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misunderstanding the factors shaping species distributions. 
By building ‘over fit’ models, with excessive flexibility, we 
risk inadvertently ascribing pattern to noise or building 
opaque models. As such, determining a suitable amount 
of complexity to include in SDMs is crucial for biological 
applications. Because traditional model selection is challeng-
ing when comparing models from different SDM modeling 
approaches (e.g. those in Table 1), we argue that researchers 
must constrain model complexity based on attributes of the 
data and study objectives and an understanding of how these 
interact with the underlying biological processes. Here, we 
discuss the challenges that choosing an appropriate amount 
of model complexity poses and how this influences the use of 
different statistical methods and modeling decisions (Elith 
and Graham 2009).
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Species distribution models (SDMs), also known as ecolo-
gical niche models or habitat selection models, are widely 
used in ecology, evolutionary biology, and conservation 
(Elith and Leathwick 2009, Franklin 2010, Zimmermann 
et al. 2010, Peterson et al. 2011, Svenning et al. 2011, Guisan 
et al. 2013). SDMs can provide insights into generalities and 
idiosyncrasies of the drivers of complex patterns of species’ 
geographic distributions. SDMs are built using a variety of 
statistical methods – e.g. generalized linear/additive models, 
tree-based models, maximum entropy – which span a range 
of complexity in the occurrence–environment relationships 
that they fit. Capturing the appropriate amount of complex-
ity for particular study objectives is challenging. By building 
‘under fit’ models, having insufficient flexibility to describe 
observed occurrence–environment relationships, we risk 
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Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. 
They are most commonly constructed by inferring species’ occurrence–environment relationships using statistical and 
machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive 
models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits 
substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study 
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relationships and the number of parameters used to describe them, and search for insights into whether additional 
complexity is informative or superfluous. By building ‘under fit’ models, having insufficient flexibility to describe observed 
occurrence–environment relationships, we risk misunderstanding the factors shaping species distributions. By building 
‘over fit’ models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. 
However, model selection can be challenging, especially when comparing models constructed under different modeling 
approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models 
based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological 
processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects 
decisions made during model building. Although some generalities are possible, our discussion reflects differences in 
opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and 
complex SDM building approaches best advances our knowledge of current and future species ranges.
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describe ecological complexity has to some extent divided 
biologists between those who prefer to use the principle of 
parsimony to identify model complexity (preferring the sim-
plest model that is consistent with the data), and those who 
try to approximate more of the complexities of the real world 
relationships. We review the literature and the general mod-
eling principles emerging from these two viewpoints, and 
we discuss the ways in which these overlap or differ in light 
of study objectives and attributes of the data. We make a 
variety of recommendations for choosing levels of complex-
ity under different circumstances, while highlighting unre-
solved scenarios where viewpoints differ. We conclude with 
suggestions for drawing from the strengths of each modeling 
approach in order to advance our knowledge of current and 
future species geographical ranges.

Complexity in ecology

Many interacting biotic and abiotic processes influence  
species distributions and can manifest as complex occurrence– 
environment relationships (Soberón 2007, Boulangeat  
et al. 2012). One essential challenge to recovering primary 
environmental drivers of these distributions, however, is to 
differentiate the signals of range determinants from sampling 
and environmental noise. Before embarking on statistical 
analyses of range determinants, ecological theory can focus 
an investigation (Austin 1976, 2002, 2007, Pulliam 2000, 
Chase and Leibold 2003, Holt 2009). There is, a priori, a 
set of common drivers of populations that can be used to 
propose general shapes of occurrence–environment rela-
tionships. For example, we expect that for many variables, 
response curves describing a fundamental niche should be 
smooth because sudden jumps in fitness along an environ-
mental gradient are unlikely to exist (Pulliam 2000, Chase 
and Leibold 2003, Holt 2009). For other variables, e.g. 
related to thermal tolerance, steep thresholds may exist 
due to loss of physiological function (Buckley et al. 2011). 
However, response curves describing realized niches might 
exhibit discontinuities due to the multiple interacting factors 
that can limit a species’ occurrence in any particular location. 
Unimodal responses are expected (e.g. a bell-shaped curve) 
because conditions too extreme for survival often exist at 
either end of a proximal gradient (Austin 2007). However, 
response curves can be linear where only part of the envi-
ronmental range of the species has been sampled (e.g. one 
side of a unimodal response; Albert et al. 2010). Austin and 
Smith’s (1989) continuum concept for plant species distri-
butions predicts that skewed unimodal response curves are 
likely when plant species distributions are predominantly 
determined by one or a few environmental variables that 
strongly regulate survivorship and or reproduction (e.g. by 
temperature thresholds), but that more irregular response 
curves are expected given that species are influenced by a 
range of regulatory factors (e.g. different limiting nutrients, 
biotic and abiotic interactions) and historical contingencies 
(Austin et al. 1994, Normand et al. 2009). Even with single 
factors, the processes that determine fitness may be different 
across the range, e.g. where one temperature extreme leads to 
abrupt loss of function while the other extreme causes gradu-
ally reduced performance. Interaction terms can be desirable 

Complexity is a fundamental feature of observed occur-
rence patterns because occurrence–environment relation-
ships may be obscured by processes that are not exclusively 
related to the environment, such as dispersal, response to 
disturbance, and biotic interactions (Pulliam 2000, Holt 
2009, Boulangeat et al. 2012). Consequently, SDMs can be 
dynamic and process-based, explicitly representing aspects 
of the underlying biology. This paper focuses on the more 
widely used static, correlative SDMs, although many of 
the issues considered relate to process-based SDMs as well. 
Describing this complexity is critical for many applications 
of SDMs, and using flexible occurrence–environment rela-
tionships allows biologists to hypothesize about the drivers 
of complexity or make accurate predictions that derive from 
their representation in SDMs. Such hypotheses are a valu-
able step toward the types of process-based models discussed 
in this issue (Merow et al. 2014, Snell et al. 2014). However, 
building complex models comes with the challenge of dif-
ferentiating true complexity from noise (see chapter 7 in 
Hastie et al. 2009 for a statistical viewpoint on optimising 
model complexity). Some believe that flexible models are 
often overfit to the noise prevalent in many occurrence data 
sets. Thus, with such variation in both needs and opinions 
regarding model complexity, many modeling approaches are 
in current use (Table 1).

