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Abstract Two essential aspects of virtual screening are

considered: experimental design and performance metrics.

In the design of any retrospective virtual screen, choices

have to be made as to the purpose of the exercise. Is the goal

to compare methods? Is the interest in a particular type of

target or all targets? Are we simulating a ‘real-world’ set-

ting, or teasing out distinguishing features of a method?

What are the confidence limits for the results? What should

be reported in a publication? In particular, what criteria

should be used to decide between different performance

metrics? Comparing the field of molecular modeling to

other endeavors, such as medical statistics, criminology, or

computer hardware evaluation indicates some clear direc-

tions. Taken together these suggest the modeling field has a

long way to go to provide effective assessment of its

approaches, either to itself or to a broader audience, but that

there are no technical reasons why progress cannot be made.
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Introduction

Virtual screening in the pharmaceutical industry is an

essential part of molecular modeling’s contribution to lead

discovery and, to a lesser extent, lead optimization. This has

led to considerable research into what method or approach

works best, typically by means of ‘retrospective’ evalua-

tions, i.e. attempting to predict future, i.e. prospective,

behavior by appraising techniques on known systems.

Despite this there is no agreed upon theory as to how to

conduct a retrospective evaluation. As a consequence, it is

very difficult for an outsider to assess if methods are getting

better, have stayed the same, or even worsened over time. In

a practical enterprise, such as drug discovery, the proposed

benefits of virtual screening, i.e. avoiding the cost and time

of a real screen, have to be weighed against one simple

question: does it actually work? Without proper metrics of

success, i.e. ones that go beyond the anecdotal, molecular

modeling is not guaranteed a vibrant future.

Observed as a general exercise, there are four elements

that ought to be standard for any prediction study, whether of

a virtual screen, or any general pattern recognition method.

The first is whether the study is well designed. The second is

what metrics are used to evaluate the outcome. The third is a

consideration of significance, i.e. error analysis. And the

fourth is a reliable assessment of whether the results are

particular or general. All four aspects are important and yet it

is rare for a study in any field to meet all these criteria. Even

in the most critical part of drug discovery, i.e. clinical trials,

there is considerable room for improvement, as several

recent retrospective studies of the medical literature have

demonstrated [1, 2]. In reports on virtual screening, in fact in

molecular modeling in general, it is rare to find an adequate

consideration of any of these issues.

Why is this? Why is the modeling field so poor at the

most basic elements of evaluation? A charitable view would

be that, as with communication skills, most modelers

receive little appropriate formal training. Certainly there is

no central resource, whether scholastic review, book or

paper. A slightly less charitable view is that journals have

not developed standards for publication and as such there is

little Darwinian pressure to improve what the community

sees as acceptable. It is to be hoped that this is a learning
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curve, i.e. that editors will eventually appreciate what is

required in a study. An extreme view is that we are poor at

evaluations because we simply do not matter very much. If

large fortunes were won or lost on the results from com-

putational techniques there would be immense debate as to

how to analyze and compare methods, on what we know

and exactly when we know it. There would be double blind,

prospective and rigorously reviewed studies of a scale and

depth unknown in our field but common in, for instance,

clinical trials. In short, there would be standards.

In the hope that virtual screening is, in fact, worthwhile

we provide comment, suggestions and research on two

important aspects, namely experimental design and perfor-

mance metrics. Although the two are intimately linked, i.e.

an experiment should be designed with a mind to what is

being measured, there are distinguishable aspects. On

experimental design, extensive properties, such as number

of targets, actives and inactives, need to reflect a statistical

understanding of the current unreliability, or high variance,

of methods [3–5]. So dominant is this variance that it almost

renders moot any discussion of other matters, such as decoy

design. However, ultimately all aspects of design are

important. On decoy selection we suggest the necessity of

clarifying design intent and suggest four broad categoriza-

tions. In analyzing results, the issue of correlation is

considered. This often arises in the context of the 2D simi-

larity of actives from congeneric series, but the general issue

also concerns decoys, targets and methods. Research is

proposed that would clarify essential and poorly understood

issues, such as the transference of predictability between

closely related systems. On evaluation metrics we examine

the AUC (Area Under the Curve) of ROC (Receiver Oper-

ator Characteristic) curves [6–9]. Consideration of why the

AUC is a popular measure in many disciplines suggests

standards by which virtual screening metrics ought to be

judged. Finally, by evaluating average properties of large

numbers of systems, and by considering simple cost/benefit

examples, we bring into question the validity and utility of

metrics proposed to capture ‘early’ behavior.

Experimental design

In what follows we consider the importance of both inten-

sive and extensive properties of an experiment. An

intensive property is something intrinsic to a design,

whereas extensive properties change with the size of the

system. For example, the type of decoys used in a retro-

spective study is an intensive property; the number of such

is an extensive property. We believe the most overlooked

intensive characteristic is the design goal, i.e. what is trying

to be proved. This typically falls into a few discrete classes

and appropriate labeling would help combine lessons from

different studies. For extensive quantities we consider how

common statistical approaches can aid the choice of num-

bers of actives, decoys and targets. Finally, actives, decoys,

targets or methods are not always independent and this has

to be quantified even in as simple a matter as comparing two

programs. Techniques for accounting for correlation within

an experimental design are known but rarely applied.

Intensive properties

One of the most basic issues in designing a retrospective

screen is how to chose decoys. Typically there are a certain

number of active compounds and one wishes to see if a

method can distinguish these from a second set, presumed

inactive. This is the most basic of classification problems. Is

X of type A or type B? The legal system often has the same

dilemma, e.g. was X at the scene of a crime or not? A police

line-up has all the components of a virtual screen. Usually

the number of actives (suspects) is small, usually one. The

number of decoys (called ‘fillers’) has to be sufficient that

random selection does not compete with real recognition; a

minimum of four is usual. But it cannot be so large that guilt

is hidden within the statistical variance of the innocent. The

fillers need to be convincing, i.e. not outlandishly dissimilar

to the guilty party, but not too similar or even potentially

also at the scene (i.e. false false positives). As courtroom

verdicts can depend on the appropriateness of a line-up,

standard procedures are well known.

We make the argument for four types of virtual

screening experiments; each with its own intent. Each of

the four designs ultimately consists of a random selection

of decoys but after the application of different filters.

(A) Universal. Any compound available to be physically

screened, typically either from vendors or corporate

collections.

(B) Drug-like. Available and drug-like, typically by

applying simple chemical filters.

(C) Mimetics. Available, drug-like and matched to known

ligands by simple physical properties.

(D) Modeled. Available, drug-like and derived using 3D

modeling on known ligands or the intended targets.

Although no classification scheme could be perfect, fair

comparison of studies requires an alignment of intent. In

general, decoys get ‘harder’ from A to D, although this is

not necessarily true on a case-by-case basis and is itself an

interesting area of research.

The first, and perhaps least in favor, is the universal

selection of decoys. A catalogue of compounds from a

vendor or set of vendors is treated as a general population

from which to draw. An example of a virtual study with

universal decoys can be found in Rognan et al. [10].
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Although this method is now uncommon, it has an inter-

esting intent. Faced with all compounds available for

testing, does a method distinguish known actives without

using prior knowledge of what makes a compound active?

