
What Do Reversible Programs Compute?

Holger Bock Axelsen and Robert Glück

DIKU, Department of Computer Science, University of Copenhagen
funkstar@diku.dk, glueck@acm.org

Abstract. Reversible computing is the study of computation models
that exhibit both forward and backward determinism. Understanding
the fundamental properties of such models is not only relevant for re-
versible programming, but has also been found important in other fields,
e.g., bidirectional model transformation, program transformations such
as inversion, and general static prediction of program properties.

Historically, work on reversible computing has focussed on reversible
simulations of irreversible computations. Here, we take the viewpoint
that the property of reversibility itself should be the starting point of
a computational theory of reversible computing. We provide a novel
semantics-based approach to such a theory, using reversible Turing ma-
chines (RTMs) as the underlying computation model.

We show that the RTMs can compute exactly all injective, computable
functions. We find that the RTMs are not strictly classically universal,
but that they support another notion of universality; we call this RTM-
universality. Thus, even though the RTMs are sub-universal in the classi-
cal sense, they are powerful enough as to include a self-interpreter. Lifting
this to other computation models, we propose r-Turing completeness as
the ‘gold standard’ for computability in reversible computation models.

1 Introduction

The computation models that form the basis of programming languages are
usually deterministic in one direction (forward), but non-deterministic in the
opposite (backward) direction. Most other well-studied programming models
exhibit non-determinism in both computation directions. Common to both of
these classes is that they are information lossy, because generally a previous
computation state cannot be recovered from a current state. This has implica-
tions on the analysis and application of these models. Reversible computing is the
study of computation models wherein all computations are organized two-way
deterministically, without any logical information loss.

Reversible computation models have been studied in widely different areas
ranging from cellular automata [11], program transformation concerned with the
inversion of programs [19], reversible programming languages [3,21], the view-
update problem in bidirectional computing and model transformation [14,6],
static prediction of program properties [15], digital circuit design [18,20], to
quantum computing [5]. However, between all these cases, the definition and
use of reversibility varies significantly (and subtly), making it difficult to apply

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 42–56, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

What Do Reversible Programs Compute? 43

results learned in one area to others. For example, even though reversible Turing
machines were introduced several decades ago [4], the authors have found that
there has been a blurring of the concepts of reversibility and reversibilization,
which makes it difficult to ascertain exactly what is being computed, in later
publications.

This paper aims to establish the foundational computability aspects for re-
versible computation models from a formal semantics viewpoint, using reversible
Turing machines (RTMs, [4]) as the underlying computation model, to answer
the question: What do reversible programs compute?

In reversible computation models, each atomic computation step must be
reversible. This might appear as too restrictive to allow general and useful com-
putations in reversible computation models. On the other hand, it might appear
from the seminal papers by Landauer [9] and Bennett [4], that reversibility is
not restrictive at all, and that all computations can be performed reversibly. We
show that both of these viewpoints are wrong, under the view that the functional
(semantical) behavior of a reversible machine should be logically reversible.

This paper brings together many different streams of work in an integrated
semantics formalism that makes reversible programs accessible to a precise anal-
ysis, as a stepping stone for future work that makes use of reversibility. Thus,
this paper is also an attempt to give a precise structure and basis for a founda-
tional computability theory of reversible languages, in the spirit of the semantics
approach to computability of Jones [8].

We give a formal presentation of the reversible Turing machines (Sect. 2), and,
using a semantics-based approach (Sect. 3), outline the foundational results of re-
versible computing (Sect. 4). We show the computational robustness of the RTMs
under reductions of the number of symbols and tapes (Sect. 5). Following a proof
tactic introduced by Bennett, we show that the RTMs can compute exactly all
injective, computable functions (Sect. 6). We study the question of universality,
and give a novel interpretation of the concept (RTM-universality) that applies
to RTMs, and prove constructively that the RTMs are RTM-universal (Sect. 7).
We propose r-Turing completeness (Sect. 8) as the measure for computability of
reversible computation models. Following a discussion of related work (Sect. 9)
we present our conclusions (Sect. 10).

2 Reversible Triple-Format Turing Machines

The computation model we shall consider here is the Turing machine (TM).
Recall that a Turing machine consists of a (doubly-infinite) tape of cells along
which a tape head moves in discrete steps, reading and writing on the tape
according to an internal state and a fixed transition relation. We shall here adopt
a triple format for the rules which is similar to Bennett’s quadruple format [4],
but has the advantage of being slightly easier to work with1.

1 It is straightforward to translate back and forth between triple, quadruple, and the
usual quintuple formats.

44 H.B. Axelsen and R. Glück

Definition 1 (Turing machine). A TM T is a tuple (Q, Σ, δ, b, qs, qf) where
Q is a finite set of states, Σ is a finite set of tape symbols, b ∈ Σ is the blank
symbol,

δ ⊆ (Q× [(Σ ×Σ) ∪ {←, ↓,→}]×Q) = Δ

is a partial relation defining the transition relation, qs ∈ Q is the starting state,
and qf ∈ Q is the final state. There must be no transitions leading out of qf nor
into qs. Symbols ←, ↓, → represent the three shift directions (left, stay, right).

