lead us to our benchmark specification

with the following features: (i) a heterogeneous earnings profiles component of (up to)

quadratic form; (ii) a mixture of two AR(1) processes, denoted by z and x, where each

component receives a new innovation in a given year with probability pj ∈ [0, 1] for

j = z, x; and (iii) a random walk component that is realized with probability pv; and

(iv) an i.i.d. transitory shock. Here is the full specification:

eyit =
�
αi + βit+ γit2

�
+ zit + xi

t + vit + εit

zit = ρzz
i
t�1 + ηizt

xi
t = ρxx

i
t�1 + ηixt

vit = vit�1 + ηivt,

where for j = z, x, v:

η⇤ijt ∼ N (µj, σ
i
j) and ηijt = η⇤ijt × I{si,t ∈ Ipj} (2)

logσi
j ∼ N (σj −

σ2
jj

2
, σ2

jj), j = z, x, σi
v ≡ σv (3)

The realizations of the three innovations (ηjt, j = z, x, v) are mutually exclusive—

only one of the three shocks is received per period. To this end, we first draw a uniform

random variable, si,t, for a given individual at age t and divide the unit interval into

three pieces: Ipz = [0, pz], Ipx = (pz, pz + px], and Ipv = (pz + px, 1], where pz + px ≤ 1

and pv = 1− pz − px. Depending on which interval si,t falls in, that innovation is set to

its normal draw, η⇤ijt , and the others are set equal to zero.

The specification in (3) implies that the innovation variance for each AR(1) process

has an individual-specific component that is lognormal, with mean σj and standard de-

viation proportional to σjj. To economize on parameters, we assume that the permanent

innovation is identically distribution across individuals. Regarding the initial conditions

of the persistent processes, zi0 and xi
0, we assume that they are drawn from a normal

distribution with zero mean and standard deviation σj,0,j = z, x.22 Finally, to avoid in-

22The initial variance of the permanent component cannot be identified from the fixed effect variance
and hence is normalized to zero.
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determinacy in the estimation, we impose ρx > ρz, both without loss of generality. We

will consider a variety of specifications similar to this benchmark.

The infrequent nature of earnings shocks to either of the two AR(1) components helps

us generate excess kurtosis. In addition, they capture the non-linear pattern in life-cycle

earnings growth documented in Section 3.2. Allowing the means of innovations to differ

helps with generating non-zero (in our case negative) skewness. Furthermore, allowing

infrequent shocks with a non-zero mean to components with different degrees of mean

reversion helps us fit the heterogeneity in mean reversion. For example, it could be that

one AR(1) component has very large innovations but a lower persistence. In this case,

shocks to this component are likely to show up more in the tails. This composition could

explain why large shocks are more mean reverting than small shocks. We do not impose

any such restriction on the process, but instead let the data speak for it.

To capture variation in these moments over the life cycle and across recent earn-

ings levels, we allow the mixing probabilities to depend on age and on the persistent

component of earnings:

pj(v + z + x) = aj + bj × (v + z + x) + cj × t+ dj × (v + z + x)× t.

Here, we allow the shock variance to change with the persistent component of earn-

ings, z + x, as well as with age (t) and the interaction of the two. Since these are

probabilities, if the estimated parameter values force the right hand-side to outside of

the [0,1] range, we truncate it to these limits.23

5.2 Estimation Method

We estimate the parameters of the earnings process just described using the method of

simulated moments (MSM). We target the three sets of empirical moments documented

23We have also considered an alternative specification where the innovation variances are functions
of earnings and age:

σjt(z + x) = aj + bj × (z + x) + cj × t+ dj × (z + x)× t.

In this specification, as earnings changes with age, this could capture both an age structure and a cross-
sectional structure. We have experimented with this specification extensively but found it not to fit the
moments nearly as well as the main specification presented in the text.
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in the previous two sections. If we were to match all data points presented above—for

every RE percentile and every age group—it would yield more than 10,000 moments.