Drug discovery has a long and successful history of grind-

ing up exotic plants and animals and screening for activity

and so this is a reasonable, if old-fashioned, approach. In the

Rognan set, for example, we find I3, not likely to be a drug

but none-the-less an interesting molecule. The problem with

universal decoys is two fold. First, is it random enough?

The space of all possible chemistry is exceedingly vast

[11, 12]. The concept that a few thousand compounds, in

particular from a vendor database, could act as a thorough

sampling is implausible. In fact, there is now evidence

suggesting known chemistry is very restrictive [12].

Because of ‘inductive bias’, a concept frequently high-

lighted by Jain [13, 14], we tend to make what we know

might work, instead of sampling of what can be made.

Second, is it possible a universal decoy such as I3 might

stand out pretty much the same way a shady character

would stand out against a selection of school children, shop

clerks and nuns? Paul Hawkins has described this as the

‘dog’ test [15], i.e. if your dog could tell the difference

between the actives and inactives what have you really

proved? Actually, potentially a lot but only if the rest of the

experiment is designed with this choice of decoys in mind.

The problem here is one of dynamic range. If it is too easy

to distinguish an active then the only way to distinguish

between the methods is to test many, many times, i.e. to

improve the statistical power necessary to rank one method

above another. As is well known, and discussed below, the

error in any metric depends on both the number of actives

and the number of inactives. While it is trivial to increase

the number of (presumed) inactives almost without bound,

the number of actives is normally very finite. Only in some

of the more impressive published studies does the number

of actives exceed a hundred [3, 4] and it is this limitation

that really hinders random decoys being an effective

experimental design. We note that this is only a presumed

inadequacy of universal decoys; in fact such decoys may

prove difficult for some computation methods, the Hawkins

dog test not with-standing. The point is that a presumed

limitation can be overcome by applying basic error analysis.

A more typical selection procedure is to choose from a

decoy set that is ‘drug-like’. Of course, there is no rigorous

definition of ‘drug-like’, but this does not stop it being

widely used. The intent is to mimic modern physical

screens and not test everything but instead be guided by

current dogma as to what a drug might look like. The most

prevalent of these descriptions is the famous Lipinski Rule-

of-Five, but there are many variants [16]. This is not dis-

similar to how police line-ups are actually constructed;

‘fillers’ are normally acquired from local jails. In theory,

this should also be a harder test of methods because there

are less easily discernable inactives, although this is not

proven. Examples of this approach are the studies of

McGaughey et al. and Warren et al. One potential advan-

tage of this approach is that because decoys are derived

from characterized collections they are more likely to be

known to be inactives. This is typically only an assumption

for universal decoy sets. It is debatable as to how big a

problem false decoys are, but clearly they do not help.

There are also issues with drug-like decoys. Some com-

panies’ collections are heavily biased towards certain

targets that may or may not be related to the retrospective

study at hand. The study by McGaughey et al. reported

significant differences in the efficiency of decoys chosen

from the MMDR, a kind of ‘consensus’ drug-like collec-

tion, compared to ones from their internal Merck database.

This trade of generality for local applicability is a char-

acteristic of many aspects of evaluations. For instance,

should targets be chosen to represent all possible systems, a

subset of pharmaceutical interest or a class within that

subset? What is gained in local applicability is often lost to

generality and prospective predictability.

The third approach is to find mimetic or modeled decoys.

These are meant to stress-test methods and should be used

to compare approaches, rather than necessarily evaluate

real-world performance. Mimetic decoys are constructed so

that ‘simple’ methods cannot tell known ligands from

decoys. The rationale is utilitarian; why should one chose

to use sophisticated methods when simple, ligand-based,

ones can do just as well? Approaches include matching

physical properties, for instance size, number of hydrogen

bond donors and acceptors, lipophilicity, charge or flexi-

bility [17]. An example of this approach is the DUD dataset

[18] of Irwin et al. Here, for each target thirty-six decoys

are found for each active by matching physical properties,

forming a mimetic set referred to as DUD-self. The com-

bined set, i.e. across all targets is drug-like and is referred

to as DUD-all. Mimetic decoys can sometimes be

depressingly effective, as illustrated by Irwin et al. How-

ever, in not all cases were DUD-self decoys harder to

distinguish than decoys from DUD-all. This at least sug-

gests physical property mimetics are not guaranteed to

provide a reality check for methods claiming to capture the

physics of drug-target interaction.

Modeled decoys go one step further than mimetics by

eschewing the concept of comparison to simple, practical,

methods and instead designing directly against the method

under study. As an example, suppose decoys for a docking

study were chosen such that every decoy had good shape

complementarity with some part of the active site, i.e. it fit

well. It is widely known that basic shape complementarity is

usually necessary for binding and forms a major component

of most scoring functions. Such a set of decoys would them
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make for a challenging test of scoring functions. But is this a

good test of docking? If essentially random performance is

seen an observer might decide docking is without merit,

whereas an appropriate conclusion would be that complex

scoring functions are useless. The inevitable desire of

methods to be seen to be useful often prevents modeled

decoys being chosen, even though they potentially address

the most interesting scientific questions. Irwin et al. had

intended their mimetic decoys to act more as modeled

decoys, i.e. the aim was to make things harder for docking

programs, but, as mentioned, this was not always achieved.

Although mimetic and modeled decoy selections have

virtues, they can also hamper comparison between different

studies. In the case of the mimetic approach, the definition of

‘simple’ evolves over time, especially as property calcula-

tions improve or change. To arrive at a set of modeled decoys

the procedure applied must be scrupulously described, e.g.

how is the protein prepared, how is the ligand protonated etc,

and complete and accurate descriptions of published virtual

screening procedures are rare. However, there seems no

reason a consensus could not be reached by interested parties.

Standard protocols could be developed, shared and used to

verify results. The problems are more of will than ingenuity.

Given the above discussion, what is the appropriate

decoy set to use? A universal set with sufficient actives to

enable discrimination between methods? A drug-like set

built from one group’s definition of a corporate collection,

but perhaps without general applicability? A mimetic set to

produce physically similar decoys? Or a modeled set

defined so as to tease out specific differences between

methods, even at perception of poor performance? A sug-

gestion by Geoff Skillman [19] provides a novel

framework. Given the speed of modern computers and the

cost of storage and transmittal of information, there seems

no reason a retrospective study could not contain all decoy

types, with careful labeling of individual intent. The

authors can make of their data what they will, for instance

by reporting performance against a subset of decoys.

However, if a broader set is included in the supplementary

material, others can make use of the data for potentially

different purposes. One of the proposals of this paper is for

modeling to move beyond the anecdotal towards the sys-

tematic. Full reporting of data is essential but a further step

would be to include alternate data so that others can con-

struct purposes beyond the original intent.

Extensive properties

In addition to intensive properties, there are the extensive

properties such as how many actives, decoys and targets

are used. Once again the important consideration is

knowing what we want to know. If the purpose is to

evaluate a single method on a single target the necessary

extensive properties are quite different than for a broad

study on the efficacy of several methods on many targets.

We illustrate this with some basic error analysis.