The form of a triple in δ is either a symbol rule (q, (s, s′), q′) or a shift rule
(q, d, q′) where q, q′ ∈ Q, s, s′ ∈ Σ, and d ∈ {←, ↓,→}. Intuitively, a symbol rule
says that in state q, if the tape head is reading symbol s, write s′ and change
into state q′. A shift rule says that in state q, move the tape head in direction d
and change into state q′. It is easy to see how to extend the definition to k-tape
machines by letting

δ ⊆ (Q× [(Σ ×Σ)k ∪ {←, ↓,→}k]×Q) .

Definition 2 (Configuration). The configuration of a TM is a tuple (q, (l, s, r))
∈ Q × (Σ∗ × Σ × Σ∗) = C, where q ∈ Q is the internal state, l, r ∈ Σ∗ are the
parts of the tape to the left and right of the tape head represented as strings, and
s ∈ Σ is the symbol being scanned by the tape head2.

Definition 3 (Computation step). A TM T = (Q, Σ, δ, b, qs, qf) in configu-
ration C ∈ C leads to configuration C′ ∈ C, written as T � C � C′, defined for
s, s′ ∈ Σ, l, r ∈ Σ∗ and q, q′ ∈ Q by

T � (q, (l, s, r)) � (q′, (l, s′, r)) if (q, (s, s′), q′) ∈ δ ,
T � (q, (ls′, s, r)) � (q′, (l, s′, sr)) if (q,←, q′) ∈ δ ,
T � (q, (l, s, r)) � (q′, (l, s, r)) if (q, ↓, q′) ∈ δ ,
T � (q, (l, s, s′r)) � (q′, (ls, s′, r)) if (q,→, q′) ∈ δ .

Definition 4 (Local forward/backward determinism). A TM T = (Q, Σ, δ,
b, qs, qf) is locally forward deterministic iff for any distinct pair of transition rule
triples (q1, a1, q

′
1), (q2, a2, q

′
2) ∈ δ, if q1 = q2 then a1 = (s1, s

′
1) and a2 = (s2, s

′
2),

and s1 	= s2. A TM T is locally backward deterministic iff for any distinct pair of
triples (q1, a1, q

′
1), (q2, a2, q

′
2) ∈ δ, if q′1 = q′2 then a1 = (s1, s

′
1) and a2 = (s2, s

′
2),

and s′1 	= s′2.

As an example, the pair (q, (a, b), p) and (q, (a, c), p) respects backward deter-
minism (but not forward determinism); the pair (q, (a, b), p) and (r, (c, b), p) is
not backward deterministic; and neither is the pair (q, (a, b), p) and (r,→, p)3.

Definition 5 (Reversible Turing machine). A TM T is reversible iff it is
locally forward and backward deterministic.
2 When describing tape contents we shall use the empty string ε to denote the infinite

string of blanks bω, and shall usually omit it when unambiguous.
3 When we use typewriter font we usually refer to concrete instances, rather than

variables. Thus, in this example q and p refers to different concrete states.

What Do Reversible Programs Compute? 45

The reversible Turing machines (RTMs) are thus a proper subset of the set of
all Turing machines, with an easily decidable property. We need the following
important lemma. Note that this applies to each computation step.

Lemma 1. If T is a reversible Turing machine, then the induced computation
step relation T � ·� · is an injective function on configurations.

3 Semantics for Turing Machines

What do Turing machines compute? In other words, what is the codomain and
definition of the semantics function [[·]] : TMs → ? for Turing machines? This
might seem an odd question seeing as we have just defined how TMs work, but
the answer depends on a concrete semantical choice, and has a profound effect
on the computational strength of the RTMs. (Note: For the rest of this paper,
we shall consider the relationship mainly between deterministic and reversible
Turing machines. Thus, all TMs are assumed to be fwd deterministic).

At this point, the expert reader might object that the original results by
Landauer [9] and Bennett [4] (cf. Lemmas 4 and 5) show exactly how we can
“reversibilize” any computation, and that the RTMs should therefore be able to
compute exactly what the TMs in general can compute. Furthermore, Morita
and Yamaguchi [13] exhibited a universal reversible Turing machine, so the uni-
versality of the RTMs should already be established. As we shall see, however, if
one takes reversibility as also including the input/output behaviour of the ma-
chines, neither of these claims hold: Reversibilization is not semantics preserving,
and the RTMs are not universal in the classical sense.

There are several reasons for considering the extensional behavior of RTMs
to itself be subject to reversibility.

