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Abstract

Neural machine translation (MT) models

obtain state-of-the-art performance while

maintaining a simple, end-to-end architec-

ture. However, little is known about what

these models learn about source and tar-

get languages during the training process.

In this work, we analyze the representa-

tions learned by neural MT models at var-

ious levels of granularity and empirically

evaluate the quality of the representations

for learning morphology through extrinsic

part-of-speech and morphological tagging

tasks. We conduct a thorough investiga-

tion along several parameters: word-based

vs. character-based representations, depth

of the encoding layer, the identity of the

target language, and encoder vs. decoder

representations. Our data-driven, quanti-

tative evaluation sheds light on important

aspects in the neural MT system and its

ability to capture word structure.1

1 Introduction

Neural network models are quickly becoming

the predominant approach to machine translation

(MT). Training neural MT (NMT) models can

be done in an end-to-end fashion, which is sim-

pler and more elegant than traditional MT sys-

tems. Moreover, NMT systems have become

competitive with, or better than, the previous

state-of-the-art, especially since the introduction

of sequence-to-sequence models and the atten-

tion mechanism (Bahdanau et al., 2014; Sutskever

et al., 2014). The improved translation quality

is often attributed to better handling of non-local

dependencies and morphology generation (Luong

1Our code is available at https://github.com/

boknilev/nmt-repr-analysis.

and Manning, 2015; Bentivogli et al., 2016; Toral

and Sánchez-Cartagena, 2017).

However, little is known about what and how

much these models learn about each language

and its features. Recent work has started ex-

ploring the role of the NMT encoder in learn-

ing source syntax (Shi et al., 2016), but research

studies are yet to answer important questions such

as: (i) what do NMT models learn about word

morphology? (ii) what is the effect on learning

when translating into/from morphologically-rich

languages? (iii) what impact do different repre-

sentations (character vs. word) have on learning?

and (iv) what do different modules learn about the

syntactic and semantic structure of a language?

Answering such questions is imperative for fully

understanding the NMT architecture. In this pa-

per, we strive towards exploring (i), (ii), and (iii)

by providing quantitative, data-driven answers to

the following specific questions:

• Which parts of the NMT architecture capture

word structure?

• What is the division of labor between differ-

ent components (e.g. different layers or en-

coder vs. decoder)?

• How do different word representations help

learn better morphology and modeling of in-

frequent words?

• How does the target language affect the learn-

ing of word structure?

To achieve this, we follow a simple but effective

procedure with three steps: (i) train a neural MT

system on a parallel corpus; (ii) use the trained

model to extract feature representations for words

in a language of interest; and (iii) train a classi-

fier using extracted features to make predictions
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for another task. We then evaluate the quality of

the trained classifier on the given task as a proxy

to the quality of the extracted representations. In

this way, we obtain a quantitative measure of how

well the original MT system learns features that

are relevant to the given task.

We focus on the tasks of part-of-speech (POS)

and full morphological tagging. We investigate

how different neural MT systems capture POS

and morphology through a series of experiments

along several parameters. For instance, we con-

trast word-based and character-based representa-

tions, use different encoding layers, vary source

and target languages, and compare extracting fea-

tures from the encoder vs. the decoder.

We experiment with several languages with

varying degrees of morphological richness:

French, German, Czech, Arabic, and Hebrew. Our

analysis reveals interesting insights such as:

• Character-based representations are much

better for learning morphology, especially for

low-frequency words. This improvement is

correlated with better BLEU scores. On the

other hand, word-based models are sufficient

for learning the structure of common words.

• Lower layers of the encoder are better at cap-

turing word structure, while deeper networks

improve translation quality, suggesting that

higher layers focus more on word meaning.

• The target language impacts the kind of in-

formation learned by the MT system. Trans-

lating into morphologically-poorer languages

leads to better source-side word representa-

tions. This is partly, but not completely, cor-

related with BLEU scores.

• The neural decoder learns very little about

word structure. The attention mechanism re-

moves much of the burden of learning word

representations from the decoder.