The Central Limit Theory (CLT) states that the average of

M measurements tends towards the true mean with an error

proportional to H(V/M), where V is the average squared

difference of a quantity from its estimated mean. Thus, the

error is an intrinsic quantity, the square root of V, divided by

an extrinsic quantity, the square root of the number of mea-

surements. Famously, we have to take four times the number

of measurements to reduce the error by a factor of two. What

does this say as to the number of actives, decoys or targets

that should be used to accurately measure the performance of

a method? If the performance is similar no matter what

actives, decoys or targets are used then the variance is small

and M can be small. However, this is not the situation for

modeling techniques applied to real systems. Instead, it is the

ruling zeitgeist that ‘performance may vary’ [3–5].

Just how variable are virtual screening methods?

Figure 1a and b illustrate the extent of the problem by

presenting a reanalysis of the Warren et al. study from

GSK, with eight different docking methods and our own

work on the DUD dataset (DUD-self decoys) using four

different virtual screening techniques. The performance

metric is the AUC averaged over each dataset. The number

of targets for Warren et al. is eight and for DUD forty, i.e. a

Fig. 1 (a) Average AUC values across docking programs in the

Warren study, with 95% confidence intervals. Where programs were

run in multiple modes the best average AUC was retained. (b)

Average AUC values plus error bars across the DUD dataset for four

in-house methods. Docking: FRED, Ligand-based: ROCS, 2D:

Lingos and MACCS Keys [20]. Also included for comparison

purposes is the average AUC for GOLD against the Warren set with

associated error bars
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five fold difference. As expected, the error bars, i.e. the

confidence limits at 95%, are slightly more than twice as big

for a method assessed against the GSK set than against

DUD. In addition it is clear that although methods in the

GSK test could be broadly classified as better or worse, this

is subject to considerable statistical dispute. The resolving

power of DUD begins to be apparent in Fig. 1b, where one

can begin to put some significance to the generally held

belief that ligand-based methods perform better than

docking and about as equivalently as 2D methods [4, 21].

The average AUC and error bars for GOLD from the

Warren study are included in for comparison purposes only.

A more quantitative analysis of this data will be presented

below in the section on correlation between methods.

What is the source of so much variation such that even

forty targets are barely able to provide statistically sup-

portable conclusions? In general, given a property

measurement that has N independent sources of error, the

expected error is formed from the root mean square of the

individual sources of error, thus:

Err �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Err2
1 + Err2

2 + Err2
3 ...

� �

q

For our case we can write:

Err(method)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Err2
targets +Err2

actives +Err2
inactives)

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Vartargets/Nt +Varactives/Na +Varinactives/Ni)
q

The variances are intrinsic properties to ‘targets’,

‘actives’ and ‘inactives’. How do we know what these

variances are? One way is to boot-strap, i.e. leave out a

randomly chosen fraction of the targets, or subset of actives

or inactives, and measure changes in performance. Repeat-

ing this procedure many times gives a statistical sampling of

the sensitivity to outliers and the number of measurements.

Alternatively, in some cases the variance can be established

more precisely. In the case of AUC, for example, it can be

shown that for a particular target the variance for both

actives and inactives can be approximated by:

Varactive =
X

(pi � hpi)2/Nactive

Varactive =
X

(qj � hqi)2/Ninactive

where the sums are over all actives or inactives, pi is the

probability this active i has a higher score than an inactive,

qj is the probability an inactive j has a higher score than an

active and hi represents the average of a quantity [7].

Typically, the variances of both actives and inactives are

roughly equal. This leads to useful insights as to the

required ratio of decoys to actives. When this ratio is 100:1,

the net error is only larger by 0.5% than if we were to use

an infinite number of decoys. A ratio of 40:1, roughly that

of the DUD-self set, yields an impact about 1%. At 10:1,

this impact is about 5% and at 4:1 about 11%. Note that

these effects on the error estimates, not on the actual

average. What does this look like in practice? Figure 2

shows the AUC values for FRED applied to DUD (self-

decoys), along with associated 95% confidence intervals

for each system. Given these AUCs and contributions to

variance from actives and inactives, we can directly

address whether the source of the variance across targets is

due to insufficient sampling of actives and decoys, or an

intrinsic property of methods. By the CLT,

Err(AUC) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(VarObs/Nt)
p

where

VarObs =
X

(AUCi � hAUCi)2/Nt

Therefore

Vartargets = Nt * f(VarObs/Nt)� (Varactives/Na)

� (Vardecoys/Ni)g

Table 1 shows contributions to the square of the average

error in the mean AUC across DUD for our four methods

Fig. 2 AUC values ordered from left to right by number of actives

for each target in the DUD set. Program used: FRED with Chemscore

as the posing and scoring function. Error bars are 95% confidence

intervals for each virtual screen

Table 1 The contribution to observed variance from actives, decoys

and targets over the DUD dataset (DUD-self decoys)

Method hErr2i -

Decoys

hErr2i -

Actives

hErr2i -

Observed

Est. hErr2i -

Targets

FRED 0.000048 0.0020 0.023 0.021

ROCS 0.000025 0.0022 0.041 0.039

MACCS 0.00004 0.0017 0.030 0.028

LINGOS 0.000039 0.0017 0.035 0.033

The estimated error (squared) from the variation between targets is

estimated from the observed variance and corresponds to that which

would be obtained if the number of actives and inactives were infinite
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calculated in this manner. First, as expected the contribution

from the inactives is about forty times less than that of the

actives (because the intrinsic variances are similar and there

are thirty-six times more decoys than actives in DUD-self).

Secondly, it is clear that the errors due to target variability is

roughly ten times higher than that due to actives. As inde-

pendent errors add as squares, this implies only about 5% of

the observed confidence limit on the target-averaged AUC

is due to the finite number of actives. This leaves 95% of the

95% confidence limit due entirely to the considerable var-

iation from target to target. Comparing DUD-self to the

careful evaluation of McGaughey et al. from Merck, and

Warren et al. from GSK, the latter have roughly four times

more actives and four times less systems, i.e. they are more

careful studies of particular systems (error bars are 50%

smaller per system) but substantially less useful for general

conclusions (error bars are twice as big per method).

Remarkably, even if the number of actives in each DUD-

self set were reduced by a factor of ten, causing a threefold

increase in the error estimation per target, the net error of

averages over all systems is only increased by about 30%.

The conclusions from this analysis of extensive prop-

erties are straightforward.

(1) When calculating the properties of a single system the

number of actives is fairly important, but the number

of inactives does not have to be substantially larger. A

ratio of decoys to actives of 4:1 only has an error 11%

higher than the limiting value from an infinite number

of inactives. It would be more useful to include sets of

inactives designed for different purposes than to

attempt to ‘overwhelm’ the actives with decoys.

(2) If the purpose is to test a method against other

methods with 95% confidence then the number of

systems required is very large, much larger than even

DUD. In our analysis the contributions to the variance

from a limited numbers of actives is almost insignif-

icant compared to the target-to-target variation. For

example, it would take over 100 test systems to tease

apart the difference between the ligand-based method

ROCS and the docking program FRED with 95%

confidence. (See below.)

(3) The variance between systems is such that the number

of actives per target does not need to be very large,

perhaps even as low as ten. As such, suggestions to only

include representatives of chemical classes, e.g. see

Good and Oprea [22], may be statistically quite valid.

Correlations

A key assumption underlying much statistical analysis is

the independence of samples, for instance that any two

measurements are uncorrelated. This is often a good

assumption but it is not hard to find counterexamples.