– The reversible machines, computation models and programming languages,
form a much larger class than just the reversibilized machines of Landauer
and Bennett performing reversible simulations of irreversible machines.

– It leads to a richer and more elegant (functional) theory for reversible pro-
grams: Program composition becomes function composition, program inver-
sion becomes function inversion, etc., and we are able to use such properties
directly and intuitively in the construction of new reversible programs. This
is not the case for reversible simulations.

– If we can ad hoc dismiss part of the output configuration, there seems to
be little to constrain us from allowing such irreversibilities as part of the
computation process as well.

In order to talk about input/output behavior on tapes in a regular fashion, we
use the following definition.

Definition 6 (Standard configuration). A tape containing a finite, blank-
free string s ∈ (Σ\{b})∗ is said to be given in standard configuration for a TM
(Q, Σ, δ, b, qs, qf) iff the tape head is positioned to the immediate left of s on the
tape, i.e. if for some q ∈ Q, the configuration of the TM is (q, (ε, b, s)).

46 H.B. Axelsen and R. Glück

We shall consider the tape input/output (function) behavior. Here, the semantic
function of a Turing machine is defined by its effect on the entire configuration.

Definition 7 (String transformation semantics). The semantics [[T]] of a
TM T = (Q, Σ, δ, b, qs, qf) is given by the relation

[[T]] = {(s, s′) ∈ ((Σ\{b})∗ × (Σ\{b})∗) | T � (qs , (ε, b, s)) �∗ (qf , (ε, b, s′))}.

Intuitively, a computation is performed as follows. In starting state qs , with input
s given in standard configuration (qs , (ε, b, s)), repeatedly apply �, until the
machine halts (if it halts) in standard configuration (qf , (ε, b, s′)). To differentiate
between semantics and mechanics, we shall write T (x) to mean the computation
of [[T]](x) by the specific machine T . We say that T computes function f iff
[[T]] = f . Thus, the string transformation semantics of a TM T has type

[[T]] : Σ∗ ⇀ Σ∗ .

Under this semantics there is a one-to-one correspondence between input/output
strings and the configurations that represent them, so the machine input/output
behaviour is logically reversible. In contrast to this, the (implicit) semantics used
for decision problems (language recognition) gives us programs of type

[[T]]dp : Σ∗ ⇀ {accept , reject} ,

where halting configurations are projected down to a single bit. It is well known
that for classical Turing machines it does not matter computability-wise which of
these two semantics we choose. (There is a fairly straightforward translation from
languages to functions and vice versa.) Anticipating the Landauer embedding of
Lemma 4 it is easy to see that under the language recognition semantics then
the RTMs are universal: Given a TM T recognizing language L, there exists
an RTM T ′ that also recognizes L. However, under the string transformation
semantics the RTMs cannot be universal.

Theorem 1. If T is an RTM, then [[T]] is injective.

Proof. By induction, using Lemma 1.
�
It thus makes little sense to talk about what RTMs compute without explicitly
specifying the semantics.

4 Foundations of Reversible Computing

At this point it becomes necessary to recast the foundational results of reversible
computing in terms of the strict semantical interpretation above.

4.1 Inversion

If f is a computable injective function, is the inverse function f−1 computable?

What Do Reversible Programs Compute? 47

Lemma 2 (TM inversion, McCarthy [10]). Given a TM T computing an
injective function [[T]], there exists a TM M(T), such that [[M(T)]] = [[T]]−1.

It is interesting to note that McCarthy’s generate-and-test approach [10] does not
actually give the program inverter (computing the transformation M), but rather
an inverse interpreter, cf. [1]. However, we can turn an inverse interpreter into a
program inverter by specialization [7], so the transformation M is computable.

The generate-and-test method used by McCarthy is sufficient to show the
existence of an inverse interpreter, but unsuitable for practical usage as it is
very inefficient. For the RTMs there is an appealing alternative.

Lemma 3 (RTM inversion, Bennett [4]). Given an RTM T = (Q, Σ, δ, b, qs,

qf), the RTM T−1 def= (Q, Σ, inv(δ), b, qf , qs) computes the inverse function of
[[T]], i.e. [[T−1]] = [[T]]−1, where inv : Δ→ Δ is defined as

inv(q, (s, s′), q′) = (q′, (s′, s), q) inv(q,←, q′) = (q′,→, q)
inv(q, ↓, q′) = (q′, ↓, q) inv(q,→, q′) = (q′,←, q) .

This remarkably simply transformation is one of the great insights in Bennett’s
seminal 1973 paper [4] that may superficially seem trivial. Here, we have addi-
tionally shown that it is an example of local (peephole) program inversion. Note
that the transformation only works as a program inversion under the string
transformation semantics, and not under language recognition. In the following,
we shall make heavy use of program inversion, so the direct coupling between
the mechanical and semantical transformation is significant.

4.2 Reversibilization

How can irreversible TMs computing (possibly non-injective) functions be re-
versibilized, i.e., transformed into RTMs?