2 Methodology

Given a source sentence s = {w1, w2, ..., wN}
and a target sentence t = {u1, u2, ..., uM}, we

first generate a vector representation for the source

sentence using an encoder (Eqn. 1) and then map

this vector to the target sentence using a decoder

(Eqn. 2) (Sutskever et al., 2014):

Figure 1: Illustration of our approach: (i) NMT

system trained on parallel data; (ii) features ex-

tracted from pre-trained model; (iii) classifier

trained using the extracted features. Here a POS

tagging classifier is trained on features from the

first hidden layer.

ENC : s = {w1, w2, ..., wN} 7! s 2 R
k (1)

DEC : s 2 R
k
7! t = {u1, u2, ..., uM} (2)

In this work, we use long short-term mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997)

encoder-decoders with attention (Bahdanau et al.,

2014), which we train on parallel data.

After training the NMT system, we freeze the

parameters of the encoder and use ENC as a feature

extractor to generate vectors representing words in

the sentence. Let ENCi(s) denote the encoded rep-

resentation of word wi. For example, this may be

the output of the LSTM after word wi. We feed

ENCi(s) to a neural classifier that is trained to pre-

dict POS or morphological tags and evaluate the

quality of the representation based on our ability

to train a good classifier. By comparing the perfor-

mance of classifiers trained with features from dif-

ferent instantiations of ENC, we can evaluate what

MT encoders learn about word structure. Figure 1

illustrates this process. We follow a similar proce-

dure for analyzing representation learning in DEC.

The classifier itself can be modeled in differ-

ent ways. For example, it may be an LSTM over

outputs of the encoder. However, as we are inter-

ested in assessing the quality of the representations

learned by the MT system, we choose to model the

classifier as a simple feed-forward neural network

with one hidden layer and a ReLU non-linearity.

Arguably, if the learned representations are good,

then a non-linear classifier should be able to ex-

tract useful information from them.2 We empha-

2We also experimented with a linear classifier and ob-
served similar trends to the non-linear case, but overall lower
results; Qian et al. (2016b) reported similar findings.
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Ar De Fr Cz

Gold/Pred Gold/Pred Pred Pred

Train Tokens 0.5M/2.7M 0.9M/4M 5.2M 2M
Dev Tokens 63K/114K 45K/50K 55K 35K
Test Tokens 62K/16K 44K/25K 23K 20K

POS Tags 42 54 33 368
Morph Tags 1969 214 – –

Table 1: Statistics for annotated corpora in Arabic

(Ar), German (De), French (Fr), and Czech (Cz).

size that our goal is not to beat the state-of-the-art

on a given task, but rather to analyze what NMT

models learn about morphology. The classifier

is trained with a cross-entropy loss; more details

about its architecture are given in the supplemen-

tary material (appendix A.1).

3 Data

Language pairs We experiment with several

language pairs, including morphologically-rich

languages, that have received relatively significant

attention in the MT community. These include

Arabic-, German-, French-, and Czech-English

pairs. To broaden our analysis and study the effect

of having morphologically-rich languages on both

source and target sides, we also include Arabic-

Hebrew, two languages with rich and similar mor-

phological systems, and Arabic-German, two lan-

guages with rich but different morphologies.

MT data Our translation models are trained on

the WIT3 corpus of TED talks (Cettolo et al.,

2012; Cettolo, 2016) made available for IWSLT

2016. This allows for comparable and cross-

linguistic analysis. Statistics about each language

pair are given in Table 1 (under Pred). We use of-

ficial dev and test sets for tuning and testing. Re-

ported figures are the averages over test sets.

Annotated data We use two kinds of datasets

to train POS and morphological classifiers: gold-

standard and predicted tags. For predicted tags,

we simply used freely available taggers to anno-

tate the MT data. For gold tags, we use gold-

annotated datasets. Table 1 provides statistics for

datasets with gold and predicted tags; see the sup-

plementary material (appendix A.2) for more de-

tails about taggers and gold data. We train and test

our classifiers on predicted annotations, and simi-

larly on gold annotations, when we have them. We

report both results wherever available.