We characterize model complexity by the shape of the 
inferred occurrence–environment relationships (Table 1) 
and the number of posited predictors and parameters used 
to describe them. A simpler model typically has relatively 
fewer parameters and fewer relationships among predictors 
compared to a more complex model. However, it remains a 
challenge to quantify complexity in a way that is appropriate 
across the spectrum of modeling approaches in Table 1 (e.g. 
Janson et al. 2013 showed effective degrees of freedom to be 
an unreliable metric when defining complexity). Univariate 
‘response curves’ are commonly used to give an impression 
of the complexity of the predicted occurrence–environ-
ment relationships. These are one-dimensional ‘slices’ of 
multivariate space. The most common approach is to plot 
the predicted occurrence probability against the predictor 
of interest by holding all other predictors at their mean or 
median values (Elith et al. 2005; Table 1), although other 
approaches are possible (Fox 2003, Hastie et al. 2009). When 
visualized in this way, a simpler model is relatively smooth, 
containing fewer inflection and turning points compared 
to a more complex model. Though insightful, univariate 
curves only represent the true fitted response incompletely 
(3-dimensional response surfaces or the ‘inflated response 
curves’ of Zurell et al. (2012) help here). Complex models 
contain more interactions, which can only be visualized on 
higher dimensional surfaces, compared to simpler models. 
Such responses must be interpreted as conditional on the 
other mean or median predictors in the model, which may 
be different than the responses to variables held at other 
values (Zurell et al. 2012), or to an unconditional model. 
Nonetheless, uni- and multivariate response curves remain 
one of the best standardized ways to assess relative model 
complexity.

In this paper, we develop general guidelines for deciding  
on an appropriate level of complexity in occurrence– 
environment relationships. Uncertainty about how best to 
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consider any number of linear, quadratic, product, threshold 
(step functions) or hinge transformations of the predictors 
(Phillips et al. 2006, Phillips and Dudik 2008). In principle, 
this same complexity could be fit in a traditional GLM but 
this is typically impractical and not of interest to ecologists.

SDM complexity is amplified when interactions between 
predictors are included to account for nonadditive relation-
ships. GLMs and GAMs can include interactions that have 
been specified during model formulation as potentially eco-
logically relevant, but are usually used only sparingly. Decision 
trees include interactions implicitly through their hierarchi-
cal structure; i.e. the response to one variable depends on 
values of inputs higher in the tree, meaning that high order 
interaction terms (that depend on all the predictors along a 
branch) are possible. However interactions between variables 
are fitted automatically if supported by the data and cannot  
be explicitly controlled by the user (except to specify the  
permissible order of the interactions considered).

Using ensembles of models can increase or decrease com-
plexity. Ensembles are combinations of models in which the 
component models can be chosen based on selected crite-
ria (e.g. predictive performance on held out data; Araújo 
and New 2007) or with an ensemble algorithm (a machine 
learning method). For instance, regression models selected 
via an information criterion can be combined using ‘multi-
model inference’, allowing distributions over effect sizes 
and over predictions to new sites (Burnham and Anderson 
2002). A typical machine learning approach to ensembles 
uses an algorithm to build an ensemble of simple models 
that together predict better than any one component model. 
Examples include bagging and boosting – while these can be 
used on any component models, in ecology the most used 
component models are decision trees (e.g. in random for-
ests, Brieman 2001; and boosted regression trees, Friedman 
2001). Bagging (bootstrap aggregation) can be used to fit 
many models to bootstrapped replicates of the dataset (with 
and without random subsetting of predictors used across 
trees as in random forests). In contrast, boosting uses a for-
ward stagewise method to build an ensemble, at each step 
modeling the residuals of the models fitted to date. Taking 
ensembles of relatively simple models usually increases com-
plexity because combinations of simple models will not nec-
essarily be simple. In contrast, ensembles of more complex 
models can average over idiosyncrasies of individual models 
to produce smoother response curves (Elder 2003).

Model comparison
To avoid overfitting and underfitting, it is common to com-
pare models of differing complexity and select the model 
that optimizes some measure of performance. However, 
comparing models across modeling approaches (e.g. those in 
Table 1) can be challenging. This is one of our motivations 
for constraining model complexity based on study objectives 
and data attributes. Information theoretic measures are a 
conventional way to choose model complexity and are rela-
tively easy to apply for models where estimating the number 
of degrees of freedom is possible. However these cannot be 
calculated for ensemble-based methods nor for many other 
methods in common use (Janson et al. 2013). In fact, Janson 
et al. (2013) warn, ‘contrary to folk intuition, model com-
plexity and degrees of freedom are not synonymous and 

to capture covariation between predictors or tradeoffs along 
resource gradients (e.g. higher temperatures are tolerable 
with greater rainfall). Many applications of SDMs do not 
explicitly consider such theoretical constraints on the shape 
of response curves (but see Santika and Hutchinson 2009), 
perhaps because it is difficult to work out how they translate 
into observations. We are faced with the challenge of infer-
ring unknown levels of ecological complexity through the 
lens of data and models that imperfectly capture it.

Complexity in models

Two attributes of model fitting determine the complexity of 
inferred occurrence–environment relationships in SDMs: the 
underlying statistical method and modeling decisions made 
about inputs and settings. Together, these define what we 
will call different modeling approaches, a number of which 
are illustrated in Table 1.

Statistical methods
One of the primary differences among the available sta-
tistical methods for fitting SDMs is the range of trans-
formations of predictors that they typically consider (in 
machine learning parlance: which ‘features’ to allow), and 
this helps to define the upper limit of complexity for their 
fitted response surfaces. We detail commonly used model-
ing approaches and demonstrate examples of their response 
curves in Table 1. Rectilinear or convex-hull environmen-
tal envelopes (e.g. BIOCLIM or DOMAIN) and distance-
based approaches in multivariate environmental spaces 
(e.g. Malahanobis) are used in the simplest SDMs. Their 
response curves are simple functions (e.g. linear, hinge or 
step; Elith et al. 2005). Generalized linear models (GLMs), 
which are typically fitted with linear or polynomial features 
up to second order terms (rarely third or fourth order) for 
SDMs, and often without interactions, admit more com-
plexity. Generalized additive models (GAMs) are potentially 
more complex because they allow non-parametric smooth 
functions of variable flexibility (Hastie and Tibshirani 
1990, Wood 2006). Decision trees (Breiman et al. 1984) 
can also become quite complex because these can use a large 
number of step functions (each requiring a parameter) and 
can implicitly include high order interaction terms to depict 
response curves of arbitrary complexity.

