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Abstract

We consider several key aspects of prediction in language comprehension: its computational 

nature, the representational level(s) at which we predict, whether we use higher level 

representations to predictively pre-activate lower level representations, and whether we ‘commit’ 

in any way to our predictions, beyond pre-activation. We argue that the bulk of behavioral and 

neural evidence suggests that we predict probabilistically and at multiple levels and grains of 

representation. We also argue that we can, in principle, use higher level inferences to predictively 

pre-activate information at multiple lower representational levels. We also suggest that the degree 

and level of predictive pre-activation might be a function of the expected utility of prediction, 

which, in turn, may depend on comprehenders’ goals and their estimates of the relative reliability 

of their prior knowledge and the bottom-up input. Finally, we argue that all these properties of 

language understanding can be naturally explained and productively explored within a multi-

representational hierarchical actively generative architecture whose goal is to infer the message 

intended by the producer, and in which predictions play a crucial role in explaining the bottom-up 

input.
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Introduction

Language processing is predictive. To some, this is a controversial statement. However, 

under some interpretations, this is something that the field has known for several decades. To 

consider a well-known and broadly accepted piece of evidence, consider the phenomenon of 

garden-pathing during sentence comprehension. In sentences like (1a), the comprehender 

encounters a temporarily ambiguous sequence of words — a context. Upon encountering 

new bottom-up input (e.g. “conducted”… in (1b)), this ambiguity is resolved to the a priori 
less frequent syntactic interpretation (or parse), leading to processing difficulty. This 
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increase in processing difficulty is known as the garden path effect, and it manifests both as 

relatively slower per-word reading times (Ferreira & Clifton, 1986; Garnsey, Pearlmutter, 

Myers, & Lotocky, 1997; MacDonald, Just, & Carpenter, 1992; Spivey-Knowlton, 

Trueswell, & Tanenhaus, 1993) and poorer comprehension accuracy (Ferreira, Christianson, 

& Hollingworth, 2001; Ferreira & Patson, 2007). If, however, the comprehender had 

encountered another context such as (1c), which avoided the temporary ambiguity, she 

would not have experienced a garden path effect. Importantly, as we will discuss further in 

the next section, the magnitude of the garden path effect is graded and highly dependent on 

the predictability of the intended parse given the preceding context.

(1a) The experienced soldiers warned about the dangers …

(1b) … conducted the midnight raid.

(1c) The experienced soldiers who were warned about the dangers …

Similar effects of contextual predictability are known to influence lexico-semantic 

processing. Reaction times are faster to predictable versus unpredictable words in a variety 

of behavioral tasks, ranging from lexical or phrasal decision (Arnon & Snider, 2010; 

Fischler & Bloom, 1979; Forster, 1981; Schwanenflugel & Lacount, 1988; Schwanenflugel 

& Shoben, 1985; Stanovich & West, 1983), naming (Forster, 1981; McClelland & O'Regan, 

1981; Stanovich & West, 1979, 1981, 1983; Traxler & Foss, 2000), gating (Grosjean, 1980), 

and speech monitoring (Cole & Perfetti, 1980; Marslen-Wilson, Brown, & Tyler, 1988). 

Moreover, eye-tracking studies show that readers fixate less on predictable than 

unpredictable words (Balota, Pollatsek, & Rayner, 1985; Ehrlich & Rayner, 1981; Rayner, 

Binder, Ashby, & Pollatsek, 2001; Rayner & Well, 1996; see also Boston, Hale, Kliegl, Patil, 

& Vasishth, 2008; Demberg & Keller, 2008; Demberg, Keller, & Koller, 2013; Frank & Bod, 

2011; McDonald & Shillcock, 2003; Smith & Levy, 2013; see Staub, 2015 for a recent 

review). And, as early as 1980, Kutas and Hillyard reported evidence for a reduced neural 

signal — the N400 event-related potential (ERP) — to semantically predictable versus 

unpredictable words in sentence contexts (see also DeLong, Urbach, & Kutas, 2005; Kutas 

& Federmeier, 2011; Kutas & Hillyard, 1984).

The simple point we wish to make at this stage is that it is logically impossible to explain 

these effects without assuming that the context influences the state of the language 

processing system before the bottom-up input is observed. This is the minimal sense in 

which the language processing system must be predictive. And, indeed, as we will discuss in 

section 1, almost all models of syntactic parsing and lexico-semantic processing posit that 

the comprehender has anticipated some structure or some semantic information prior to 

encountering new bottom-up information.

Given this logic, the role of prediction in language processing should not be so controversial. 

Yet, debates about its contributions have been central to psycholinguistic theory for decades, 

with researchers taking strong positions on both sides. Some, for example, have argued that, 

given the inherently combinatorial nature of human language, predicting upcoming 

information ahead of time would be an unnecessary waste of processing resources (see 

Jackendoff, 2002 and Van Petten & Luka, 2012 for discussion). Others have argued that, 

given the noisiness, ambiguity and speed of our linguistic input, prediction is the most 
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efficient solution for fast, efficient and accurate comprehension (e.g. Kleinschmidt & Jaeger, 

2015).