Consider the case where a decoy is included twice. We

have gained no new information. Yet Ni, the number of

decoys, has increased and so the error goes down. Clearly

the error has not really been reduced. Instead, the decoys

are no longer independent. In the line-up analogy, this

would correspond to including identical twins as fillers.

While this is an unlikely mistake, what about two indi-

viduals that look very similar? How independent are two

molecules and what does this even mean? The temptation

is to reach for the familiar chemical definition, i.e. 2D

similarity. Even though there is no rigorous definition of

chemical similarity, it is a major concern in selecting active

populations from chemically related (congeneric) series.

Methods that either rely on chemical similarity, or are

heavily influenced by it, may not be making independent

assessments. Clearly 2D methods fall into this category,

and sometimes ligand-based 3D methods. Ideally, methods

that use protein structure, such as docking, ought to be less

affected, but this is far from proven. Suggestions as to how

to improve matters include reducing the set of active to a

smaller set of representative structures [22], or giving more

weight to the first compound discovered in a series [23].

(Application of similar protocols to decoys is seldom dis-

cussed, perhaps because they are less likely to be

congeneric). These are practical suggestions derived from

knowing the nature of drug discovery. There is also a

general approach that eschews the particulars. Two com-

pounds are considered operationally dependent if their

rankings under different tests are correlated. For instance, a

method that had a size-bias would tend to rank a pair of

molecules of comparable extent similarly, no matter what

the target. Even without 2D similarity, this implies a less

than perfect independence. Imagine a method where all the

decoys are of one size and all the actives another. No

matter what the actual number of actives and inactives,

there are essentially only two molecules, an active and an

inactive, and our ability to extract meaningful statistics is

severely compromised. Note that the operational part of

this definition depends on the nature of the method, i.e.

dependence is conditional on the nature of the procedure

investigated.

Similar situations occur in assessments of genetic link-

age. The degree of dependence amongst a set of markers is

evaluated by constructing a matrix where the entries are the

correlation of phenotypic scores between any two markers.

The eigenvalue spectrum of this matrix is then used to

assess the actual number of degrees of freedom [24].

Crucially, though, correlation can only be estimated by

knowing the behavior of a pair of samples/compounds over

many tests/targets. At first glance this suggests that the

same set of decoys should be used across all targets in a
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study. If decoy selection is universal or drug-like this is

typically a part of the design, i.e. the decoy set is reused.

However, mimetic and modeled decoys rely on the nature

of the actives, which will vary from target to target. This

might seem a dilemma, i.e. we want to reuse decoys so we

know if they are correlated but we cannot reuse them

because one set of decoys may be completely inappropriate

for another target. Here Skillman’s suggestion is again

useful, i.e. there is nothing to stop us including the decoy

set for one target in the virtual screen of a second target not

as decoys but rather to gain information on operational

independence. To distinguish the role of decoys from one

system applied to a second system for purposes other than

assessing performance, we suggest the term ‘latent’ since

these secondary decoys should be hidden from the calcu-

lation of performance metrics. In addition to the concept of

latent decoys, latent actives can be used to measure oper-

ational independence independent of 2D similarity.

Another possibility is to use the actives from one system as

explicit decoys in other systems. For instance, in the

Warren et al. study each set of actives also formed the

decoy set for the other targets. The intent was just to

produce a set of drug-like decoys, but it fortuitously pro-

vides the most compact form for a rigorous estimation of

decoy/active independence. This work will be presented

elsewhere, along with an elaboration of the techniques for

assessing operational correlation.

We turn now to the question of target independence.

As we have seen, and is widely appreciated, the variation

of performance of methods from target to target is con-

siderable. But do certain targets, or classes of targets,

behave similarly for certain methods? For instance, one

would expect that a docking program parameterized

against certain binding motifs would perform similarly

across all targets with this motif, if only because of

inductive bias. Or one might assume that isoforms of a

target are sufficiently akin that docking methods would

perform similarly on each. Fortuitously, the Warren study

provides one such example in the inclusion of PDFE and

PDFS. Figure 3 shows the difference in performance of

methods used on isoforms versus the average difference

between all other pairs of targets. It is clear there is less

variance between the isoforms than unrelated targets. If

this were a generalizable result it would have two con-

sequences. On the positive it would mean that methods

could be quantified for certain types of problems without

requiring large numbers of targets, i.e. because the vari-

ance is smaller. On the negative, it would mean that just

as considerations need to be made for the true statistical

power of closely related actives, or inactives, similar

considerations need to be made for targets, increasing the

number of targets required to either discern general dif-

ferences between methods or to reliably gauge progress of

a single approach. And, as we have seen, to measure

global performance on independent systems already

requires sampling beyond common practice.

The PDFE/S example is a single data point. It is entirely

possible that the variation between targets of similar class,

or highly conserved isoforms, or even different forms of

the same protein structure is not small and that calculating

mean properties is still formidable. One might imagine this

is a well-researched area, but this appears not to be the

case. Retrospective experiments are designed, however

poorly, to give an estimate of to what to expect for the next

new target and so targets are chosen to be diverse. Software

would seldom be used in default, out-of-the-box, mode

when there is considerable domain knowledge, i.e. within a

set of closely related targets. Hence, the question of method

variance over similar systems appears to have been over-

looked.

The final aspect of independence is correlation between

methods. Suppose we have method A and method B, each

tested on the same set of targets with the same set of

actives and decoys and the results show A is consistently

slightly better than B. How can we prove this difference is

statistically significant? At first glance this would seem

difficult. As illustrated in Fig. 1a and b, the variance of any

one computational method over a set of targets in invari-

ably large. As such, the error bars on an average property,

such as an AUC or enrichment, are big. So although the

average behavior of method A is slightly better than B, this

difference would appear statistically insignificant. How-

ever, if the test systems are indeed identical this is not the

correct assessment. Instead, the CLT is applied to the set of

measured differences between methods, e.g. for an AUC

example the variance becomes:

Fig. 3 Docking performance against the two isoforms in the Warren

study (PDFS and PDFE), compared to the averaged difference over

all other pairs of targets
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Vardiff =
X

ððAi � Bi)� (hAi � hBi))2/Nt

Err(diff) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Vardiff /Nt)
p

The formula for Vardiff can be rewritten as:

Vardiff = VarA + VarB � 2*Corr(A,B)

Corr(A,B) =
X

(Ai � hAi)(Bi � hBi)/Nt

Here Corr(A,B) is a measure of the correlation between

methods A and B and is related to the Pearson correlation

coefficient, thus:

Pear(A,B) = Corr(A,B)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( VarA* VarB)
p

If the tests of methods A and B are independent then the

correlation is typically assumed zero and the variance is

just the sum of the variances of both methods. If variances

were roughly equal, this would typically be a joint error bar

H2 larger than the individual error bars. (This also means

the common practice of evaluating whether two methods

are statistically different by whether their individual error

bars overlap is generally incorrect.)

However, if the tests applied to methods A and B are

identical, correlation needs to be explicitly included. In the

case of A always slightly better than B, we need to assess

whether the mean difference is larger than the joint confi-

dence limits generated from the variance of the difference

between A and B. In fact, if A is better than B by a constant

amount we are guaranteed statistical significance because

the variance of the difference is zero. In general, methods

tend to be positively correlated so that the joint confidence

limits are lower than from independent measurements.