Lemma 4 (Landauer embedding [9]). Given a 1-tape TM T = (Q, Σ, δ, b, qs,
qf), there is a 2-tape RTM L(T) such that [[L(T)]] : Σ∗ ⇀ Σ∗ ×R∗, and

[[L(T)]] = λx.([[T]](x), trace(T, x)),

where trace(T, x) is a complete trace of the specific rules from δ (enumerated as
R) that are applied during the computation T (x).

The Landauer embedding is named in honor of Rolf Landauer, who suggested the
idea of a trace to ensure reversibility [9]. It is historically the first example of what
we call “reversibilization,” the addition of garbage data to the output in order
to guarantee reversibility. The Landauer embedding shows that any computable
function can be injectivized such that it is computable by a reversible TM.

The size of the garbage data trace(T, x) is of order of the number of steps in the
computation T (x), which makes it in general unsuited for practical programming.
The trace is also machine-specific: Given functionally equivalent TMs T1 and T2,

48 H.B. Axelsen and R. Glück

i.e., [[T1]] = [[T2]], it will almost always be the case that [[L(T1)]] 	= [[L(T2)]]. The
addition of the trace also changes the space consumption of the original program.

It is preferable that an injectivization generates extensional garbage data
(specific to the function) rather than intensional garbage data (specific to the
machine), since we would like to talk about semantics and ignore the mechanics.
This is attained in the following Lemma, known colloquially as “Bennett’s trick.”

Lemma 5 (Bennett’s method [4]). Given a 1-tape TM T = (Q, Σ, δ, b, qs, qf),
there exists a 3-tape RTM B(T), s.t.

[[B(T)]] = λx.(x, [[T]](x)) .

While the construction (shown below) is defined for 1-tape machines, it can be
extended to Turing machines with an arbitrary number of tapes. It is important
to note that neither Landauer embedding nor Bennett’s method are semantics
preserving as both reversibilizations lead to garbage:

[[L(T)]] 	= [[T]] 	= [[B(T)]] .

4.3 Reversible Updates

Bennett’s method implements a special case of a reversible update [3], where D
(below) is a simple “copying machine”, and the second input is initially blank:

Theorem 2. Assume that � : (Σ∗ × Σ∗) → Σ∗ is a (computable) operator
injective in its first argument: If b � a = c � a, then b = c. Let D be an RTM
computing the injective function λ(a, b).(a, b � a), and let T be any TM. Let
L1(T) be an RTM that applies L(T) to the first argument x of a pair (x, y)
(using an auxiliary tape for the trace.) We have4

[[L1(T)−1 ◦D ◦ L1(T)]] = λ(x, y).(x, y � [[T]](x)) .

Reversible updates models many reversible language constructs [21], and is also
useful when designing reversible circuits [16,17]. We found this generalization to
be of great practical use in the translation from high-level to low-level reversible
languages [2], as it directly suggests a translation strategy for reversible updates.

5 Robustness

The Turing machines are remarkably computationally robust. Using multiple
symbols, tapes, heads etc. has no impact on computability. Above, we have
been silently assuming that the same holds true for the RTMs: The Landauer
embedding takes n-tape machine to n+1-tape machines, the Bennett trick takes
1-tape machines to 3-tape machines, etc.
4 The mechanical concatenation of two machines T2 ◦ T1 is straightforward, and it is

an easy exercise to see that [[T2 ◦ T1]] = [[T2]] ◦ [[T1]].

What Do Reversible Programs Compute? 49

Are these assumptions justified? We have seen that a precise characterization
of the semantics turned out to have a huge impact on computational expressive-
ness (limiting us to injective functions.) It would not be unreasonable to expect
the RTMs to suffer additional restrictions wrt the parameters of machine space.

First, we consider the question of multiple symbols. Morita et al. [12] showed
how to simulate a 1-tape, 32-symbol RTM by a 1-tape 2-symbol RTM. One can
generalize this result to an arbitrary number of symbols. Furthermore, we also
need to adapt it to work when applying our string transformation semantics such
that the encodings can be efficient5.

Lemma 6 (m-symbol RTM to 3-symbol RTM). Given a 1-tape, m-symbol
RTM T = (Q, Σ, δ, b, qs, qf), |Σ| = m, there is a 1-tape, 3-symbol RTM T ′ =
(Q′, {b, 0, 1}, δ′, b, qs, qf) s.t. [[T]](x) = y iff [[T ′]](e(x)) = e(y), where e : (Σ\{b})∗
→ {0, 1}∗ is an injective binary encoding of (blank-free) strings, with b encoded
by a sequence of blanks.

Thus, the number of symbols in a tape alphabet is not important, and a fixed-size
alphabet (with at least 3 distinct symbols) can be used for all computations.

We now turn to the question of multiple tapes.