Modeling decisions
Decisions that affect model complexity apply to all the sta-
tistical methods described above. For example, if a large set 
of predictors are available, then model complexity will differ 
depending on whether the full set, or a small subset, is used. 
One must also determine which features are considered in 
the model. Each feature requires at least one parameter in the 
occurrence–environment relationship and hence increases 
model complexity (see increased complexity of black vs 
grey MAXENT response curves due to increase in number 
of features; Table 1). Large numbers of predictors are more 
commonly used in machine-learning approaches because 
they automate feature selection whereas fewer are often 
used in simpler models where features are specified a priori.  
For example, maximum entropy models (MAXENT) can 
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tried and tested methods of statistics and machine learning 
for model selection are valuable when working within a par-
ticular modeling approach, but to benefit from these, it is 
valuable to narrow the scope of the feasible models based 
on biological considerations. We therefore now move to 
exploring approaches for identifying the appropriate level 
of complexity for particular study objectives based on data 
limitations and the underlying biological processes.

Philosophical, statistical and biological 
considerations when choosing complexity

In this section, we discuss factors that should influence the 
choice of model complexity. First, we outline general con-
siderations and philosophical differences underlying both 
simple and complex modeling strategies (section Simple 
versus complex: fundamental approaches to describing natu-
ral systems). Next, we discuss how the study goals (section 
Study objectives) and data attributes (section Data attri-
butes) interact with model complexity. Figure 1 summarizes 
our findings. Importantly, a general consensus for choosing 
model complexity is not possible in many cases. To reflect 
the different schools of thought, we divide our facts, ideas 
and opinions into those that are relatively uncontroversial 
(subsections denoted ‘Recommendations’), those that favor 
simple models (denoted ‘Simple’), and those that favor more 
complex models (denoted ‘Complex’). We recall that ‘sim-
ple’ and ‘complex’ refer to the extremes along a gradient of 
complexity in response curves produced by distinct statistical  

may correspond very poorly’. One way to compare mod-
els produced by different algorithms is to adopt a common 
currency for model performance by evaluating model predic-
tions on either the training data or independent testing data. 
Measures such as AUC, Cohen’s Kappa, and the True Skill 
Statistic are based on correctly distinguishing presences from 
absences. Measures based on non-thresholded predictions 
are also relevant and preferable in many situations (Lawson 
et al. 2013). However, each of these metrics has weaknesses 
in different circumstances (Lobo et al. 2008) and further, 
only represent heuristic diagnostics for presence-only data, 
because presences must be compared to pseudoabsence/
background data (Hirzel et al. 2006).

Once one has determined a suitable modeling approach 
tuning of the amount of complexity is more straightforward 
using a range of model selection techniques. Feature signifi-
cance (e.g. p-values), measures of model fit (e.g. likelihood), 
and information criteria (e.g. AIC, AICc, BIC; Burnham and 
Anderson 2002) can be applied to regression-based meth-
ods. Cross-validation or other resampling techniques are also 
used to set the smoothness of splines in GAMs (Wood 2006) 
or to determine tuning parameters in most machine learning 
methods (Hastie et al. 2009). Shrinkage or regularization is 
often used in regression, MAXENT and boosted regression 
trees to constrain coefficient estimates so models predict reli-
ably (Phillips et al. 2006, Hastie et al. 2009). Loss functions, 
which penalize for errors in prediction, can be constructed 
for any of the modeling approaches we consider (Hastie 
et al. 2009). An alternative approach employs null models to 
evaluate whether additional complexity has lead to spurious 
predictive accuracy (Raes and terSteege 2007).

Evaluation against fit to training data alone cannot con-
trol for over fitting and risks selecting excessively complex 
models (Pearce and Ferrier 2000, Araújo et al. 2005). In 
general, best practice involves splitting the data into train-
ing data to fit the model, validation data for model selec-
tion, and test data to evaluate the predictive performance 
of the selected model (Hastie et al. 2009). Recent studies 
have emphasized that care should also be taken in how data 
is partitioned into training, evaluation and test data, in par-
ticular to control for spatial autocorrelation (Latimer et al. 
2006, Dormann et al. 2007, Veloz 2009, Hijmans 2012; see 
below for more details). Hence methods such as block cross-
validation (where blocks are spatially stratified) are gaining 
momentum (Hutchinson et al. 2011, Pearson et al. 2013, 
Warton et al. 2013). Failure to factor out spatial autocor-
relation in data partitioning can lead to misleadingly good 
estimates of model predictive performance.

Basing model comparison on holdout data presents some 
practical challenges. Sample size may be insufficient to sub-
set the data without introducing bias. Subsets of data can 
contain the same or different biases compared to the full data 
set. In particular, it can be difficult to remove spatial correla-
tion between training and holdout data when the sampling 
design for the occurrence data is unknown or when a spe-
cies is restricted geographically or environmentally (this is 
discussed below).

Importantly, all these approaches to model comparison 
have strengths and weaknesses and none can unambiguously 
select between models of differing complexity built with dif-
ferent statistical methods and underlying assumptions. The 
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Figure 1. Influence of attributes of study objectives and data attri-
butes on the choice of model complexity. Green arrows illustrate 
attributes where the choice of complexity is of no particular con-
cern. Red arrows illustrate the situations where caution and/or 
experimentation with model complexity is needed. Gray arrows 
indicate decisions that involve interactions with other study goals 
or data attributes. The thickness of the arrows illustrates the strength 
of the arguments in favor of choosing a specific level of complexity, 
with thicker arrows indicating stronger arguments.
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if the objective is not niche description. Such evaluation is 
particularly critical for extrapolation (section Interpolate vs 
extrapolate), though it is admittedly quite challenging in 
multivariate models. Modelers should also carefully evaluate 
whether maps built from complex models substantially dif-
fer from maps built from simple models. If the predictions 
differ, the source of this should be explored. If the interest 
lies in interpretation, it is important to assess whether the 
mapped predictions are right for the right reason, and that 
complex environmental responses have not become proxies 
for sources of spatial aggregation in the data that lead to bias 
when projected to other locations (whether interpolation or 
extrapolation; section Spatial autocorrelation).