Confidence limits are convenient because they give a

visual estimate of the possible range of true values, typi-

cally at a 95% level of confidence. However, joint

confidence limits are less graphical as they pertain to pairs

of methods. In addition, there is considerable concern in

other fields as to the arbitrariness of the 95% value. The

origin of this number is R. A. Fisher, whose work in the

1920s still dominates much of the field of practical statis-

tics. Fisher, primarily an agriculturalist, observed a 10%

increase in cabbage yield when manure was used. He also

observed that only one in twenty plots without manure

showed a yield greater than 10%, and so the 95% cut-off

was born! From this, and because of the general utility of

Fisher’s work on experimental design, a p-value of 0.05

dominates many fields, in particular clinical trials. Essen-

tially, a p-value is the probability a null hypothesis can be

rejected. In our case the null hypothesis would be that

method B is in fact better than method A, despite average

values suggesting the reverse. Under the assumption the

difference in performance between two methods is as

predicted by the CLT (i.e. Gaussian), we can assign a

(p-)value to the probability one method is better only

because of random chance. We do this by calculating the

area under the normal form for which one appears better

than the other. The mathematics of this is shown below:

p = (1� erf (hA� Bi*p(0.5*Nt/VardiffÞÞÞ/2

where hA–Bi is the average difference between the meth-

ods, the other variables are as defined as above and erf is

the inverse cumulative Gaussian, or error, function. If Nt is

small, i.e. less than twenty, then a slightly different func-

tional form is more accurate (i.e. from the Student t-test)

because the CLT only applies in the limit of large N. For

practical purposes the difference can be ignored. The

smaller p, the stronger the case for A being better than B.

Note, we are not proving how much better A is than B. The

best estimate of A’s superiority is still the mean difference

of whatever property we are measuring. Rather the p-value

refers to the dichotomous question, is A better than B?

Table 2 illustrates the above concepts for the four

methods listed in Fig. 1b applied to DUD (DUD-self

decoys). The diagonal entries are the mean values of the

AUC of each method, followed by the associated 95%

confidence limits. The upper triangle of the table contains

Table 2 Statistical measures necessary to accurately assess the relative performance of methods, here applied to the DUD data set (DUD-self

decoys)

Method FRED ROCS MACCS LINGOS

FRED 0.684/

0.043

0.11/0.08/

0.07

0.1/0.07/0.06 0.1/0.07/0.065

ROCS 0.17/0.09 0.732/0.065 0.12/0.085/

0.05

0.125/0.09/0.05

MACCS 0.03/0.05 0.70/0.47 0.734/0.055 0.115/0.08/

0.055

LINGOS 0.19/0.14 0.65/0.36 0.54/0.31 0.72/0.061

Diagonal terms: average AUC/95% confidence limits. Upper triangle terms: naı̈ve joint confidence limits/joint confidence limits assuming

different tests/joint confidence limits assuming same tests and accounting for correlation. Lower triangle terms: Pearson correlation coefficients/

p-values that a method has a higher mean AUC by random chance
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the naı̈ve joint confidence limits, i.e. by summing indi-

vidual confidence limits, the joint confidence limits

assuming independent tests and the joint confidence limits

properly calculated with correlation. The lower diagonal

contains the Pearson correlation coefficient for each pair of

methods, followed by the p-value for the hypothesis that

the better method is so only by chance. So, for example, the

probability that the 2D and ligand based methods are better

than the docking program FRED by chance are around

the 10% level, whereas the differences between these three

methods themselves is close to 50:50, i.e. in this example

we can distinguish ligand-based methods from a docking

protocol but not one ligand-based method from another.

This is most likely because DUD is not designed to test

ligand-based retrieval containing, as it does, many 2D

similar actives. Several others have made this point,

including the curators themselves [14, 18, 22]. Examples

from other fields of how to apply these procedures to dif-

ferences in AUC can be found in Hanley and McNeil [9].

One of the advantages of p-values is the statistical

machinery, again developed by Fisher [25], for combining

values from different studies. A classic example is the

effects of tobacco. It was not one study that convinced the

medical profession, but a series of studies and the facility

to combine the results that lead to the overwhelming con-

clusions as to the health risks of smoking. In statistics this

is referred to as ‘‘Meta-Analysis’’. Despite this, and the

wide application of p-values in other fields, they are largely

absent from modeling, with a few exceptions [5].

In conclusion, correlation is important in all aspects of

virtual screening, but perhaps most important and most

easily corrected for in the comparison of pairs of methods.

Neglecting the effects of correlation between tests is a

frequent problem even in clinical studies [2] and to our

knowledge has not been properly applied to comparing

methods in virtual screening.

Metrics

Given an experimental design, what quantities should be

measured to assess performance? The question suggests a

sequential process, i.e. design the experiment and then

measure something, whereas good design takes into

account what is going to be measured, in particular to what

accuracy. However, assuming a given design, how do we

extract useful information? In this section we consider

what should be measured and why. This is not a quandary

specific to virtual screening, in fact is it universal to all

prediction exercises. This very commonality can help

suggest worthwhile approaches. It also suggests that mea-

sures constructed specifically, even uniquely, for chemical

virtual screening should be held to a similar standard to

those prevalent in the wider world. Is virtual screening

really so different from, say, Internet page ranking? In

particular, we will consider the issue of ‘early’ behavior,

i.e. measures that reward ranking some active compounds

near the top of a list. By considering real-world financial

parameters we ask whether ‘early’ behavior is even nec-

essarily to be prized. By looking at a large number of

virtual screens, we will ask whether such ‘early’ measures

are necessary and whether they can be predicted from more

fundamental and well-understood properties. Finally, the

application of accurate error bounds will be shown to

suggest at least one way of quantifying the advantage an

expert brings to well-studied systems.

Properties of virtual screening metrics

A long list of metrics has been applied to virtual screening.

What makes for a good metric? The unfortunate answer

with some papers is ‘‘any metric that will make my method

look good’’. And if no known metric will suffice, then

simply make a one up. This is a typical indicator of an

under-regulated and under-developed field. Computer

manufacturers used to habitually make up their own mea-

sures for the latest processor or operating system, leading

to much confusion and annoyance. As a consequence, in

1988 SPEC (Standard Performance Evaluation Corpora-

tion) was formed and SPEC Marks became the standard

benchmark of anything worth measuring. SPEC had a

simple philosophy: ‘‘The key realization was that an ounce

of honest data was worth more than a pound of marketing

hype’’ [26]. SPEC Marks have evolved over time to now

cover CPU, graphics, Java, mail servers, file servers, par-

allel performance, high performance computing and other

aspects. In other words, SPEC is not a single measure

because not all users want the same thing, but this does not

mean manufacturers can create their own metrics. Rather

SPEC is an umbrella organization for a set of open and

diverse groups that consider, ratify and develop bench-

marks. In this spirit, this section will concentrate on what

ought to be general characteristics of a good metric rather

than all prevalent quantities.