Lemma 7 (2-tape RTM to 1-tape RTM). Given a 2-tape RTM T , there
exists a 1-tape RTM T ′ s.t. [[T]](x, y) = (u, v) iff [[T ′]](〈x, y〉) = 〈u, v〉, where
〈x, y〉 = x1y1, x2y2, . . . is the pairwise character sequence (convolution) of strings
x and y (with blanks at the end of the shorter string as necessary.)

The main difficulty in proving this is that the original 2-tape machine may
allow halting configurations where the tape heads end up displaced an unequal
number of cells from their starting positions. Thus “zipping” the tapes into
one tape will not necessarily give the convolution of the outputs in standard
configuration. This is corrected by realigning the simulated tapes for each rule
where the original tape heads move differently.

This result generalizes to an arbitrary number of tapes. Combining these two
lemmas yields the following statement of robustness.

Theorem 3 (Robustness of the RTMs). Let T be a k-tape, m-symbol RTM.
Then there exists a 1-tape, 3-symbol RTM T ′ s.t.

[[T]](x1, . . . , xk) = (y1, . . . , yk) iff [[T ′]](e(〈x1, . . . , xk〉)) = e(〈y1, . . . yk〉) ,

where 〈·〉 is the convolution of tape contents, and e(·) is a binary encoding.

This retroactively justifies the use of the traditional transformational approaches.

6 Exact Computational Expressiveness of the RTMs

We have outlined the two classical reversibilizations that turn TMs into RTMs.
However, they are not semantics-preserving, and do not tell us anything about
5 A 2-symbol machine can only have unary input strings in standard configuration, as

one of the two symbols must be the blank symbol.

50 H.B. Axelsen and R. Glück

In
v
ersio

n

� x

[[T]](x)�[[T]](x)
�

�

�

�

B(M(T))

.......
.......
....................�
�

��........
....��.......................................

.....�
�

��
Ben

ne
tt

�

�

�

�

� �M(T)[[T]](x) x

....................
.......
.......�

�
��.......

.....................................��............�
�

��McCarthy

�

�

�

���
� �S

�

�

�

�

�
� � [[T]](x)B(M(T))−1

�

�

�

�

� �
�

�

�

�

�

x B(T)
x

[[T]](x)

[[T]](x)

x

�
�

�

�

�

�

..........................
........

..
.........

.........
.....

..........................
........

..
.........

.........
.....

[[T]](x)x T

B
en

n
ett

�

Fig. 1. Generating an RTM computing (injective) [[T]] from an irreversible TM T

the a priori computational expressiveness of RTMs. By Theorem 1 the RTMs
compute only injective functions. How many such functions can they compute?

Theorem 4 (Reversibilizing injections, Bennett [4]). Given a 1-tape TM
S1 s.t. [[S1]] is injective, and given a 1-tape TM S2 s.t. [[S2]] = [[S1]]−1, there
exists a 3-tape RTM T s.t. [[T]] = [[S1]].

We can use this to establish the exact computational expressiveness of the RTMs.

Theorem 5 (Expressiveness). The RTMs can compute exactly all injective
computable functions. That is, given a 1-tape TM T such that [[T]] is an injective
function, there is a 3-tape RTM T ′ such that [[T]] = [[T ′]].

This theorem then follows from the existence of a TM inverter (Lemma 2) and
Theorem 4. We make use of the construction used by Bennett to prove Theo-
rem 4, but now operating purely at the semantics level, making direct use of the
transformations, and without assuming that an inverse for T is given a priori.

Proof. We construct and concatenate three RTMs (see Fig. 1 for a graphical
representation.) First, construct B(T) by applying Lemma 5 directly to T :

[[B(T))]] = λx.(x, [[T]](x)) , B(T) ∈ RTMs

Second, construct the machine B(M(T))−1 by successively applying the trans-
formations of Lemmas 2, 5 and 3 to T :

[[B(M(T))−1]] = (λy.(y, [[T]]−1(y)))−1 , B(M(T))−1 ∈ RTMs

Third, we can construct an RTM S, s.t. [[S]] = λ(a, b).(b, a), that is, a machine
to exchange the contents of two tapes (in standard configuration). To see that
[[B(M(T))−1 ◦ S ◦B(T)]] = [[T]], we apply the machine to an input, x:

What Do Reversible Programs Compute? 51

[[B(M(T))−1 ◦ S ◦B(T)]](x) = [[B(M(T))−1 ◦ [[S]]]] (x, [[T]](x))
= [[B(M(T))−1]] ([[T]](x), x))
= (λy.(y, [[T]]−1(y)))−1 ([[T]](x), x)
= (λy.(y, [[T]]−1(y)))−1 ([[T]](x), [[T]]−1([[T]](x)))
= [[T]](x) .
�

Thus, the RTMs can compute exactly all the injective computable functions.
This suggests that the RTMs have the maximal computational expressiveness
we could hope for in any (effective) reversible computing model.