Gold Pred BLEU

Word/Char Word/Char Word/Char

Ar-En 80.31/93.66 89.62/95.35 24.7/28.4

Ar-He 78.20/92.48 88.33/94.66 9.9/10.7

De-En 87.68/94.57 93.54/94.63 29.6/30.4

Fr-En – 94.61/95.55 37.8/38.8

Cz-En – 75.71/79.10 23.2/25.4

Table 2: POS accuracy on gold and predicted tags

using word-based and character-based representa-

tions, as well as corresponding BLEU scores.

4 Encoder Analysis

Recall that after training the NMT system we

freeze its parameters and use it only to gener-

ate features for the POS/morphology classifier.

Given a trained encoder ENC and a sentence s with

POS/morphology annotation, we generate word

features ENCi(s) for every word in the sentence.

We then train a classifier that uses the features

ENCi(s) to predict POS or morphological tags.

4.1 Effect of word representation

In this section, we compare different word repre-

sentations extracted with different encoders. Our

word-based model uses a word embedding ma-

trix which is initialized randomly and learned with

other NMT parameters. For a character-based

model we adopt a convolutional neural network

(CNN) over character embeddings that is also

learned during training (Kim et al., 2015); see ap-

pendix A.1 for specific settings. In both cases we

run the encoder over these representations and use

its output ENCi(s) as features for the classifier.

Table 2 shows POS tagging accuracy using

features from different NMT encoders. Char-

based models always generate better represen-

tations for POS tagging, especially in the case

of morphologically-richer languages like Arabic

and Czech. We observed a similar pattern in

the full morphological tagging task. For exam-

ple, we obtain morphological tagging accuracy

of 65.2/79.66 and 67.66/81.66 using word/char-

based representations from the Arabic-Hebrew

and Arabic-English encoders, respectively.3 The

superior morphological power of the char-based

model also manifests in better translation quality

(measured by BLEU), as shown in Table 2.

3The results are not far below dedicated taggers (e.g.
95.1/84.1 on Arabic POS/morphology (Pasha et al., 2014)),
indicating that NMT models learn quite good representations.
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Figure 2: POS and morphological tagging accuracy of word-based and character-based models per word

frequency in the training data. Best viewed in color.

Figure 3: Improvement in POS/morphology accu-

racy of character-based vs. word-based models for

words unseen/seen in training, and for all words.

Impact of word frequency Let us look more

closely at an example case: Arabic POS and mor-

phological tagging. Figure 3 shows the effect of

using word-based vs. char-based feature represen-

tations, obtained from the encoder of the Arabic-

Hebrew system (other language pairs exhibit sim-

ilar trends). Clearly, the char-based model is su-

perior to the word-based one. This is true for the

overall accuracy (+14.3% in POS, +14.5% in mor-

phology), but more so in OOV words (+37.6% in

POS, +32.7% in morphology). Figure 2 shows that

the gap between word-based and char-based repre-

sentations increases as the frequency of the word

in the training data decreases. In other words, the

more frequent the word, the less need there is for

character information. These findings make intu-

itive sense: the char-based model is able to learn

character n-gram patterns that are important for

identifying word structure, but as the word be-

comes more frequent the word-based model has

seen enough examples to make a decision.

Figure 4: Increase in POS accuracy with char- vs.

word-based representations per tag frequency in

the training set; larger bubbles reflect greater gaps.

Analyzing specific tags In Figure 5 we plot

confusion matrices for POS tagging using word-

based and char-based representations (from Ara-

bic encoders). While the char-based represen-

tations are overall better, the two models still

share similar misclassified tags. Much of the

confusion comes from wrongly predicting nouns

(NN, NNP). In the word-based case, relatively

many tags with determiner (DT+NNP, DT+NNPS,

DT+NNS, DT+VBG) are wrongly predicted as

non-determined nouns (NN, NNP). In the char-

based case, this hardly happens. This suggests that

the char-based representations are predictive of the

presence of a determiner, which in Arabic is ex-

pressed as the prefix “Al-” (the definite article), a

pattern easily captured by a char-based model.