In a somewhat circular manner, one of the first charac-

teristics of a good measure is that everyone uses it. Clearly

one of the problems with a field with diverse measures is

incomparability, the ‘‘apples and oranges’’ problem. The

most straightforward solution is not imposition of a par-

ticular standard but full disclosure of all data. The authors

of a study may want to present enrichment at 5%, but if the

data is freely available others may calculate the enrichment

at 1% or 13% or whatever they wish. This would inevitably

lead to standardization as independent parties harvest data

from many sources, publishing larger and larger studies on
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the advantages and disadvantages of different methods and

measures. This would provide another example of meta-

analysis described above. Sometimes a valid excuse against

disclosure is that compounds or targets are proprietary.

However, just providing lists of actives and inactives in

rank order with unique, but not necessarily identifying, tags

is enough to calculate most of the metrics for a particular

virtual screen. Currently the field of modeling lacks even

an agreed upon format for the exchange of such rarely

available information.

However, if we are going to report a statistic what

properties should it have? From considering measures that

have become standard in other fields, what characteristics

define a good measure? We suggest the following short

list:

(i) Independence to extensive variables

(ii) Robustness

(iii) Straightforward assessment of error bounds

(iv) No free parameters

(v) Easily understood and interpretable

Take for example the very popular ‘‘enrichment’’ mea-

sure. Everyone understands the concept of enrichment:

swirl a pan of water and gravel from the Klondike river in

1896 in just the right way and you ended up with mostly

gold. In virtual screening you look at the top few percent

and see whether there are more actives than you would

expect by chance. As a mathematical formula this is typi-

cally presented as:

EF(X%) = (100/X) * (Fraction of Actives Found)

The problem with this measure is that the enrichment

becomes smaller if fewer inactives are initially present.

Imagine panning for gold with all the sand removed. There

would still be the same gold in the pan, along with maybe

some pebbles and small rocks, but the eventual relative

improvement after ‘panning’, i.e. ‘enrichment’, is reduced.

The problem is that the (Fraction of Actives Found) con-

tradicts requirement (i), i.e. is a function of extensive

quantities, the number of actives and inactives. This means

that enrichment is not actually a measure of a method; it is

a measure of a method and a particular experiment. If the

ratio of inactives to actives becomes very large it is

assumed this problem disappears, i.e. that the limiting

behavior obeys (i). This is not true if the enrichment at a

given percent is large, i.e. at precisely the points of most

interest. Also, enrichment does not meet requirements (ii).

At a small enough percentage the enrichment becomes an

unstable function of the exact positions of actives in a list.

There is also no agreed upon percentage, making this an

adjustable parameter (often abused). Finally, other than by

bootstrapping, the author knows of no simple assessment of

error bounds. However, it is an intuitive measure, easily

understood, passing rule (v), and so almost uniquely to this

field is the most common metric reported.

Some have been aware of the lack of robustness of

enrichment and proposed metrics that average over all

percentages with weighting schemes. Before we consider

these measures we point out that a simple fix to the com-

mon variant of enrichment is to make the enrichment refer

to the fraction of inactives, not to the fraction of all com-

pounds. This simple change makes the enrichment

independent of extensive quantities, more robust, accessi-

ble to analytic error approximation [27] and yet suffers

only a slight reduction in interpretability. Only a few, such

as Jain [14] have used this alternate form. Perhaps the only

important failing of this measure is that it lacks a specific

name. For the purpose of this paper it will be referred to as

the ROC enrichment to distinguish it from the widely

abused variety.

ROC enrichment has better properties because is related

to an even better metric, the AUC, defined as the area under

a ROC curve. A ROC curve is simply a plot of the dis-

covered active fraction versus the discovered inactive

fraction. (Each point on the ROC curve can be translated to

a ROC enrichment by dividing by the fraction of inactives).

The AUC is the average of this property over all inactive

fractions. Many excellent treatises can be found [6–9] and

it has become a standard for classification performance in

many disciplines (medical diagnostics, radiology, clinical

testing, criminology, machine learning, data mining, psy-

chology and economics to name a few). It satisfies all of

the criteria listed above as a metric, including (v), ease of

interpretation. The AUC is simply the probability that a

randomly chosen active has a higher score than a randomly

chosen inactive. The main complaint against the AUC is

that is does not directly answer the questions some want

posed, i.e. the performance of a method in the top few

percent. This is akin to complaining that SPEC Marks do

not do a good job of evaluating mobile phone processors; a

fair complaint perhaps but hardly justifying creating a new

benchmark without the strengths of existing standards. The

AUC ought to at least be held as such a standard against

which new measures are judged.

Early performance in virtual screening

Figure 4 illustrates the supposed limitations of the AUC as

a measure of performance. The graph shows two ROC

curves, each with an AUC of exactly 0.5. Overall this

means that an active is as equally likely to out-rank an

inactive than the other way around. However, clearly in the

case of the solid line a certain fraction of actives is being

scored significantly higher than most inactives, while

another fraction is being scored worse, i.e. it is only the
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average behavior that appears even-handed. Similarly, the

dashed curve illustrates the case where the actives are all

scored better then a certain fraction of the inactives but

worse than another fraction. The solid and dashed curves

are instances of bimodal score distributions for the actives

and inactives respectively. Since the goal of a virtual

screen is to save us the trouble of actually screening all the

compounds it is entirely reasonable to prefer good ‘early’

behavior. And yet the AUC does not distinguish between

such curves and so, it is claimed, is not appropriate.

It is against this backdrop that metrics such as RIE [28]

and BedROC [29] were developed. In both cases the

essential idea is to give early rankings of actives more

weight than late rankings. In RIE/BedROC actives are

given a weight depending on their position in the list using

an exponential function running from 1.0 for the top ranked

compound to a number typically close to zero for the

lowest ranked. The exponential factor, beta, determines

how fast this exponential dies away from the top rank and

controls how much the RIE/BedROC parameter focuses on

the top of the list. The larger beta the greater the early

focus. In RIE the sum of active weights is normalized by

the RIE of a random distribution of actives. In BedROC

normalization is by the maximum dynamic range, i.e. the

score with all the actives ranked at the top minus the score

with all the actives ranked at the bottom. In addition, by

first subtracting the score of the worst-case scenario,

BedROC has the elegant property of running from 0.0 to

1.0. The rational behind using these approaches is to give

precedence to actives ranking early but not to fall into the

trap of choosing a single enrichment value, i.e. be more

robust to perturbations in the rank ordering. Impressively,

Truchon and Bayly also derive analytic estimations of the

error bounds for BedROC and give some suggested values

for the beta parameter. Some incorrect statements regard-

ing the AUC mar their work, for instance that random

scores do not give an AUC of 0.5, and that the AUC is

dependent on the number of actives and inactives, but

overall the work is an interesting attempt to answer a

perceived need. Applied to the examples in Fig. 4, the ratio

of the BedROC score of the solid line to the dashed is about

two for a beta of ten and about ten for a beta of twenty.

So does BedROC or RIE qualify as a good metric for

virtual screening? Comparing against the five criteria listed

above, both are more robust than enrichment, and the error

protocols for BedROC satisfies criteria (iii). RIE suffers

from having an ill-defined numerical interpretation (i.e.

how good is an RIE of 5.34?). BedROC attempts to

overcome this by scaling between 0.0 and 1.0, but does this

qualify as being understandable? There is no absolute,

interpretable meaning to a BedROC (or RIE) number, only

a relative meaning when ranking methods.