7 Universality

Having characterized the computational expressiveness of the RTMs, an obvi-
ous next question is that of computation universality. A universal machine is a
machine that can simulate the functional behaviour of any other machine. For
the classical, irreversible Turing machines, we have the following definition.

Definition 8 (Classical universality). A TM U is classically universal iff
for all TMs T , all inputs x ∈ Σ∗, and Gödel number �T � ∈ Σ∗ representing T :

[[U]](�T �, x) = [[T]](x) .

The actual Gödel numbering �·� : TMs → Σ∗ for a given universal machine
is not important, but we do require that it is computable and injective (up to
renaming of symbols and states).

Because [[U]] in this definition is a non-injective function, it is clear that no
classically universal RTM exists! Bennett [4] suggests that if U is a (classically)
universal machine, B(U) is a machine for reversibly simulating any irreversible
machine. However, B(U) is not itself universal, [[B(U)]] 	= [[U]], and furthermore
we should not use reversible simulation of irreversible machines as a benchmark.

The appropriate question to ask is whether the RTMs are classically universal
for just their own class, i.e. where the interpreted machine T is restricted to being
an RTM. The answer is, again, no: Different programs may compute the same
function, so there exists RTMs T1 	= T2 such that [[T1]](x) = [[T2]](x), so [[U]] is
inherently non-injective, and therefore not computable by any RTM.

Classical universality is thus unsuitable if we want to capture a similar notion
wrt RTMs. We propose that a universal machine should be allowed to remember
which machine it simulates.

Definition 9 (Universality). A TM UTM is universal iff for all TMs T and
all inputs x ∈ Σ∗,

[[UTM]](�T �, x) = (�T �, [[T]](x)) .

52 H.B. Axelsen and R. Glück

This is equivalent to the original definition of classical universality6. Importantly,
it now suggests a concept of universality that can apply to RTMs.

Definition 10 (RTM-universality). An RTM URTM is RTM-universal iff for
all RTMs T and all inputs x ∈ Σ∗,

[[URTM]](�T �, x) = (�T �, [[T]](x)) .

Now, is there an RTM-universal reversible Turing machine, a URTM ?

Theorem 6 (URTM existence). There exists an RTM-universal RTM UR.

Proof. We show that an RTM UR exits, such that for all RTMs T , [[UR]](�T �, x) =
(�T �, [[T]](x)). Clearly, [[UR]] is computable, since T is a TM (so [[T]] is com-
putable), and �T � is given as input. We show that [[UR]] is injective: Assuming
(�T1�, x1) 	= (�T2�, x2) we show that (�T1�, [[T1]](x1)) 	= (�T2�, [[T2]](x2)). Either
�T1� 	= �T2� or x1 	= x2 or both. Because the program text is passed through
to the output, the first and third cases are trivial. Assuming that x1 	= x2 and
�T1� = �T2�, we have that [[T1]] = [[T2]], i.e. T1 and T2 are the same machine, and
so compute the same function. Because they are RTMs this function is injective
(by Theorem 1), so x1 	= x2 implies that [[T1]](x1) 	= [[T2]](x2). Therefore, [[UR]]
is injective, and by Theorem 5 computable by some RTM UR.
�
We remark that this works out very nicely: RTM-universality is now simply
universality restricted to interpreting the RTMs, and while general universal-
ity is non-injective, RTM-universality becomes exactly injective by virtue of the
semantics of RTMs. Also, by interpreting just the RTMs, we remove the redun-
dancy (and reliance on reversibilization) inherent in the alternatives.

Given an irreversible TM computing the function of RTM-universality, The-
orem 5 provides us with a possible construction for an RTM-universal RTM.
However, we do not actually directly have such machines in the literature, and
in any case the construction uses the very inefficient generate-and-test inverter
by McCarthy. We can do better.

Lemma 8. There exists an RTM pinv, such that pinv is a program inverter for
RTM programs,

[[pinv]](�T �) = �T−1� .

This states that the RTMs are expressive enough to perform the program in-
version of Lemma 3. For practical Gödelizations this will only take linear time.

Theorem 7 (UTM to URTM). Given a classically universal TM U s.t.
[[U]](�T �, x) = [[T]](x), the RTM UR defined as follows is RTM-universal.

UR = pinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1 ◦B(U) ,

where pinv1 is an RTM that applies RTM program inversion on its first argu-
ment, [[pinv1]](p, x, y) = ([[pinv]]p, x, y), and S23 is an RTM that swaps its second
and third arguments, [[S23]] = λ(x, y, z).(x, z, y).
6 Given UTM universal by Definition 9, snd ◦ UTM is classically universal, where snd

is a TM s.t. [[snd]] = λ(x, y).y. The converse is analogous.