These debates can be quite nuanced, with researchers focusing on different aspects of 

prediction. Some have distinguished expectation or anticipation from prediction (e.g. Van 

Petten & Luka, 2012); some have distinguished predictive pre-activation from predictive 
commitment (e.g. Lau, Holcomb, & Kuperberg, 2013). Finally, within the computational 

psycholinguistics literature, the term prediction has been used in yet other ways, in relation 

to a growing number of probabilistic models of language processing (e.g., Bejjanki, 

Clayards, Knill, & Aslin, 2011; Demberg et al., 2013; Feldman, Griffiths, & Morgan, 2009; 

Hale, 2011; Jurafsky, 1996; Keller, 2003; Kleinschmidt & Jaeger, 2015; Norris & McQueen, 

2008; Smith & Levy, 2013).

The end result is that prediction has come to mean quite different things to different people. 

Indeed, our review of the literature led us to the conclusion that different subfields and 

different researchers have critically different conceptions of what it means to predict during 

language comprehension. This has led to much confusion with researchers sometimes 

arguing at cross-purposes. The term prediction has become so loaded that some are hesitant 

to use it at all, while others seem to underestimate (Huettig & Mani, in press) or even reject 

its role in language processing, despite growing evidence that, in real-world communicative 

situations, the use of prediction to comprehend language is the norm. It has long been noted 

that, during natural conversation, we often seem to know when to take our turn, with 

virtually no gap or overlap between exchanges (Sacks, Schegloff & Jefferson, 1974; Stivers 

et al., 2009). There is now compelling evidence that these fast exchanges arise because 

listeners are able to predict when a speaker’s conversational turn is about to end, and that 

such predictions are based on the lexical and syntactic content of what they have just heard 

(de Ruiter, Mitterer, & Enfield, 2006; Magyari & de Ruiter, 2012, see Garrod & Pickering, 

2015 for recent discussion).

This review aims to help clarify some sources of confusion around the role of prediction in 

language comprehension. Our first goal is to lay out several orthogonal senses in which term 

prediction has been used in the psycholinguistic and cognitive neuroscience literatures, 

surveying the main debates and pointing to some relevant papers (although, because of space 

limitations, we do not aim to comprehensively review these literatures). Our second goal is 

to describe, in qualitative terms, how some of the different psycholinguistic views of 

prediction can be understood within a probabilistic (Bayesian) computational framework. 

We are not committed to the idea that language processing is strictly Bayesian. Indeed, many 

of the ideas that we discuss could be instantiated in many different ways at Marr’s (1982) 

algorithmic and implementational levels of analysis. However, we find this framework 

helpful in articulating, at Marr’s computational level, some potential links between 

psycholinguistic constructs that have been used to understand different aspects of prediction, 

and this growing computational literature. Our third aim is to summarize some of these 

insights by sketching out a multi-representational hierarchical actively generative 

architecture of language comprehension that can potentially explain and link several of the 

phenomena we discuss.
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In section 1, we consider what is meant by prediction in the minimal sense of the word, 

asking whether it is all-or-nothing phenomenon, a graded phenomenon (in which one 

upcoming possibility is considered at a time) or a parallel graded phenomenon (in which 

multiple upcoming possibilities are considered in parallel). In section 2, we survey a large 

body of work suggesting that, at any given time, we can use multiple different types of 

information in a context to facilitate the processing of new inputs at multiple other levels of 

representation, ranging from syntactic, semantic, to phonological, orthographic and 

perceptual. In section 3, we address the debates about whether such facilitation actually 

reflects the use of higher level information that we have extracted from the context to 

predictively pre-activate information at lower levels of representation, before new bottom-up 

information becomes available to these lower levels. In section 4, we consider the debates 

about whether we go beyond pre-activation by pre-updating information at higher levels of 

representation, incurring additional processing consequences when such commitments are 

violated by new bottom-up inputs. Finally, in section 5, we summarize the main 

computational insights gleaned from each section, and we return to the role of prediction in 

relation to the multi-representational hierarchical actively generative architecture of 

comprehension that we propose.

Section 1: The probabilistic nature of contextual prediction

The data and the debates

As noted above, the minimal sense in which the term prediction has been used is to simply 

imply that context changes the state of the language processing system before new input 

becomes available, thereby facilitating processing of this new input. Throughout this review, 

we will broadly refer to the internal state that the comprehender has inferred from the 

context, just ahead of encountering a new bottom-up input as the internal representation of 
context. We postpone the question of whether the comprehender can use high level 

information within her internal representation of context to predictively pre-activate 

upcoming information at lower level(s) of representation until section 3. Rather, at this stage, 

we focus on the nature of prediction itself and discuss the ways in which it has been 

conceptualized in the literature.