In Figure 4 we plot the difference in POS accu-

racy when moving from word-based to char-based

representations, per POS tag frequency in the

training data. Tags closer to the upper-right corner

occur more frequently in the training set and are
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(a) Word-based representations. (b) Character-based representations.

Figure 5: Confusion matrices for POS tagging using word-based and character-based representations.

better predicted by char-based compared to word-

based representations. There are a few fairly fre-

quent tags (in the middle-bottom part of the fig-

ure) whose accuracy does not improve much when

moving from word- to char-based representations:

mostly conjunctions, determiners, and certain par-

ticles (CC, DT, WP). But there are several very

frequent tags (NN, DT+NN, DT+JJ, VBP, and

even PUNC) whose accuracy improves quite a

lot. Then there are plural nouns (NNS, DT+NNS)

where the char-based model really shines, which

makes sense linguistically as plurality in Arabic

is usually expressed by certain suffixes (“-wn/yn”

for masc. plural, “-At” for fem. plural). The char-

based model is thus especially good with frequent

tags and infrequent words, which is understand-

able given that infrequent words typically belong

to frequent open categories like nouns and verbs.

4.2 Effect of encoder depth

Modern NMT systems use very deep architectures

with up to 8 or 16 layers (Wu et al., 2016; Zhou

et al., 2016). We would like to understand what

kind of information different layers capture. Given

a trained NMT model with multiple layers, we

extract feature representations from the different

layers in the encoder. Let ENCl
i
(s) denote the

encoded representation of word wi after the l-th

layer. We can vary l and train different classi-

fiers to predict POS or morphological tags. Here

we focus on the case of a 2-layer encoder-decoder

model for simplicity (l 2 {1, 2}).

Figure 6: POS tagging accuracy using representa-

tions from layers 0 (word vectors), 1, and 2, taken

from encoders of different language pairs.

Figure 6 shows POS tagging results using rep-

resentations from different encoding layers across

five language pairs. The general trend is that pass-

ing word vectors through the NMT encoder im-

proves POS tagging, which can be explained by

the contextual information contained in the repre-

sentations after one layer. However, it turns out

that representations from the 1st layer are bet-

ter than those from the 2nd layer, at least for

the purpose of capturing word structure. Fig-

ure 7 demonstrates that the same pattern holds for

both word-based and char-based representations,

on Arabic POS and morphological tagging. In all

cases, layer 1 representations are better than layer

2 representations.4 In contrast, BLEU scores ac-

4We found this result to be also true in French, German,
and Czech experiments; see appendix A.3.
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Figure 7: POS and morphological tagging accu-

racy across layers. Layer 0: word vectors or char-

based representations before the encoder; layers 1

and 2: representations after the 1st and 2nd layers.

tually increase when training 2-layer vs. 1-layer

models (+1.11/+0.56 BLEU for Arabic-Hebrew

word/char-based models). Thus translation qual-

ity improves when adding layers but morphol-

ogy quality degrades. Intuitively, it seems that

lower layers of the network learn to represent word

structure while higher layers are more focused on

word meaning. A similar pattern was recently ob-

served in a joint language-vision deep recurrent

network (Gelderloos and Chrupała, 2016).

4.3 Effect of target language

While translating from morphologically-rich lan-

guages is challenging, translating into such lan-

guages is even harder. For instance, our ba-

sic system obtains BLEU scores of 24.69/23.2

on Arabic/Czech to English, but only 13.37/13.9

on English to Arabic/Czech. How does the

target language affect the learned source lan-

guage representations? Does translating into

a morphologically-rich language require more

knowledge about source language morphology?

In order to investigate these questions, we fix

the source language and train NMT models us-

ing different target languages. For example,

given an Arabic source side, we train Arabic-to-

English/Hebrew/German systems. These target

languages represent a morphologically-poor lan-

guage (English), a morphologically-rich language

with similar morphology to the source language

(Hebrew), and a morphologically-rich language

with different morphology (German). To make a

fair comparison, we train the models on the inter-

section of the training data based on the source

language. In this way the experimental setup is

Figure 8: Effect of target language on representa-

tion quality of the Arabic source.

completely identical: the models are trained on the

same Arabic sentences with different translations.