What Do Reversible Programs Compute? 53

[[T]](x)
S23

pinv

B(U)−1

U

pinv

B(U)x

�T�

[[T]](x)

x

�T�

x

�T−1�
[[T]](x)

B
en

n
ett

x
[[T]](x)

�T�

Inversion

�T−1� �T�

Fig. 2. Constructing an RTM-universal RTM UR from a classically universal TM U

Proof. We must show that [[UR]](�T �, x) = (�T �, [[T]](x)) for any RTM T . To
show this, we apply UR to an input (�T �, x). Fig. 2 shows a graphical represen-
tation of the proof.

[[UR]](�T �, x) = [[pinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1 ◦B(U)]](�T �, x)
= [[pinv1 ◦ (B(U))−1 ◦ S23 ◦ pinv1]](�T �, x, [[T]](x))
= [[pinv1 ◦ (B(U))−1 ◦ S23]](�T−1�, x, [[T]](x))
= [[pinv1 ◦ (B(U))−1]](�T−1�, [[T]](x), x)
= [[pinv1]](�T−1�, [[T]](x))
= (�T �, [[T]](x)) .
�

Note that this implies that RTMs can simulate themselves exactly as time-
efficiently as the TMs can simulate themselves, but the space usage of the con-
structed machine will, by using Bennett’s method, be excessive. However, there
is nothing that forces us to start with an irreversible (universal) machine, when
constructing an RTM-universal RTM, nor are reversibilizations necessarily re-
quired (as will be seen below).

A first principles approach to an RTM-universal reversible Turing machine,
which does not rely on reversibilization, remains for future work.

8 r-Turing Completeness

With a theory of the computational expressiveness and universality of the RTMs
at hand, we shall lift the discussion to computation models in general. What,
then, do reversible programs compute, and what can they compute?

Our fundamental assumption is that the RTMs (with the given semantics) are
a good and exhaustive model for reversible computing. Thus, for every program
p in a reversible programming language R, we assume there to be an RTM Tp,
s.t. [[p]]R = [[Tp]]. Thus, because the RTMs are restricted to computing injective
functions, reversible programs too compute injective functions only. On the other
hand, we have seen that the RTMs are maximally expressive wrt these functions,

54 H.B. Axelsen and R. Glück

and support a natural notion of universality. For this reason we propose the
following standard of computability for reversible computing.

Definition 11 (r-Turing completeness). A (reversible) programming lan-
guage R is called r-Turing complete iff for all RTMs T computing function [[T]],
there exists a program p ∈ R, such that [[p]]R = [[T]].

Note that we are here quite literal about the semantics: Given an RTM T , it will
not suffice to compute a Landauer embedded version of [[T]], or apply Bennett’s
trick, or, indeed any injectivization of [[T]]. Program p must compute [[T]], exactly.
Only if this is respected can we truly say that a reversible computation model
can compute all the injective, computable functions, i.e. is as computationally
expressive as we can expect reversible computation models to be.

Demonstrating r-Turing Completeness. A common approach to proving that a
language, or computational model, is Turing-complete, is to demonstrate that a
classically universal TM (a TM interpreter) can be implemented, and specialized
to any TM T . However, that is for classically universal machines and (in general)
irreversible languages, which compute non-injective functions. What about our
notion of RTM-universality (Definition 10) and reversible languages?

Assume that u ∈ R (where R is a reversible programming language) is an R-
program computing an RTM-universal interpreter [[u]]R(�T �, x) = (�T �, [[T]](x)).
Assume also that R is expressive enough to guarantee the existence of programs
wT ∈ R s.t. [[wT]]R = λx.(�T �, x), (whose sole purpose is to hardcode �T � as an
input for u) and its inverse w−1

T ∈ R, [[w−1
T]]R = [[wT]]−1

R , for any RTM T . Note
that [[wT]]R is injective, so we do not violate our rule of R computing injective
functions by assuming wT and its inverse. Now [[u ◦ wT]]R = λx.(�T �, [[T]](x)) 	=
[[T]], because it leaves the representation �T � as part of the output. To complete
the specialization, we need to apply w−1

T as well. Thus, [[w−1
T ◦ u ◦ wT]]R = [[T]].

Therefore, completely analogous to the classical case, we may demonstrate r-
Turing completeness of a reversible computation model by implementing RTM-
universality (essentially, an RTM interpreter), keeping in mind that we must
respect the semantics exactly (by clean simulation that doesn’t leave garbage).

The authors have done exactly that to demonstrate r-Turing completeness of
the imperative, high level, reversible language Janus, and for reversible flowchart
languages in general, cf. [21,22] (where the r-Turing completeness concept was
informally proposed.) In these cases, we were able to exploit the reversibility of
the interpreted machines directly, and did not have to rely on reversibilization
of any kind, which eased the implementation greatly. Furthermore, the RTM-
interpreters are complexity-wise robust, in that they preserve the space and time
complexities of the simulated machines, which no reversibilization is liable to do.