Simple 
Simple models are preferable for niche description because 
they usually yield straightforward, smooth response curves 
that can be linked directly to ecological niche theory (section 
Complexity in models; Austin 2007), in contrast to the often 
irregular shapes that result from complex models (Table 1). 
Assumptions about species responses are more transparent 
when simple models are being projected in new situations.

Complex
Complex models can be valuable for describing a species’ 
niche when only qualitative descriptors of response curves 
are necessary (e.g. positive/negative, modality, relative impor-
tance) – i.e. even complex responses can be described in 
terms of main trends. Allowing complexity might offer more 
chance of identifying relevant response shapes. Complex 
models can be powerful for accurately mapping within the 
fitting region (Elith et al. 2005, Randin et al. 2006) when 
one is not necessarily concerned with an ecological under-
standing of the complexity of underlying models. Although 
the source of complex relationships may remain unknown, 
complex models have the flexibility to describe these. Abrupt 
steps in response curves might be helpful to uncover strictly 
unsuitable sites when mapping distribution in space.

Hypothesis testing vs hypothesis generation
Some SDM studies are focused on testing specific hypoth-
eses related to how species are distributed in relation to par-
ticular predictors or features. In others, little is known about 
the predictors shaping the distribution and the objective is 
to explore occurrence–environment relationships and gen-
erate hypotheses for explanation. For example, SDMs are 
valuable exploratory analyses for detecting the processes that 
confound occurrence–environment relationships, such as 
transient dynamics, dispersal, biotic interactions, or human 
modification of landscapes. The indirect effect of such pro-
cesses can be seen in occurrence patterns, often due to abrupt 
changes or nonlinearities in response curves, leading to 
hypothesis generation. Whether one is testing or generating 
hypotheses critically affects the level of complexity permitted 
because hypothesis testing depends on being able to isolate 
the affects of particular features, whereas this matters less 
when exploring data in order to generate hypotheses.

Recommendations
When testing hypotheses, insights from ecological theory  
can guide the selection of features to include. A higher degree 

methods and modeling decisions (section Complexity in 
models and Table 1).

Simple versus complex: fundamental approaches to 
describing natural systems

Simple
Simple models tend towards a conservative, parsimoni-
ous approach and typically avoid over-fitting. They link 
model structure to hypotheses that posit occurrence– 
environment relationships a priori and examine whether the 
resulting model meets these expectations. Simple models 
have greater tractability, can facilitate the interpretation of 
coefficients (cf. Tibshirani 1996), can help in understanding 
the primary drivers of species occurrence patterns, and are 
likely to be more easily generalized to new data sets (Randin 
et al. 2006, Elith et al. 2010). Although complex responses 
surely exist in nature, we cannot often detect them because 
their signal is weak or they are confounded with sampling 
noise, bias or spatial autocorrelation. By using models that 
are too complex, one can inadvertently assign patterns due to 
either data limitations or missing processes, or both, to envi-
ronmental suitability and fit the patterns simply by chance.

Complex
Complex models are often semi- or fully non-parametric, 
and are preferred when there is no desire to impose para-
metric assumptions, specific functional forms or pre-select 
predictors for models a priori. This does not mean that they 
are not biologically motivated, but rather emphasizes the 
reality that Nature is complex. Simple models may be readily 
interpretable but misleading (Breiman 2001), and for many 
applications of SDMs a preference for predictive accuracy in 
new data sets over interpretability is justifiable. Also, com-
plex models are not necessarily difficult to interpret. Indeed, 
their complexity can be valuable for suggesting novel, unex-
pected responses. If we do not explore the full spectrum of 
complexity, there is a risk of obtaining an overly simplified, 
or even biased, view of ecological responses. Complex mod-
els can, depending on how they are structured, still identify 
simple relationships if responses are strong and robust.

Study objectives

Niche description vs range mapping
Two prominent applications of SDMs are characterizing 
the predictors that define a species’ niche and projecting 
fitted models across a landscape. Niche characterization 
quantifies the variables, primarily climate and physical, that 
affect a species’ distribution. This is often done by analyz-
ing response curves, the functions (coefficients or smoothing 
terms) that define them, and their relative importance in the 
model. Projecting these fitted models across a landscape can 
predict the geographic locations where the species may occur 
in the present or in the future. In some studies, focus lies in 
the final mapped predictions rather than how they derive 
from the underlying fitted models.

Recommendations
Some evaluation of the biological plausibility of the shape 
and complexity of response curves is always valuable, even 
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lated point is one that lies outside the observed range of 
the predictor. Both interpolation and extrapolation can 
occur in geographic or environmental space (cf. Peterson 
et al. 2011, Aarts et al. 2012). Extrapolation requires cau-
tion in all scenarios but cannot be avoided when assess-
ing questions relating to ‘no-analogue’ climate scenarios 
(Araújo et al. 2005) or range expansion. The correlative 
models discussed here are not optimal for extrapolation in 
many cases; process-based models are generally preferred 
because the functional form of the response curve captures 
the processes that apply beyond the range of observed data 
(Kearney and Porter 2009, Thuiller et al. 2013, Merow 
et al. 2014).

Recommendations
The challenges associated with interpolation and extrapola-
tion, though differing in the way they manifest, are apparent 
for models of any complexity and hence simple and com-
plex perspectives align. Interpolation within the range of the 
observed data will be accurate if the model includes all pro-
cesses operating in the interpolation extent and is based on 
well-structured data. Without that, prediction to unsampled 
sites will average across unrepresented processes and might 
reflect biases in the sample. More generally, it may not mat-
ter whether a response curve is complex as long as it retains 
the basic qualities of a simpler model. For example, a line or 
a sequence of small step functions parallel to the line can pro-
duce similar predictions. Some caution should be taken with 
complex models, as complex combinations of features can 
become proxies for unmeasured spatial factors in unintended 
ways and inadvertently model clustering in geographic space 
as complexity in environmental space, which can lead to 
errant interpolation (section Spatial autocorrelation).