Figure 8 shows POS and morphological tagging

accuracy of word-based representations from the

NMT encoders, as well as corresponding BLEU

scores. As expected, translating into English is

easier than translating into the morphologically-

richer Hebrew and German, resulting in higher

BLEU scores. Despite their similar morphologi-

cal systems, translating Arabic to Hebrew is worse

than Arabic to German, which can be attributed

to the richer Hebrew morphology compared to

German. POS and morphology accuracies share

an intriguing pattern: the representations that are

learned when translating into English are better for

predicting POS or morphology than those learned

when translating into German, which are in turn

better than those learned when translating into He-

brew. This is remarkable given that English is a

morphologically-poor language that does not dis-

play many of the morphological properties that

are found in the Arabic source. In contrast, Ger-

man and Hebrew have richer morphologies, so

one could expect that translating into them would

make the model learn more about morphology.

A possible explanation for this phenomenon is

that the Arabic-English model is simply better

than the Arabic-Hebrew and Arabic-German mod-

els, as hinted by the BLEU scores in Table 2.

The inherent difficulty in translating Arabic to He-

brew/German may affect the ability to learn good

representations of word structure. To probe this

more, we trained an Arabic-Arabic autoencoder

on the same training data. We found that it learns

to recreate the test sentences extremely well, with

very high BLEU scores (Figure 8). However, its
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word representations are actually inferior for the

purpose of POS/morphological tagging. This im-

plies that higher BLEU does not necessarily en-

tail better morphological representations. In other

words, a better translation model learns more in-

formative representations, but only when it is actu-

ally learning to translate rather than merely mem-

orizing the data as in the autoencoder case. We

found this to be consistently true also for char-

based experiments, and in other language pairs.

5 Decoder Analysis

So far we only looked at the encoder. However,

the decoder DEC is a crucial part in an MT system

with access to both source and target sentences.

In order to examine what the decoder learns about

morphology, we first train an NMT system on the

parallel corpus. Then, we use the trained model to

encode a source sentence and extract features for

words in the target sentence. These features are

used to train a classifier on POS or morphological

tagging on the target side.5 Note that in this case

the decoder is given the correct target words one-

by-one, similar to the usual NMT training regime.

Table 3 (1st row) shows the results of using rep-

resentations extracted with ENC and DEC from the

Arabic-English and English-Arabic models, re-

spectively. There is clearly a huge drop in rep-

resentation quality with the decoder.6 At first, this

drop seems correlated with lower BLEU scores in

English to Arabic vs. Arabic to English. However,

we observed similar low POS tagging accuracy

using decoder representations from high-quality

NMT models. For instance, the French-to-English

system obtains 37.8 BLEU, but its decoder rep-

resentations give a mere 54.26% accuracy on En-

glish POS tagging.

As an alternative explanation for the poor qual-

ity of the decoder representations, consider the

fundamental tasks of the two NMT modules: en-

coder and decoder. The encoder’s task is to create

a generic, close to language-independent represen-

tation of the source sentence, as shown by recent

evidence from multilingual NMT (Johnson et al.,

2016). The decoder’s task is to use this represen-

tation to generate the target sentence in a specific

5In this section we only experiment with predicted tags as
there are no parallel data with gold POS/morphological tags
that we are aware of.

6Note that the decoder results are above a majority base-
line of 20%, so the decoder is still learning something about
the target language.

POS Accuracy BLEU

Attn ENC DEC Ar-En En-Ar

3 89.62 43.93 24.69 13.37

7 74.10 50.38 11.88 5.04

Table 3: POS tagging accuracy using encoder and

decoder representations with/without attention.

language. Presumably, it is sufficient for the de-

coder to learn a strong language model in order

to produce morphologically-correct output, with-

out learning much about morphology, while the

encoder needs to learn quite a lot about source

language morphology in order to create a good

generic representation. In the following section

we show that the attention mechanism also plays

an important role in the division of labor between

encoder and decoder.