Unfortunately, neither BedROC nor RIE satisfy criteria

(i) or (iv), i.e. both are dependent on extrinsic variables and

have an adjustable parameter, the exponential factor beta.

The former, as we have seen, means that scores can only be

compared in the limiting case of an excess of inactives and,

as in the case of enrichment, this excess has to persist even

when the enrichment of actives is very high, i.e. it is

exactly when the actives are predominantly at the top of the

list that both BedROC and RIE (and enrichment) are most

sensitive to the total number of inactives. Interestingly, it

would be possible to reformulate both metrics to avoid this

problem. Just as ROC enrichment is a better metric than

enrichment, an exponential weighting across the ROC

curve, rather than to the individual rankings of actives

amongst inactives, would remove the sensitivity of these

measures to extensive properties. However, there would

still remains the issue of the arbitrariness of the exponential

factor beta. Just as with enrichment thresholds there is

nothing intrinsically wrong with the freedom to select a

threshold that is of interest to the particular research group.

Some companies might have the facility to physically

screen ten percent of their database, another only one

percent. However, as a characteristic of a method, or a

class of methods, it is a disadvantage. A proponent of a

method has a free parameter with which to make their

method look favorable or even just less unfavorable. In the

example in Fig. 4, a factor of two in BedROC between the

methods (beta = 5.0) does not sound anywhere near as bad

as a factor of ten (beta = 20.0).

Cost structures of virtual screening

There is no fundamental meaning to BedROC or RIE.

Neither gets to the real heart of why the solid curve in
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Fig. 4 Example ROC plots for ‘‘early’’ and ‘‘late’’ methods
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Fig. 4 represents a better method than the dashed curve. In

what follows we will argue that this can only be stated with

respect to a set of assigned costs, assumed but never stated.

We start by noting that the current focus on early enrich-

ment is actually a change in values for the industry. This

author recalls conversations in the mid-1990s wherein the

concept of missing any potential lead compound was

deemed unacceptable. By contrast, a preference for early

behavior implies it is acceptable to miss a significant

fraction of potential actives in favor of finding a few good

leads. There is merit in this approach. Often a chemistry

team can only follow up on a small number of leads. High

throughput screens can take several months to design and

bring on-line, time chemists could use to explore initial

leads from a smaller focused set designed by a virtual

screen [30]. What are not made explicit in this shift are the

costs of the four components of any virtual screen: true

positives (TP), false negatives (FN), false positives (FP)

and true negatives (TN). Not wanting to miss anything is

equivalent to assigning an infinite cost to a false negative.

This was never sensible, but reflected a ‘lottery’ mentality

prevalent at the time. The reality is that virtual screening

never finds drugs; at best it can find things that might, after

considerable effort, become drugs. In addition, the attrition

rate at many stages in the drug design process means any

lead-like compound is at best a bet that will often fail,

costing many millions of dollars. A lottery ticket is

potentially worth millions; the expected value, i.e. aver-

aged over all contingencies, is usually less than the cost of

the ticket. The assumption behind virtual screening is that

the value of a true positive similarly averaged is worth the

cost of computers and modelers. This is an unproven

conjecture.

The assignment of a cost structure to the components of

a screen is common in the field of medical diagnostics.

Here the costs can be estimated with some reliability. A

true positive represents the successful diagnosis of a con-

dition that will save money when treated. A false positive

means further, costly, tests will need to be performed. A

false negative might cost a lot if a more severe condition

develops. Finally, a true negative can be set to the cost of

the test or a small saving if compared to a more expensive

test. If these values are assigned to each ‘‘truth table’’

component (TP, FP, TN, FN), a ROC curve can be trans-

formed into a cost curve. A small caveat is that the ROC

curve deals with true and false positive rates and so to

transform to real costs the expected number of actives and

inactives is required, or at least the ratio of the two. Sup-

pose we apply a cost structure to Fig. 4 as follows:

(i) TP = 8.0

(ii) FN = -2.0

(iii) FP = -0.16

(iv) TN = 0.02

Positive numbers are favorable, for instance the cost

assigned to a true negative is the saving from not physically

screening a compound. At any point in the curve the cost of

progressing with all compounds higher than a given

threshold t depends on the False Positive Rate (FPR) and

True Positive Rare (TPR):

Cost(t) ¼ TPR * Na * (8.0) + (1� TPR) * Na * (� 2.0)

þ FPR * Ni * (� 0.16) +(1� FPR) * Ni * (0.02)

Let us assume Na/Ni = 1/100, then:

Cost(t)/Ni = (TPR * (8:0þ 2:0Þ � 2.0)/100

� FPR * (0.16 + 0.02) + 0.02

= 0.10 * TPR� 0.18 * FPR

This is a simple linear scaling of the graphs in Fig. 4, as

shown in Fig. 5a. As expected, the best approach is to take

the method with early performance over the later
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Fig. 5 (a) Cost weighted versions of the curves in Figure 4 as per the

first description in the text. (b) Cost weighted versions of the curves in

Fig. 4 as per the second description in the text
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performance. Notice that the late performing method is

never cost effective and even the early method is only cost

effective for a narrow range of rankings.

Now consider a slightly difference weighting:

(i) TP = 8.0

(ii) FN = -2.0

(iii) FP = -0.04

(iv) TN = 0.03

Cost(t)/Ni =0.1 * TPR� 0.07 * FPR + 0.01

Figure 5b illustrates the effect of these new weightings.

By reducing the cost of a false positive by 75%, i.e. to

around the savings of a true negative, both methods are

always cost effective. Furthermore, although the early

method has a clear maximum at around 20% of the data-

base, it is actually worth physically screening about 75% of

the database.

These examples are obviously only illustrative, but the

point they make is real. Early enrichment is important only

because of an assumed cost structure. Clearly much more

complicated models could be constructed, possibly with

real data, as with medical tests. However, to the author’s

knowledge this has never been published, presented or

even discussed within the industry. It is an assumption that

early enrichment is better. Likewise, it is also an assump-

tion that virtual screening itself is a productive exercise

compared to physical screening.

Averaged properties of virtual screening

Suppose the cost structure of virtual screening does favors

early enrichment. Can we at least say metrics such as RIE

and BedROC, perhaps reformulated to be independent of

Fig. 6 Averaged ROC curves

for twenty methods in the

Warren study for which scores

for all eight targets where

available. Programs and

scoring functions listed

to the right of the graph

Fig. 7 Average ROC curves for FRED, ROCS, MACCS keys and

LINGOS over DUD, with DUD-self decoys. FRED was run with the

ChemGauss3 scoring function

J Comput Aided Mol Des (2008) 22:239–255 251

123



extensive variables, are superior to AUC? If the early

behavior shown in Fig. 4 were indeed repeated from system

to system then clearly this would be the case. In Fig. 6 we

show data from Warren et al. for twenty docking proce-

dures averaged over all eight targets in the study.