Extrapolation always requires that response curves have 
been checked for biological plausibility (cf. section Niche 
description vs range mapping). Of course, even simple mod-
els can extrapolate poorly. For example, Thuiller et al. (2004) 
showed that a simple GLM or GAM run on a restricted and 
incomplete range could create spurious termination of the 
smoothed relationships, leading to errant extrapolation. 
Hence, the importance of extrapolation can depend on the 
chosen spatial extent and on the selected features (section 
Spatial extents and resolution). Complex models should 
be carefully monitored at the edges of the data range, both 
because small sample sizes and the ways different statistical 
methods handle extrapolation can have drastic effects on 
predictions (Pearson et al. 2006).

When using complex models, feature space may be sparsely 
sampled, which means that when one expects to interpo-
late a predictor, there may be inadvertent extrapolation of 
nonlinear features. For example, in a model with interaction 
terms, one may adequately sample the linear features for all 
predictors while poorly sampling the relevant combinations 
of these predictors (Zurell et al. 2012). Complex models can 
lead to different combinations of features producing similar 
model performance in the present (Maggini et al. 2006), but 
vastly diverging spatial predictions when transferred to other 
conditions (Thuiller 2003, Thuiller et al. 2004, Pearson et al. 
2006, Edwards et al. 2006, Elith et al. 2010). Narrowing the 
range of possibilities using a simpler model that controls for 
the biological plausibility of the response curves (cf. section 

of control over the specific details of the underlying response 
surface is likely needed for hypothesis testing, which is made 
much easier using simple models. Hypothesis testing is more 
challenging in complex models with correlated features that 
can trade off with one another. Complex models are well 
suited to hypothesis generation, enabling a wider range of 
environmental covariates and modeling options than can be 
conveniently explored with simple models.

Simple 
When the goal is hypothesis testing, simple parametric  
models allow investigation of the strength and shape of 
relationships between species occurrence and a small set of 
features. Furthermore, parametric models allow for hypoth-
esis tests to examine if specific nonlinear features should be 
included in the selected model(s). The problem with com-
plex models in such a setting is that with the large suite of 
potential features that they use, it is challenging to deter-
mine the significance of a single feature or attribute of the 
response curve or to compare alternative models. Instead, 
one is constrained to accept the features selected by the sta-
tistical method (e.g. features classes in MAXENT; splits in 
tree-based methods) to represent that predictor (within some 
user-specified bounds). Rather, it is preferable to specify a 
set of features (or multiple sets for competing models) to 
determine the suitability for describing a particular pattern. 
For example, when features are selected automatically, it may 
be challenging to determine whether a quadratic term that 
makes the response unimodal is important or how much 
better/worse the model might be without it.

Complex
The starting premises, for hypothesis testing, is a priori  
ecological understanding enabling the user to select a small 
set of features. However, we do not always have this prior 
understanding. Complex models explore much larger sets of 
nonlinear features and interactions than simple models and 
are suited for generating hypotheses about underlying pro-
cesses (Boulangeat et al. 2012) derived from potentially flex-
ible responses that would not often be detected with simpler 
models (e.g. bimodality). This same flexibility can be used to 
augment existing knowledge. For example, if we know that 
a species is associated with dry, high elevation locations, we 
don’t need a simplified model to describe this, but rather 
more insight from a potentially complex model to capture 
bimodality or strong asymmetries. Complex models also 
provide tools for evaluating predictor importance, which 
is useful for both generation and testing of hypotheses and 
can lead to inference that differs little from simpler models 
(Grömping 2009). These importance indices can be gener-
ated from permutation tests (Strobl et al. 2008, Grömping 
2009), contribution to the likelihood (e.g. ‘percent contri-
bution’ in MAXENT), or proportion of deviance explained 
(decision trees).

Interpolate vs extrapolate
When predicting species’ distributions over space and 
time, it is important to distinguish between interpolation 
and extrapolation. When a point is interpolated by a fitted 
model, it lies within the known data range of predictors, but 
was not measured for its response. Alternatively, an extrapo-
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is whether sampling bias – which often arises in geographic  
space – transfers to bias in environmental space, and  
further, whether some environments are completely unsam-
pled. No statistical manipulation can fully overcome biased 
sampling. The main challenge when choosing complexity is 
that – particularly for models based on presence-only data 
– it may be unclear whether patterns in environmental 
space derive from habitat suitability, divergence between 
the fundamental and realized niches (Pulliam 2000), tran-
sient behavior, or sampling problems (Phillips et al. 2009, 
Hefley et al. 2013, Warton et al. 2013). For presence– 
absence data with perfect detection, sampling biases may 
not be too detrimental as long as at least some samples exist 
across environments into which the model is required to 
predict (Zadrozny 2004, but see Edwards et al. 2006 for 
contrasting results).

Recommendations
More flexible models will be more prone to finding patterns 
in restricted parts of environmental space where sampling 
is problematic. Poor performance on test data could iden-
tify over fitting to sampling bias, but only if the test data 
are unbiased. In practice, if unbiased testing data were avail-
able, they could be used to build an unbiased model in the 
first place. Recent advances that enable presence-only and 
presence–absence data to be modeled together, and across 
species, will be useful in this context (Fithian et al. 2014).  
A tradeoff exists between a complex model that might fit, 
e.g. step functions to few data points in poorly sampled 
regions and simple models that predict smooth but poten-
tially meaningless functions from just a few points.

Simple
The hope when using simple models for biased data is that 
main trends are still identified. Complex models can over-fit 
to the bias (particularly if the bias is heterogeneous in space) 
and miss the true main trends. Methods for dealing with 
imperfect detection (MacKenzie and Royle 2005, Welsh 
et al. 2013) or sampling design often specify relatively simple 
responses to environment because they simultaneously fit the 
model for sampling (Latimer et al. 2006), and identifiability 
can become an issue when too many parameters are used 
that might relate to either observation or occurrence. In such 
cases, inference will be limited to very general trends.

Complex
If the sampling bias is strongly linked to the environmen-
tal gradients, even simple models can predict spurious rela-
tionships (Lahoz-Monfort et al. 2013). Complex models 
could be useful in understanding, or hypothesizing about, 
the nature of the sampling bias: for example, the most par-
simonious explanation for sharp changes in the probability 
of presence in some circumstances could be sampling bias, 
although we know of no published examples. Detection and 
sampling bias models are not restricted to simple models 
– for instance, the former have recently been developed for 
boosted regression trees (Hutchinson et al. 2011) and the 
latter are often used with MAXENT (Phillips et al. 2009).