5.1 Effect of attention

Consider the role of the attention mechanism in

learning useful representations: during decoding,

the attention weights are combined with the de-

coder’s hidden states to generate the current trans-

lation. These two sources of information need to

jointly point to the most relevant source word(s)

and predict the next most likely word. Thus,

the decoder puts significant emphasis on mapping

back to the source sentence, which may come at

the expense of obtaining a meaningful representa-

tion of the current word. We hypothesize that the

attention mechanism hurts the quality of the target

word representations learned by the decoder.

To test this hypothesis, we train NMT models

with and without attention and compare the quality

of their learned representations. As Table 3 shows

(compare 1st and 2nd rows), removing the atten-

tion mechanism decreases the quality of the en-

coder representations, but improves the quality of

the decoder representations. Without the attention

mechanism, the decoder is forced to learn more

informative representations of the target language.

5.2 Effect of word representation

We also conducted experiments to verify our find-

ings regarding word-based versus character-based

representations on the decoder side. By charac-

ter representation we mean a character CNN on

the input words. The decoder predictions are still

done at the word-level, which enables us to use its

hidden states as word representations.
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Table 4 shows POS accuracy of word-based vs.

char-based representations in the encoder and de-

coder. While char-based representations improve

the encoder, they do not help the decoder. BLEU

scores behave similarly: the char-based model

leads to better translations in Arabic-to-English,

but not in English-to-Arabic. A possible expla-

nation for this phenomenon is that the decoder’s

predictions are still done at word level even with

the char-based model (which encodes the target in-

put but not the output). In practice, this can lead

to generating unknown words. Indeed, in Arabic-

to-English the char-based model reduces the num-

ber of generated unknown words in the MT test

set by 25%, while in English-to-Arabic the num-

ber of unknown words remains roughly the same

between word-based and char-based models.

6 Related Work

Analysis of neural models The opacity of neu-

ral networks has motivated researchers to ana-

lyze such models in different ways. One line of

work visualizes hidden unit activations in recur-

rent neural networks that are trained for a given

task (Elman, 1991; Karpathy et al., 2015; Kádár

et al., 2016; Qian et al., 2016a). While such vi-

sualizations illuminate the inner workings of the

network, they are often qualitative in nature and

somewhat anecdotal. A different approach tries to

provide a quantitative analysis by correlating parts

of the neural network with linguistic properties,

for example by training a classifier to predict fea-

tures of interest. Different units have been used,

from word embeddings (Köhn, 2015; Qian et al.,

2016b), through LSTM gates or states (Qian et al.,

2016a), to sentence embeddings (Adi et al., 2016).

Our work is most similar to Shi et al. (2016), who

use hidden vectors from a neural MT encoder to

predict syntactic properties on the English source

side. In contrast, we focus on representations in

morphologically-rich languages and evaluate both

source and target sides across several criteria. Vy-

lomova et al. (2016) also analyze different repre-

sentations for morphologically-rich languages in

MT, but do not directly measure the quality of the

learned representations.

Word representations in MT Machine transla-

tion systems that deal with morphologically-rich

languages resort to various techniques for repre-

senting morphological knowledge, such as word

segmentation (Nieflen and Ney, 2000; Koehn and

POS Accuracy BLEU

ENC DEC Ar-En En-Ar

Word 89.62 43.93 24.69 13.37

Char 95.35 44.54 28.42 13.00

Table 4: POS tagging accuracy using word-based

and char-based encoder/decoder representations.