9 Related Work

Morita et al. have studied reversible Turing machines [13,12] and other reversible
computation models, including cellular automata [11], with a different approach

What Do Reversible Programs Compute? 55

to semantics (and thus different results wrt computational strength) than the
present paper. Most relevant here is the universal RTM proposed in [13]. With
our strict semantics viewpoint, the construction therein does not directly demon-
strate neither RTM-universality nor classical universality, but rather a sort of
“traced” universality: Given a program for a cyclic tag system (a Turing complete
formalism) and an input, the halting configuration encompasses both the pro-
gram and output, but also the entire string produced by the tag system along the
way. We believe that this machine could possibly be transformed fairly straight-
forwardly into a machine computing a function analogous to [[B(U)]]. However,
it is not clear that cyclic tag systems should have a notion of reversibility, so the
construction in Fig. 2 is therefore not immediately applicable.

10 Conclusion

The study of reversible computation models complements that of deterministic
and non-deterministic computation models. We have given a foundational treat-
ment of a computability theory for reversible computing using a strict semantics-
based approach (where input/output behaviour must also be reversible), taking
reversible Turing machines as the underlying computational model. By formulat-
ing the classical transformational approaches to reversible computation in terms
of this semantics, we hope to have clarified the distinction between reversibility
and reversibilization, which may previously have been unclear.

We found that starting directly with reversibility leads to a clearer, cleaner,
and more useful functional theory for RTMs. Natural (mechanical) program
transformations such as composition and inversion now correspond directly to
the (semantical) function transformations. This carries over to other computa-
tion models as well.

We showed that the RTMs compute exactly all injective, computable func-
tions, and are thus not classically universal. We also showed that they are
expressive enough to be universal for their own class, with the concept of RTM-
universality. We introduced the concept of r-Turing completeness as the measure
of the computational expressiveness in reversible computing. As a consequence,
a definitive practical criterion for deciding the computation universality of a re-
versible programming computation model is now in place: Implement an RTM-
interpreter, in the sense of an RTM-universal machine.

Acknowledgements. The authors wish to thank Michael Kirkedal Thomsen for
help with the figures and Tetsuo Yokoyama for discussions on RTM-computability.

References

1. Abramov, S., Glück, R.: Principles of inverse computation and the universal re-
solving algorithm. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.)
The Essence of Computation. LNCS, vol. 2566, pp. 269–295. Springer, Heidelberg
(2002)

56 H.B. Axelsen and R. Glück

2. Axelsen, H.B.: Clean translation of an imperative reversible programming lan-
guage. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Hei-
delberg (2011)

3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

4. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17, 525–532 (1973)

5. Feynman, R.: Quantum mechanical computers. Optics News 11, 11–20 (1985)
6. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators

for bi-directional tree transformations: A linguistic approach to the view update
problem. ACM Trans. Prog. Lang. Syst. 29(3), article 17 (2007)

7. Glück, R., Sørensen, M.: A roadmap to metacomputation by supercompilation. In:
Danvy, O., Thiemann, P., Glück, R. (eds.) Partial Evaluation. LNCS, vol. 1110,
pp. 137–160. Springer, Heidelberg (1996)

8. Jones, N.D.: Computability and Complexity: From a Programming Language Per-
spective. In: Foundations of Computing. MIT Press, Cambridge (1997)

9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5(3), 183–191 (1961)

10. McCarthy, J.: The inversion of functions defined by Turing machines. In: Automata
Studies, pp. 177–181. Princeton University Press, Princeton (1956)

11. Morita, K.: Reversible computing and cellular automata — A survey. Theoretical
Computer Science 395(1), 101–131 (2008)

12. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE, E 72(3), 223–228 (1989)

13. Morita, K., Yamaguchi, Y.: A universal reversible turing machine. In: Durand-
Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 90–98. Springer,
Heidelberg (2007)

14. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

15. Schellekens, M.: MOQA; unlocking the potential of compositional static average-
case analysis. Journal of Logic and Algebraic Programming 79(1), 61–83 (2010)

16. Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders.
Parallel Processing Letters 19(2), 205–222 (2009)

17. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. Journal of Physics A: Mathematics and Theoretical 42(38),
2002 (2010)

18. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

19. van de Snepscheut, J.L.A.: What computing is all about. Springer, Heidelberg
(1993)

20. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Interna-
tional Journal of Unconventional Computing 1(4), 339–355 (2005)

21. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM Press, New
York (2008)

22. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)

	What Do Reversible Programs Compute?
	Introduction
	Reversible Triple-Format Turing Machines
	Semantics for Turing Machines
	Foundations of Reversible Computing
	Inversion
	Reversibilization
	Reversible Updates

	Robustness
	Exact Computational Expressiveness of the RTMs
	Universality
	r-Turing Completeness
	Related Work
	Conclusion
	References