Predictor variables: proximal vs distal
A priority in selecting candidate predictors is to identify 
variables that are as proximal as possible to the factors  

Complexity in models) can reduce this divergence (Randin 
et al. 2006).

Data attributes

Sample size
The number of occurrence records is a critical limiting 
factor when building SDMs. With presence–absence 
data, the number of records in the least frequent class 
determines the amount of information available for  
modeling. Small sample sizes can lead to low signal to 
noise ratios, thereby making it difficult to evaluate the 
strength of any occurrence–environment pattern in the 
presence of confounding processes.

Recommendations
Simple models are necessary for species with few occurrences 
to avoid over-fitting (Fig. 1). This suggests few predictors 
and only simple features. Support for features can be found 
by reporting intervals on response curves (e.g. from confi-
dence intervals or subsamples), with an eye for tight intervals 
around pronounced nonlinearities. For large data sets, any 
of the modeling approaches described earlier are potentially 
suitable, dependent on study objectives.

Simple
We expect a large amount of noise in occurrence data due 
to processes unrelated to environmental responses and this 
noise can be particularly influential when sample sizes are 
small. For example, if a basic temperature response is built 
from data that are variably influenced by a strong land-use  
history and dispersal limitation throughout the range, a  
failure to take that into account results in a misspecified  
climate response surface. While simple models have a 
chance of smoothing over such variations, complex models 
can more readily fit these latent patterns, leading to biased  
prediction when models are projection to other locations 
where the latent processes differ. Complex models fitting 
many features are only appropriate when there are sufficient 
data to meaningfully train, test and validate the model (cf. 
Hastie et al. 2009).

Complex
If data are available, increasing the number of predictors 
ensures a more accurate understanding of the drivers of 
distributions. If the data set is small, it is possible to use a 
method that can be potentially complex, as long as it is well 
controlled by the user to protect against over-fitting e.g., 
using penalized likelihoods (Tibshirani 1996), a reduced 
set of features in MAXENT; (Phillips and Dudik 2008, 
Merow et al. 2013), or heavy pruning in tree-based methods. 
Permitting some complexity may be useful to identify coun-
terintuitive response curves and develop stratified sampling 
strategies for future data collection to support or refute the 
model responses.

Sampling bias
Sampling bias arises from imperfect sampling design, which 
includes purposive, non-probabilistic, or targeted sampling 
(Schreuder et al. 2001, Edwards et al. 2006) and imperfect 
detection (MacKenzie et al. 2002). The important question 
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under-estimation of the response at points throughout  
the covariate space (Barry and Elith 2006). Given that 
the relationship between proximal and distal predic-
tors is unlikely linear and may vary across landscapes, it is  
likely that the true response to distal variables might also 
be complex and best represented by a model that allows  
flexible fits and interactions. Hence the complex viewpoint 
still adheres to ecological theory, but allows for a modified 
view of idealized relationships as seen through available 
data.

Spatial extents and resolution
Interpretation of ecological patterns is scale dependent; hence 
changing spatial extent and/or resolution affects the patterns 
and processes that can be modeled (Tobalske 2002, Chave 
2013). Ecologists often use hierarchical concepts to describe 
influences of environment on species distributions – for 
instance, that climate dominates distributions of terrestrial 
species at the global scale (coarsest grain, largest extent), while 
topography, lithology or habitat structure create the finer scale 
variation that impact species at regional to local scales together 
with dispersal limitations and biotic interactions (Boulangeat 
et al. 2012, Dubuis et al. 2012, Thuiller et al. 2013). SDMs 
built across large spatial extents often rely on remotely sensed, 
coarse resolution or highly interpolated predictors, creating 
inherent biases and sampling issues (section Sampling bias). 
The choice of extent can also determine whether the species 
entire range is included in the model or whether data are  
censored (e.g. limited by political borders).

Recommendations
Resolutions should be chosen that provide data from proxi-
mal rather than distal variables. Such data are becoming 
available at high resolutions with expanded and technologi-
cally enhanced monitoring networks and more sophisticated 
interpolation of climate data (e.g. PRISM). The choice of 
resolution hence reduces to the discussion of proximal ver-
sus distal predictors in section Predictor variables: proximal 
vs distal. When the extent is chosen to contain the species’ 
entire range, models should include sufficient complexity to 
detect unimodal, skewed responses (section Complexity in 
models).

Simple
Smooth responses, characterized by simpler models, are to 
be expected at large spatial extents and coarse resolution 
that smooth over the confounding processes that affect finer 
resolution occurrence patterns (Austin 2007). At finer reso-
lutions, it may also be undesirable to incorporate the full 
complexity of the response curve: much of the finer details 
may derive from factors for which no predictor variables are 
available or are irrelevant to the purpose of the investigation 
(e.g. microhabitat or regional competition effects).

Complex
At small spatial extents, we might have data on the relevant 
proximal factors (e.g. soil properties), so fitting complex 
models along small-scale gradients can capture this complex-
ity. Also, complex models may be useful for exploring the 
nonlinearities that arise in response curves from distal vari-
ables at broad scales in that they potentially provide insight 
into important unmeasured variables.

constraining the species’ distribution. Proximal variables 
(e.g. soil moisture for plants) best represent the resources 
and direct gradients that influence species ranges (Austin 
2002). More distal predictors, such as using topographic 
aspect as a surrogate for soil moisture, do not directly affect 
species distributions but do so indirectly through their 
imperfect relationships with the proximal predictors they 
replace. The problem with using distal predictors is that 
their correlation with the proximal predictor can change 
across the species’ range, even if the proximal predictor’s 
relationship with the species does not (Dormann et al. 
2013). We rarely have access to all of the most impor-
tant proximal predictors across a study region, so the main 
question is what response shapes should we expect for 
more distal predictors? Imagine that a species is limited by 
the duration of the growing season, but that the response 
is instead modeled with a combination of mean annual 
temperature and topographic position (aspect, slope, etc.). 
It is difficult to anticipate the shape of the multivariate 
surface that mimics the species response to the proximal 
predictor.