Examination of these curves reveals nothing that resembles

the biphasic nature anticipated from Fig. 4. Individual

curves might occasionally suggest biphasic behavior but

there is little evidence for this in target averaged ROC

curves. Figure 7 shows similar curves for the four methods

in Fig. 1b averaged across the DUD set. The curves in

Fig. 7 are smoother because the averaging across forty

targets in DUD is more extensive than the eight from GSK

and show even less evidence of biphasic behavior. There are

two possibilities for these observations. Either the

individual curves are not biphasic or the averaging dilutes

this characteristic. It is possible to imagine a technique that

would rank one type of actives well, perhaps hydrophobic

moieties, but ranks others badly, e.g. hydrophilic ones, but

that the proportions of each set differ target to target such

that the total behavior appears monophasic. To see if this

might be the case we examined two hundred and seventy

virtual screens from the Warren study, looking for a

divergence between BedROC, with exponential parameter

5.0, and AUC, i.e. an abnormally low AUC and a high

BedROC, although possibly the reverse. The results are

shown in Fig. 8. Clearly there is a strong correlation

between BedROC and AUC. Similar correlations were also

seen when higher exponential factors were employed and

suggest no evidence for biphasic behavior. A better AUC

Fig. 8 BedROC scores with an

exponential factor of 5.0 versus

the AUC for 270 virtual screens

from the Warren study

Fig. 9 The average AUC for

each method run against all

eight targets in the Warren study

versus the averaged BedROC

score for each such method
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naturally leads to a better BedROC value and does so with

surprisingly little variation. It might still be possible that

one of the methods has average biphasic behavior, for

instance if all the BedROC/AUC points for a method

trended higher. Figure 9 shows this is not the case. Here, the

average AUC per method is compared to the average

BedROC value for that method. In addition, the correlation

is stronger the better the BedROC value, so that methods

that have a good AUC will also have a (strongly correlated)

good BedROC score.

There is one exception to monophasicity, shown circled

in Fig. 9. This point lies outside the 95% confidence limits

of both AUC and BedROC. Its BedROC score is signifi-

cantly higher than expected and its AUC is around 0.5, i.e.

random ranking. The target protein represented by this point

is PPAR-d and the method is MVP, a program developed in-

house at GSK by Mill Lambert. In conversation Lambert

freely admitted that not only did he have extensive

knowledge of this target, he used all of this information to

tune MVP. Unfortunately, because of certain aspects of the

target he could only select one of three chemical classes for

this ‘hands-on’ treatment at a cost to the two other classes.

Hence, MVP had to be biphasic. It seems interesting that out

of two hundred and seventy virtual screens the only outlier

from the BedROC-AUC correspondence is an example of

expert intervention. An unintended consequence of this

study might be a method to spot and quantify expert con-

tributions to virtual screening, i.e. by comparing early

behavior, either with BedROC or other metrics, to that

predicted from the fundamental measure of AUC.

Conclusions

In this study we have considered several aspects of

experimental design and performance metrics for virtual

screening. There is clearly interest in doing things the right

way, not least because of a popular, if unproven, belief that

virtual screening saves the pharmaceutical industry money.

As with many relatively young endeavors, molecular

modeling has been long on promises and short on stan-

dards, and it is standards that ultimately deliver the proof

that our field is useful. For many years the computer

industry suffered from similar growing pains. Not only

were there few, if any, reliable comparison metrics for

different processors, operating systems, compilers and so

forth, the proposed benefits of computers were more

assumed than quantified. These days no one doubts the

impact of the computing revolution. It is to be hoped that a

similar statement can one day be made for molecule

modeling. It is with this in mind that the following

observations and recommendations are made.

On the issue of experimental design we propose:

(i) Decoy selection needs to be properly labeled as to

intent to facilitate inter-study comparison. We have

suggested four classifications, universal, drug-like,

mimetic and modeled based on examples from the

literature and on typical use-case analysis.

(ii) Providing access to primary data would allow the

field to gain cumulative knowledge. The field of

modeling has almost no ‘‘meta-analysis’’, i.e.

research combining the results from studies, largely

because of a lack of standards as to procedures and

measures, but also due to the lack of primary data. A

comprehensive format for virtual screening informa-

tion would be useful.

(iii) The inclusion of multiple decoy sets of different

design and intent for each target in an evaluation

would, in combination with (i) and (ii) above, greatly

increase the cumulative value of published studies.

(iv) The number of targets, actives and inactives need to

be carefully considered with respect to the purpose of

the experiment and the required accuracy of the

results. These can be derived from simple statistical

methods that are almost never applied.

(v) The effects of correlation between actives or inactives

can be generally defined as an operational quantity.

This could be investigated if actives and inactives for

one target were included as explicit or latent decoys

for all other targets. Warren et al. provides an

example of the first, i.e. decoy sets were made from

the actives of other targets. The second is an

extension of point (iii), i.e. include multiple sets of

decoys in a study but for different purposes. In

conjunction with (ii) above, this would provide

material for a rigorous analysis of operational corre-

lation in virtual screening.

(vi) Correlation between targets needs further research, in

particular the question of the variance of computa-

tional methods on closely related systems.

(vii) Differences between methods, especially within a

single study over multiple targets, should only be

reported if the effects of correlation are included.

Editors of journals should never publish papers that

suggest one method is better than another if these

basic statistics are not employed. At a minimum it is

recommended that the method variances along with

correlation-corrected joint confidence limits be

reported. This would allow the estimation of

p-values for any assessment of method superiority.

On the issue of performance metrics we propose:

(i) Deciding on the metrics to be reported should be a

community effort, although access to primary data to

J Comput Aided Mol Des (2008) 22:239–255 253

123



encourage ‘‘meta-analysis’’ would aid the autonomous

adoption of metrics.

(ii) There are good reasons metrics such as the AUC are

popular in other fields and any new or additional

measures for virtual screening need to be assessed

against the characteristics that have made such

metrics successful. Five characteristics required for

a metric to be of similar heft to the AUC are

proposed: independence to extensive variables,

robustness, error bounds, no adjustable parameters

and ease of interpretation. As an illustration, an

improvement to the common enrichment measure is

described. We propose the term ‘‘ROC enrichment’’

for this new measure. Similar improvements to early

measures are proposed.

(iii) Currently, it would seem that providing AUCs and a

few ROC enrichment values for the early part of a

screen, e.g. 1% and 2%, would capture most average

behavior of interest.

(iv) The assumption that ‘early’ behavior is necessarily a

benefit is based on an assumed cost structure that

may or may not hold. Similar statements are true for

virtual screening in general. A rigorous attempt to

assign real-word costs would be of use to the field.

(v) We have found very little evidence that suggests

average behaviors cannot be accurately predicted by

AUC or obvious extensions there of. Those suggest-

ing otherwise need to provide clear-cut, statistically

valid, evidence.

(vi) Divergence from (v) may be an indicator of local or

domain knowledge, i.e. knowing the right answer

and/or extensive knowledge of the system under

study. A potential future area of research is whether

this is also an indicator of over-parameterization,

posterior system preparation or other reliance on

retrospective knowledge. Interestingly, 2D methods

applied to DUD, showed no evidence of such a

divergence.

In conclusion, there is no reason it is not possible to establish

standards in the field of molecular modeling necessary to

enhance the quality of publications and allow a reliable

assessment of methods and progress. However, there are also

powerful incentives not to be rigorous. As one invested

scientist was heard to pronounce, ‘‘livelihoods are at stake’’.

This is true; we suggest the livelihood of the entire field.

Whether the modeling community has the will to enact such

measures may well determine whether future generations of

scientists look back and see a field that became essential to

drug discovery or one that became a mere footnote.
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