Although this is doable, not much is likely to be gained from such a level of detail,

but it would make the diagnostics, that is, judging the performance of the estimation,

quite difficult. To avoid this, we aggregate 100 RE percentiles into 10 to 15 groups and

the 6 age groups into two (ages 25–34 and 35–55). Full details of how this aggregation

is performed and which moments are targeted are included in Appendix B. After the

aggregation procedure, we are left with 780 moments for cross-sectional moments (stan-

dard deviation, skewness and kurtosis of one-year and five-year earnings growth); 120

moments for lifetime earnings moments (targeted ages are 25, 30, 35, 40, 45, 50, 55, and

60); and 1120 moments coming from the impulse response functions. In sum, we target

a total of 780 + 120 + 1120 = 2020 moments.

Let mn for n = 1, ..., N = 2020 denote a generic empirical moment, let dn(θ, X) be

the corresponding model moment that is simulated for a given set of earnings process

parameters, θ and a given vector of random variables, X. We simulate the entire earnings

histories of 100,000 individuals who enter labor market at age 25 and work until age 60.

When computing the model moments, we apply precisely the same sample selection

criteria and employ the same methodology to the simulated data as we did with the

actual data. To deal with potential issues that could arise due to the large variation in

the scales of the moments, we minimize the scaled deviation between each data target

and the corresponding simulated model moment. For each moment n, define

Fn(θ) =
dn(θ, X)−mn

|mn|+ γn
,

where γn > 0 is an adjustment factor. When γn = 0 and mn is positive, Fn is simply

the percentage deviation between data and model moments. This measure becomes

problematic when the data moment is very close to zero, which is not unusual (e.g., the

median of log earnings changes). To account for this, we choose γn to be equal to the

10th percentile of the distribution of the absolute value of the moments in a given set.24

24We divided the first set of moments into four subsets: one-year change of young workers, five-
year change of young workers, one-year change of prime-age workers, five-year change of prime-age
workers (the corresponding γn values are 0.94, 1.44, 0.90, 1.53, respectively). Furthermore, γn = 38
and γn = 0.35 for mean of log earnings growth moments and impulse response function moments,
respectively.
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The MSM estimator is

θ̂ = argmin
θ

F (θ)0WF (θ), (4)

where F (θ) is a vector in which all moment conditions are stacked, that is,

F (θ) = [F1(θ), ..., FN(θ)] .

The weighting matrix, W , is chosen such that each one of the three sets of moments is

given the same weight in the objective function.25 The objective function is highly jagged

in certain directions and highly nonlinear in general, owing to the fact that we target

higher-order moments and percentiles of the distribution (the latter creating discontinu-

ities). Therefore, we employ a global optimization routine, described in further detail in

Guvenen (2013), to perform the minimization in (4). Details of our implementation can

be found in Appendix B

5.3 Results [To Be Completed]

Table III reports the parameter estimates from the benchmark model (column 1) as well

as from various simpler specifications to understand what pins down each parameter.

First, in column 1, the systematic component of earnings growth displays significant

heterogeneity: the dispersion in the fixed (level) effect is σα = 0.51 and the disper-

sion in growth rates is σβ = 0.023 (or 2.3 log percent). The estimates of growth rate

heterogeneity is large and is comparable to earlier work (c.f., Haider (2001), Guvenen

(2009)).

Turning to the stochastic component driving the dynamics, the first AR(1) process

receives innovations with an annual probability of 16% (i.e., once every 6 years). These

shocks are also fairly transitory with a first order autocorrelation of ρ1 = 0.43. However,

these innovations (when they are realized) are very large, with a standard deviation of

0.48 at age 25 and average shock level z (i.e., setting h = 0 and z = 0). The second

process is substantially more persistent with ρ2 = 0.97 and receives shocks roughly every

three years (p2 = 0.36). These innovations are somewhat smaller, with σ2 = 0.27 for

youngest agents. However, because the two shocks happen with low probabilities, an

individual receives only a purely i.i.d shock half of the time: σε = 0.063.