Recommendations
Responses to proximal predictors over sufficiently large gra-
dients should be relatively strong (Austin 2007 and refer-
ences therein), and either simple or complex models should 
be able to identify these responses if complexity is suitably 
controlled. However, the extent to which the included 
set of predictors is proximal or distal may be unknown. 
Experimentation with complex and simple models may help 
test hypotheses about which predictors are more proximal, 
potentially best encapsulated in a simple response curve, and 
those that are more distal and better represented with more 
complex curves. As physiological mechanisms generally 
provide the best insights into how environmental gradients 
translate into demographic (and therefore population) pat-
terns, the use of informed physiological understanding could 
provide a valuable starting point (Austin 2007, Kearney and 
Porter 2009).

Simple
Ecological theory supports using unimodal or skewed 
smooth responses to proximal variables (Austin and Nicholls 
1997, Oksanen 1997, Austin 2002, 2007, Guisan and 
Thuiller 2005, Franklin 2010), which motivates constrain-
ing the functional form of response curves a priori (section 
Complexity in models; e.g. specific features in a GLM, few 
nodes in a GAM). Remotely sensed data, even for proximal 
predictors, may introduce noise to the environmental covari-
ates due to imprecision and to use of long term averaged data 
(Austin 2007, Letten et al. 2013), and may be prone to over-
fitting with complex models if those data generally fail to 
describe the local habitat conditions accurately. One can use 
simple models to smooth over such idiosyncrasies if the main 
trends are sufficiently strong or one can omit predictors if 
trends are weak. Parametric, latent variable models can help 
to deal with this imprecision (Mcinerny and Purves 2011).

Complex
Ecological theory is based on responses to idealized gradi-
ents, whereas we observe (often imperfectly) a messy reality. 
Specifying an overly simple model will result in over- and 
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spatial autocorrelation in the residuals, instead of allowing 
for unimodal responses in semi-parametric GAMs. Methods 
broadly dealing with spatial and temporal autocorrelation 
are more recently available for complex models (Hothorn 
et al. 2011, Crase et al. 2012).

Conclusions

Methodological
Based on our observations on the appropriate use of differ-
ent statistical methods and modeling decisions, how should 
modelers proceed to build SDMs? Many modelers’ prefer-
ences for particular statistical methods derive from the types 
of data they typically use and the questions they ask, rather 
than any fundamental philosophy of statistical modeling. 
For this reason, it is valuable for modelers to have experience 
in both simple and complex modeling strategies. We sug-
gest that researchers develop a comprehensive understanding 
of regression models in general and GLMs in particular, as 
these represent the foundation of almost all of the more com-
plex modeling frameworks. Also, understanding at least one 
approach to building complex SDMs can allow for sequen-
tial tests of more complex model structure. Importantly, 
because there are many different approaches to handling the 
same challenges in the data, it is less critical to understand 
each and every modeling approach than to become an expert 
in applying representatives of simple and complex modeling 
approaches.

Bias can come from over fitting complex models, and 
it can come from misspecified simple models. To find a 
model of optimal complexity, many approaches are pos-
sible and are readily justified if sufficient cross-validation 
has been performed. One might consider starting simple 
and adding the minimum complexity necessary (Snell et al. 
2014, this issue), or conversely starting with a complex 
model and removing as much superfluous complexity as 
possible. If one can narrow down the potential complex-
ity based on the considerations discussed here to consider 
models within a particular modeling approach (Table 1), 
then traditional model selection techniques are appropriate 
(section Modeling decisions).

Due to the exploratory nature of many SDMs and the 
desire to discover spatial patterns and their drivers, we rec-
ommend that analyses begin exploration using complex 
models to determine an upper bound on the complexity 
of response curves. Over fitting can be controlled through 
cross-validation (e.g. k-fold, and particularly block resa-
mpling methods), even if a full decomposition into train-
validation-test data is not feasible. Furthermore, complex 
models can be used to identify smooth, simple occurrence– 
environment relationships if patterns are sufficiently strong 
and guide specification of simpler models. In contrast, it 
will be more difficult to overcome a misspecified simple 
model, should a more complex response exist. If the explo-
ration with complex models reveals smooth relationships, 
one can shift to a simpler model. If instead strong nonlin-
earities are prevalent, one should consider biological expla-
nations for the nonlinearities. If complex nonlinearities 
cannot be avoided, one should focus on minimizing the 
complexity, understanding it through sensitivity analysis 
and uncertainty analysis (below) and providing biologically 

Spatial autocorrelation
Many processes omitted from SDMs have spatial structure. 
For example, dispersal limitation, foraging behavior, com-
petition, prevailing weather patterns, and even sampling 
bias can all lead to spatially structured occurrence patterns 
that are not explained by the set of predictors included in 
the SDM (Legendre 1993, Barry and Elith 2006, but see 
Latimer et al 2006, Dormann et al. 2007). When these  
spatial patterns are not appropriately accounted for, biased 
estimates of environmental responses may emerge.

Recommendations
If presence–absence data are available, one should assess the 
degree of spatial autocorrelation in the residuals and imple-
ment methods to control for spatial autocorrelation. Methods 
include spatially-explicit models that separate the spatial pat-
tern from the environmental response (Latimer et al. 2006, 
Dormann et al. 2007, Beale et al. 2010), using spatial eigen-
vectors as predictors (Diniz-Filho and Bini 2005), or strati-
fied sub-sampling of the data to minimize autocorrelation 
(Hijmans 2012). Complex models should be used cautiously 
in the presence of spatial autocorrelation, because their flex-
ibility may lead to them confounding aggregation in geo-
graphic space with complexity in environmental space. For 
example, if a large number of presences are recorded in a 
small region of environmental space due to social behavior 
in geographic space, it is more likely that a complex model 
can find some feature in environmental space that correlates 
with this clustering. This will result in biased interpretation 
or mapped projections in other locations where this social 
behavior is absent. Cross-validation can eliminate such spu-
rious fits, but only if it is spatially stratified at an appropriate 
scale. However, when used for exploratory purposes, com-
plex models may reveal information about this spatial struc-
ture within their response curves.