Knight, 2003; Badr et al., 2008) and factored

translation and reordering models (Koehn and

Hoang, 2007; Durrani et al., 2014). Charac-

ters and other sub-word units have become in-

creasingly popular in neural MT, although they

had also been used in phrase-based MT for han-

dling morphologically-rich (Luong et al., 2010)

or closely related language pairs (Durrani et al.,

2010; Nakov and Tiedemann, 2012). In neural

MT, such units are obtained in a pre-processing

step—e.g. by byte-pair encoding (Sennrich et al.,

2016) or the word-piece model (Wu et al., 2016)—

or learned during training using a character-based

convolutional/recurrent sub-network (Costa-jussà

and Fonollosa, 2016; Luong and Manning, 2016;

Vylomova et al., 2016). The latter approach has

the advantage of keeping the original word bound-

aries without requiring pre- and post-processing.

Here we focus on a character CNN which has

been used in language modeling and machine

translation (Kim et al., 2015; Belinkov and Glass,

2016; Costa-jussà and Fonollosa, 2016; Jozefow-

icz et al., 2016; Sajjad et al., 2017). We evaluate

the quality of different representations learned by

an MT system augmented with a character CNN

in terms of POS and morphological tagging, and

contrast them with a purely word-based system.

7 Conclusion

Neural networks have become ubiquitous in ma-

chine translation due to their elegant architecture

and good performance. The representations they

use for linguistic units are crucial for obtaining

high-quality translation. In this work, we inves-

tigated how neural MT models learn word struc-

ture. We evaluated their representation quality on

POS and morphological tagging in a number of

languages. Our results lead to the following con-

clusions:

• Character-based representations are better

than word-based ones for learning morphol-

ogy, especially in rare and unseen words.
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• Lower layers of the neural network are better

at capturing morphology, while deeper net-

works improve translation performance. We

hypothesize that lower layers are more fo-

cused on word structure, while higher ones

are focused on word meaning.

• Translating into morphologically-poorer lan-

guages leads to better source-side representa-

tions. This is partly, but not completely, cor-

related with BLEU scores.

• The attentional decoder learns impoverished

representations that do not carry much infor-

mation about morphology.

These insights can guide further development of

neural MT systems. For instance, jointly learn-

ing translation and morphology can possibly lead

to better representations and improved translation.

Our analysis indicates that this kind of approach

should take into account factors such as the en-

coding layer and the type of word representation.

Another area for future work is to extend

the analysis to other word representations (e.g.

byte-pair encoding), deeper networks, and more

semantically-oriented tasks such as semantic role-

labeling or semantic parsing.

Acknowledgments

We would like to thank Helmut Schmid for provid-

ing the Tiger corpus, members of the MIT Spoken

Language Systems group for helpful comments,

and the three anonymous reviewers for their use-

ful suggestions. This research was carried out in

collaboration between the HBKU Qatar Comput-

ing Research Institute (QCRI) and the MIT Com-

puter Science and Artificial Intelligence Labora-

tory (CSAIL).

References

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained Anal-
ysis of Sentence Embeddings Using Auxiliary Pre-
diction Tasks. arXiv preprint arXiv:1608.04207 .

Ibrahim Badr, Rabih Zbib, and James Glass. 2008.
Segmentation for English-to-Arabic Statisti-
cal Machine Translation. In Proceedings of
the 46th Annual Meeting of the Association
for Computational Linguistics on Human Lan-
guage Technologies: Short Papers. Colum-
bus, Ohio, HLT-Short ’08, pages 153–156.
http://dl.acm.org/citation.cfm?id=1557690.1557732.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint
arXiv:1409.0473 .

Yonatan Belinkov and James Glass. 2016. Large-Scale
Machine Translation between Arabic and Hebrew:
Available Corpora and Initial Results. In Proceed-
ings of the Workshop on Semitic Machine Trans-
lation. Association for Computational Linguistics,
Austin, Texas, pages 7–12.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and
Marcello Federico. 2016. Neural versus Phrase-
Based Machine Translation Quality: a Case Study.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, Austin, Texas,
pages 257–267. https://aclweb.org/anthology/D16-
1025.