25Thus, moments in the three groups are divided, respectively, by 780, 120, and 1120.
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6 Conclusions

Our analysis of life-cycle earnings histories of millions of U.S. workers has reached two

broad conclusions. One, the higher order moments of individual earnings shocks are

important, because the distribution of shocks is very different from lognormal. In partic-

ular, earnings shocks display strong negative skewness (individual “disaster” shocks) and

extremely high kurtosis—as high as 35 compared with 3 for a Gaussian distribution. The

high kurtosis implies that in a given year, most individuals experience very small earnings

shocks, but very few experience extremely large shocks. Second, these statistical proper-

ties of earnings shocks change substantially both over the life cycle and with the earnings

level of individuals. We also estimate impulse response functions of earnings shocks and

find significant asymmetries: positive shocks to high-earnings individuals are quite tran-

sitory, whereas negative shocks are very persistent; the opposite is true for low-earnings

individuals. While these statistical properties are typically ignored in quantitative anal-

yses of life-cycle models, they are fully consistent with search-theoretic models of careers

over the life cycle. After establishing these empirical facts non-parametrically, we es-

timated what we think is the simplest earnings process broadly consistent with these

salient features of the data.

A broader message of this paper is a call to reconsider the way researchers approach

the study of earnings dynamics. The covariance matrix approach that dominates current

work is too opaque and a bit mysterious: it is difficult to judge what it means to match or

miss certain covariances from an economics perspective. With the current trend toward

the increasing availability of very large panel dataset (which should only get better

going forward), our priority in choosing methods should shift from efficiency concerns to

transparency. We believe the approach adopted here is an example of the latter, where

economists can better judge what each moment implies for economic questions....
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Figure 21 – Fraction Switching Jobs Between t and t+ 1
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A Appendix: Additional Figures

A.1 Decomposing Moments: Job-Stayers vs. Job-Switchers

In this section, we present the the cross-sectional statistics analyzed in Section 3 by first

splitting the sample in each year depending on whether a worker switched employers or

whether he stayed at the same job.

One challenge we face is that many workers hold multiple jobs in a given year, which

requires us to be careful about how to think of job changes. We have explored several

plausible definitions and found broadly very similar results. Here we describe one rea-

sonable classification. A worker is said to be a “job-stayer” between years t and t + 1

if a given EIN (employer identification number) provides the largest share of his annual

earnings (out of all his EINs in that year) in years t− 1 through t + 2, and if the same

EIN provides at least 90% of his total annual earnings in years t and t+ 1. A worker is

defined as a “job-switcher” if he is not a job-stayer.26

26Clearly, this classification is quite stringent for classifying somebody as a job stayer, meaning that
some individuals will be classified as job switchers even though they did not change a job. An alternative
definition we have explored defines a job switcher directly as somebody who has an EIN that provides
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Figure 22 – Second to Fourth Moments of Earnings Growth: Stayers vs Switchers
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(b) Std. Dev., Five-Year
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(c) Kelly’s Skewness, One-Year
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(d) Kelly’s Skewness, Five-Year
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(e) Kurtosis, One-Year
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(f) Kurtosis, Five-Year
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Table IV – Moments with Trimmed Data

Original Trim top/bot. 1%
Std. dev. Skew. Kurtosis Std. dev. Skew. Kurtosis

One-Year
All 0.49 –1.49 18.35 0.36 –0.89 8.91
Stayers 0.31 –1.51 42.81 0.20 –0.51 13.50
Switchers 0.67 –1.09 9.69 0.56 –0.85 6.17

Five-Year
All 0.66 –1.06 12.16 0.53 –0.60 6.58
Stayers 0.41 –1.04 28.54 0.29 0.10 7.16
Switchers 0.78 –0.92 8.86 0.65 –0.67 5.61

As seen in Figure 22, the results are consistent with what we might expect. Job-

stayers (i) face a dispersion of earnings changes that is less than half that of job-changers,

(ii) face shocks that have zero or slightly positive skewness as opposed to job-switchers

who face shocks that are very negatively skewed, and (iii) experience shocks with much

higher kurtosis than job-switchers. In fact, kurtosis is as high as 43 for annual changes

and 28.5 for five-year changes for job-stayers, but is less than 10 for job-switchers at both

horizons.