Simple
Simple parametric models can accommodate spatial structure 
under assumptions about the correlation structure (Latimer 
et al. 2006, Dormann et al. 2007). If a non-spatial model 
is used, simple models can be valuable because they are not 
flexible enough to model discontinuities in the response 
curve that derive from spatial structure, however they will 
still exhibit bias due to aggregated observations. Another 
solution to dealing with spatial aggregation is to model at 
sufficiently coarse resolution (suggesting simple models; see 
Spatial extents and resolution) that geographic clustering 
occurs within (and not among) cells, so it can effectively be 
ignored. One should be cautious building complex models 
because in practice, obtaining spatially independent cross-
validation samples is extremely challenging when the under-
lying spatial process is unknown and failing to do so likely 
leads to over-fitting (cf. Hijmans 2012).

Complex
It may be desirable to use complex response curves as prox-
ies for geographic clustering for mapping applications if the 
model focuses on small extents where nonlinear relation-
ships are likely to hold across the landscape of interest (e.g. 
interpolation). For example, Santika and Hutchinson (2009) 
showed that using only linear responses in logistic regression 
reduced the model performance by misleadingly introducing 
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example, SDMs might inform variable selection for the 
growth, survival and fecundity models in Integral Projection 
Models (Easterling et al. 2000). However highly nonlinear 
relationships would not be desirable for vital rate models due 
to the unlikely transitions through the life history that they 
might imply (cf. Merow et al. 2014). It is particularly impor-
tant to avoid confounding missing processes with complex 
environmental responses (as might occur in complex mod-
els) when the mechanistic model explicitly describes the 
mechanisms that produce that aggregation (e.g. dispersal 
or species interactions: Kissling et al. 2012). The challenge 
in using SDMs in this way lies in ensuring response curves 
truly reflect environmental limitations; while environmental 
tolerance may limit a species’ distribution at one end of a 
gradient, other (e.g. biotic) factors may limit it at the other 
end (Zimmermann et al. 2009).

Many issues of response curve complexity that we discuss 
are also relevant for process-based SDMs. Representations 
of processes are incorporated into SDMs to improve the 
precision and accuracy, or to improve our understanding of 
ecological processes. Consequently, process-based models are 
used more for prediction and hypothesis testing than descrip-
tion and hypothesis generation. Yet, preferences for different 
model complexity persist (Evans et al. 2013, Lonergan et al. 
2014). Study objectives influence the choice of complexity; 
i.e. whether the model is intended for extrapolation or for 
understanding the potential importance of mechanisms. 
In the former case, simple models are useful to make the 
study of the role of a mechanism more analytically tractable. 
In the latter case, preference might be towards more com-
plex models, where the roles of specific mechanisms can 
be understood in relation to other interconnected mecha-
nisms. When the objective is prediction, complex models 
are valuable to represent all known relevant mechanisms in 
order to obtain the ‘best guess’. Simpler models are valuable 
when analyses imply that only certain key mechanisms are 
needed for sufficient predictive accuracy (further discussion 
in Evans et al. 2013). Attributes of the available data may be 
less important with process-based models when relevant test 
datasets are well understood. However, data considerations 
are important when mechanisms or parameters are inferred 
from data or when assessing the spatiotemporal resolution 
over which particular degrees of abstraction and parameter 
values are relevant (Evans et al. 2013, Lonergan 2014, Snell 
et al. 2014). In any case, we expect that progress towards 
improved process-based models lies in challenging occur-
rence-based SDMs with stronger biological justifications 
and interpretations that aim to shed light on the mechanisms 
that drive process-based models.  
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based hypotheses about it. The end result is a model that 
adds complexity only to the extent necessary to reproduce 
observed patterns.

Uncertainty analysis is a relatively untapped resource 
for understanding appropriate model complexity. When 
the influence of particular model components is unknown 
(e.g. whether a predictor or feature is relevant a priori) it is 
particularly critical to account for uncertainty in modeled 
relationships to explore the implications of our ignorance. 
By studying uncertainty, one can gain confidence in pro-
nounced nonlinearities when they come with tight confi-
dence intervals. Information on parameter uncertainty, and 
consequently prediction uncertainty, can be obtained from 
any means of simulation from parameter distributions, 
including posterior sampling, sampling based on point esti-
mates and covariance matrices, or bootstrapping. Bayesian 
models have the advantage of using the full data set to esti-
mate parameter uncertainty, but are generally restricted to 
simpler models to avoid convergence issues (Latimer et al. 
2006, Ibáñez et al. 2009). One way of reducing uncertainty 
in predictions is to analyze the importance of predictors 
given the model and data using ‘average predictive com-
parisons’ (Gelman and Pardoe 2007) a form of sensitivity 
analysis that incorporates parameter uncertainty. One can 
also quantify uncertainty due to our modeling decisions 
by using ensembles of models built with different statis-
tical methods or decisions (Pearson et al. 2006, Araújo  
and New 2007, Thuiller et al. 2009), provided that each 
component model is built based on modeling decisions 
reflecting a common goal.

Biological
Despite the valuable insights we can gain from occurrence 
models, it is worth acknowledging that fundamental limita-
tions to biological inference may emerge from these stud-
ies (Tyre et al. 2001, Araújo and Guisan 2006, Araujo and 
Peterson 2012, Merow et al. 2013). Balancing complex and 
simple models in such a way as to discover and discuss these 
limits may be as important as the actual patterns identified 
with some datasets. More broadly, it is important to keep in 
mind that we are ultimately performing exploratory analy-
ses of occurrence–environment relationships. Occurrence 
records are not the ideal data to predict attributes of popula-
tions, Thuiller et al. (2014) provide an interesting caution-
ary note by showing weak relationships between occurrence 
probability and various demographic parameters for 108 tree 
species in temperate forests. However, often no other data 
are available at large spatial extents that might inform range 
models. Thus, while the limits may be obvious, insights from 
occurrence-based correlative models may be an essential 
step in developing new hypotheses and research programs 
that can lead to the next generation of mechanistic models 
(Schurr et al. 2012, Thuiller et al. 2013, Snell et al. 2014).

A novel, and potentially important, application of SDMs 
is for informing mechanistic models about the shapes of 
response curve in demographic models (Merow et al. 2014), 
or dynamic spatio-temporal population models (Pagel and 
Schurr 2012, Boulangeat et al. 2014, Thuiller et al. 2014). 
Simple models may be preferable for these tasks because it 
is important to have a clear hypothesis to evaluate when 
linking it to a particular process (Thuiller et al. 2013). For 
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