Mauro Cettolo. 2016. An Arabic-Hebrew parallel cor-
pus of TED talks. In Proceedings of the Work-
shop on Semitic Machine Translation. Association
for Computational Linguistics, Austin, Texas, pages
1–6.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proceedings of the 16th

Conference of the European Association for Ma-
chine Translation (EAMT). Trento, Italy, pages 261–
268.
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A Supplementary Material

A.1 Training Details

POS/Morphological classifier The classifier

used for all prediction tasks is a feed-forward net-

work with one hidden layer, dropout (ρ = 0.5), a

ReLU non-linearity, and an output layer mapping

to the tag set (followed by a Softmax). The size

of the hidden layer is set to be identical to the size

of the encoder’s hidden state (typically 500 dimen-

sions). We use Adam (Kingma and Ba, 2014) with

default parameters to minimize the cross-entropy

objective. Training is run with mini-batches of

size 16 and stopped once the loss on the dev set

stops improving; we allow a patience of 5 epochs.

Neural MT system We train a 2-layer LSTM

encoder-decoder with attention. We use the

seq2seq-attn implementation (Kim, 2016)

with the following default settings: word vec-

tors and LSTM states have 500 dimensions, SGD

with initial learning rate of 1.0 and rate decay

of 0.5, and dropout rate of 0.3. The character-

based model is a CNN with a highway network

over characters (Kim et al., 2015) with 1000 fea-

ture maps and a kernel width of 6 characters.

This model was found to be useful for translating

morphologically-rich languages (Costa-jussà and

Fonollosa, 2016). The MT system is trained for

20 epochs, and the model with the best dev loss is

used for extracting features for the classifier.

A.2 Data and Taggers

Datasets All of the translation models are

trained on the Ted talks corpus included in WIT3

(Cettolo et al., 2012; Cettolo, 2016). Statistics

about each language pair are available on the

WIT3 website: https://wit3.fbk.eu. For

experiments using gold tags, we used the Arabic

Treebank for Arabic (with the versions and splits

described in the MADAMIRA manual (Pasha

et al., 2014)) and the Tiger corpus for German.7

POS and morphological taggers We used the

following tools to annotate the MT corpora:

MADAMIRA (Pasha et al., 2014) for Arabic POS

and morphological tags, Tree-Tagger (Schmid,

1994) for Czech and French POS tags, LoPar

(Schmid, 2000) for German POS and morpholog-

ical tags, and MXPOST (Ratnaparkhi, 1998) for

English POS tags. These tools are recommended

7http://www.ims.uni-stuttgart.de/

forschung/ressourcen/korpora/tiger.html

on the Moses website.8 As mentioned before, our

goal is not to achieve state-of-the-art results, but

rather to study what different components of the

NMT architecture learn about word morphology.

Please refer to Mueller et al. (2013) for represen-

tative POS and morphological tagging accuracies.

A.3 Supplementary Results

We report here results that were omitted from the

paper due to the space limit. Table 5 shows en-

coder results using different layers, languages, and

representations (word/char-based). As noted in the

paper, all the results consistently show that i) layer

1 performs better than layers 0 and 2; and ii) char-

based representations are better than word-based

for learning morphology. Table 6 shows that trans-

lating into a morphologically-poor language (En-

glish) leads to better source representations, and

Table 7 provides additional decoder results.

Layer 0 Layer 1 Layer 2

Word/Char (POS)

De 91.1/92.0 93.6/95.2 93.5/94.6

Fr 92.1/92.9 95.1/95.9 94.6/95.6

Cz 76.3/78.3 77.0/79.1 75.7/80.6

Word/Char (Morphology)

De 87.6/88.8 89.5/91.2 88.7/90.5

Table 5: POS and morphology accuracy on pre-

dicted tags using word- and char-based represen-

tations from different layers of *-to-En systems.

Source

Target
English Arabic Self

German 93.5 92.7 89.3

Czech 75.7 75.2 71.8

Table 6: Impact of changing the target language

on POS tagging accuracy. Self = German/Czech

in rows 1/2 respectively.

En-De En-Cz De-En Fr-En

POS 53.6 36.3 53.3 54.1

BLEU 23.4 13.9 29.6 37.8

Table 7: POS accuracy and BLEU using decoder

representations from different language pairs.

8http://www.statmt.org/moses/?n=Moses.
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