Before concluding this section, we examine how the tails of the earnings change

distribution affect the computed statistics and also examine how this effect varies by

stayers and switchers. Unlike with survey-based data, here we are not too concerned

that these tails might be dominated by measurement error, as most of these changes are

likely to be genuine. Instead, we are simply interested in understanding what parts of

the distribution are critical for the different moments that we estimated so far. Table

IV reports the 2nd to 4th moments for the original sample used so far (left panel) as

well as for a sample where we drop extreme observations, defined as those in the top or

bottom 1% of the earnings change distribution. As expected, discarding the tails reduces

all statistics, but does not change the ranking between stayers and switchers.
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A.2 Cross-Sectional Facts

more than 50% of his annual earnings in year t and provides less than 10% of his annual earnings in
year t+ 1; and also has an EIN that provides less than 10% of his earnings in t and more than 50% in
t+ 1. The results were very similar to those reported here.
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B Details of Estimation Method

B.1 Moment Selection and Aggregation

1. Cross-sectional moments of earnings changes. The first set of moments is

the selected percentiles of the distribution of 1- and five-year earnings changes (∆yit+k =

yit+k − yit, k = 1, 5). We match moments for the following percentiles of the RE dis-

tribution: the 1st through 10th, 20th, 25th, 30th, 40th, 50th, 60th, 75th, 80th, 90th,

91st through 99th, and 99.5th. Furthermore, in order to capture the variation in the

cross-sectional moments of earnings changes along the age and recent earnings dimen-

sions, we condition the distribution of earnings changes on these variables. For this

purpose, we first group workers into 6 age bins (five-year age bins between 25 and 54)

and within each age bin into 100 RE percentiles in age t − 1. Thus, we compute the

selected percentiles from the distribution of earnings changes for 600 different groups of

workers. To reduce the computational time in our estimation, we aggregate these 600

groups of workers into 2 age groups, Ai
t�1, and 13 average past earnings groups, Ỹ i

t�1

(i.e., ∆yit+k ∼ F (yit+k−yit|A
i
t�1, Y

i

t�1)). The first age group is defined as young workers

between ages 25 through 34, whereas the second age group is defined as prime-age work-

ers between the ages of 35 and 54. The average past earnings percentiles are grouped

as follows: 1, 2–10, 11–0, 21–30, ..., 81–90, 91–95, 96–99, 100. Consequently, we end up

with 30× 2× 13 = 780 cross-sectional moments.

2. Mean of log earnings growth. The second set of moments captures the hetero-

geneity in log earnings growth over the working life across workers that are in different

percentiles of the LE distribution. We target the average dollar earnings at 8 points over

the life cycle: ages 25, 30, ..., and 60 for different LE groups. We combine LE percentiles

into larger groups to keep the number of moments at a manageable number, yielding 15

groups consisting of percentiles of the LE distribution: 1 , 2–5, 6–10, 11–20, 21–30,...,

81–90, 91–95, 96–97, 98–99, and 100. The total number of moments we target in this

set is 8× 15 = 120.

3. Impulse response functions. We target average log earnings growth over the

next k years for k = 1, 2, 3, 5, 10, that is, E[yt+k − yt], conditional on groups formed by
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crossing age, Y t�1, and yit − yit�1. We aggregate age groups into two: young workers

(25-34) and prime-age workers (35-55). In each year, individuals are assigned to groups

based on their ranking in the age-specific RE distribution. The following list defines

these groups in terms of the RE distribution: 1–5, 6–10, 11–30, 31–50, 51–70, 71–90,

91–95, 96–100. We then group workers based on the percentiles of yit − yit�1: 1–2, 3–5,

6–10, 11–20, 21–30, 31–40, 41–50, 51–60, 61–70, 71–80, 81–90, 91–95, 96–98, 99–100. As

a result, we have a total of 2× 8× 14× 5 = 1120 moments based on impulse response.

B.2 Numerical Method for Estimation

The estimation objective is maximized as described now. The global stage is a multi-

start algorithm where candidate parameter vectors are uniform Sobol’ (quasi-random)

points. We typically take about 10,000 initial Sobol’ points for pre-testing and select the

best 2000 points (i.e., ranked by objective value) for the multiple restart procedure. The

local minimization stage is performed with a mixture of Nelder-Mead’s downhill simplex

algorithm (which is slow but performs well on difficult objectives) and the DFNLS algo-

rithm of Zhang et al. (2010), which is much faster but has a higher tendency to be stuck

at local minima. We have found that the combination balances speed with reliability

and provides good results.
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(a) Bi-Annual
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(b) Relative to Usual

Figure 23 – Standard Deviation of Annual Earnings Growth
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Figure 24 – Standard Deviation of Biann Five-Year Earnings Growth
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Figure 25 – Standard Deviation of Five-Year Earnings Growth, Usual

54



Third central moment
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Kelly’s measure
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Figure 26 – Skewness of (Bi-Ann) Annual Earnings Growth
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Figure 27 – Skewness of Annual Earnings Growth, Usual
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Third central moment
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Kelly’s measure
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Figure 28 – Skewness of (Bi-Ann) Five-Year Earnings Growth
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Figure 29 – Skewness of Five-Year Earnings Growth, Usual
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Third central moment
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Kelly’s measure
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Figure 30 – Skewness of One-Year Earnings Growth, Excluding bottom and top 1% of
earnings change

Third central moment

0 20 40 60 80 100
−3.5

−2.5

−1.5

−0.5

0.5

Percentiles of 5-Year Average Income Distribution

S
ke
w
n
es
s
of

(y
t+

5
−
y
t
)

25-29
30-34
35-39
40-44
45-49
50-54

Kelly’s measure

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

Percentiles of 5-Year Average Income Distribution

K
el
ly

S
ke
w
n
es
s
of

(y
t+

5
−
y
t
)

25-29
30-34
35-39
40-44
45-49
50-54

Figure 31 – Skewness of Five-Year Earnings Growth, Excluding bottom and top 1% of
earnings change
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Figure 32 – Skewness of One-Year Earnings Growth, Excluding those with earnings
lower than 5% of average past earnings
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Figure 33 – Skewness of Five-Year Earnings Growth, Excluding those with earnings
lower than 5% of average past earnings
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Figure 34 – Kurtosis of Annual earnings Change, By Age and Past Earnings, (2 Year
Average Earnings)
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Figure 35 – Kurtosis of Annual Earnings Change, By Age and Past Earnings, Usual
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Figure 36 – Kurtosis of Five-Year Earnings Change, By Age and Past Earnings, (2
Year Average Earnings)
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Figure 37 – Kurtosis of Five-Year Earnings Change, By Age and Past Earnings, Usual
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Figure 38 – Kurtosis of One-Year Earnings Change, By Age and Past Earnings, Ex-
cluding bottom and top 1% of Earnings change
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Figure 39 – Kurtosis of Five-Year Earnings Change, By Age and Past Earnings, Ex-
cluding bottom and top 1% of Earnings change
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(a) Kurtosis of One-Year Earnings Change, Excluding
those with Earnings lower than 5% of average past Earn-
ings
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(b) Kurtosis of Five-Year Earnings Change, Excluding
those with Earnings lower than 5% of average past Earn-
ings

Figure 40 – Kurtosis, robustness
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