Some older views of prediction conceptualized it as a deterministic, all-or-nothing 

phenomenon. For example, the original explanations of the garden path phenomenon held 

that the parser predicted just one possible structure of the sentence — usually the ‘simplest’ 

structure (which, interestingly, was often the most frequent and therefore the most likely 

structure, see Ferreira & Clifton, 1986; Frazier, 1978; with aspects of this idea going back to 

Bever, 1970). If the bottom-up input disconfirmed this predicted structure, the parser needed 

to back off and fully reanalyze the context in order to come up with the correct 

interpretation. Similar all-or-nothing assumptions were implicit in early views of lexico-

semantic prediction, where prediction also entailed additional assumptions such as 

necessarily being strategic and attention-demanding (Becker, 1980, 1985; Forster, 1981; 

Neely, Keefe, & Ross, 1989; Posner & Snyder, 1975; see Kutas, DeLong, & Smith, 2011 for 

discussion), and they provided plenty of ammunition for arguments against prediction 

playing any major role in language comprehension: given the huge number of possible 
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continuations of any given context, it seemed, why bother predicting only to be proved 

wrong? (see Jackendoff, 2002 and Van Petten & Luka, 2012 for discussion).

More recent accounts view prediction as a graded and probabilistic phenomenon. This view 

is based on strong evidence of graded effects of context on processing. For example, the 

magnitude of the garden path effect depends on how much a particular verb (Garnsey et al., 

1997; Hare, Tanenhaus, & McRae, 2007; Trueswell, Tanenhaus, & Kello, 1993; Wilson & 

Garnsey, 2009), thematic structure (MacDonald, Pearlmutter, & Seidenberg, 1994; 

Trueswell, Tanenhaus, & Garnsey, 1994) and/or wider discourse context (Spivey-Knowlton 

et al., 1993) biases against the intended syntactic parse. Similarly, it is well established that 

the magnitude of the N400 effect evoked by an incoming word is inversely correlated with 

that word’s probability in relation to its preceding context, as operationalized by its cloze 

probability1 (e.g. DeLong et al., 2005; Wlotko & Federmeier, 2012).

Further evidence for probabilistic prediction comes from a series of recent studies reporting 

a correlation between the surprisal of words and (a) their processing times (Hale, 2001; 

Levy, 2008) and (b) the neural activity associated with processing them (Frank, Otten, Galli 

& Vigliococco, 2015). Surprisal is an information theoretic measure that indexes the new 

Shannon information gained after encountering new input (MacKay, 2003; Shannon, 1948). 

It is quantified as the logarithm of the inverse of the probability of this input with respect to 

its context. There is now evidence that processing difficulty, as indexed by reading times, is 

linearly correlated with surprisal due to more (versus less) predictable parses (Boston et al., 

2008; Demberg & Keller, 2008; Frank & Bod, 2011; Hale, 2001; Levy, 2008; Linzen & 

Jaeger, in press) or words (Boston et al., 2008; Demberg & Keller, 2008; Demberg et al., 

2013; Frank & Bod, 2011; McDonald & Shillcock, 2003; Smith & Levy, 2013; see also 

Arnon & Snider, 2010).2 There is also recent evidence suggesting that surprisal correlates 

with the amplitude of the N400 to words within sentences (Frank et al., 2015, see also 

Rabovsky & McRae, 2014, for discussion of relationships between surprisal and the N400 to 

words outside sentence contexts).

Based the evidence summarized above, most would agree that prediction is graded in nature. 

However, there remains some debate about whether it proceeds in a serial or parallel fashion. 

This debate has been most clearly articulated in the parsing literature. Serial models of 

parsing hold that just one upcoming structure of a sentence is predicted, with a certain 

degree of strength, at any particular time. If the bottom-up input mismatches this structure, 

then the parser reanalyzes and goes on to the next possibility (Traxler, Pickering, & Clifton, 

1998; van Gompel, Pickering, Pearson, & Liversedge, 2005; van Gompel, Pickering, & 

Traxler, 2001). In contrast, parallel models assume that the parser computes multiple 

syntactic parses in parallel, each with some degree of probabilistic support. This does not 

1To derive cloze probabilities, a group of participants are presented with a series of sentence contexts and asked to produce the most 
likely next word for each context. The cloze probability of a given word in a given sentence context is estimated as the proportion of 
times that particular word is produced over all productions (Taylor, 1953). In addition, the constraint of a context can be calculated by 
taking the most common completion produced by participants who saw this context, regardless of whether or not this completion 
matches the word that was actually presented, and tallying the number of participants who provided this completion.
2For an alternative conceptualization of the linking function between probabilistic belief updating and reading times, see Hale (2003, 
2011). For empirical evaluation and further discussion, see Frank (2013); Linzen and Jaeger (in press); Roark, Bachrach, Cardenas, 
and Pallier (2009); Wu, Bachrach, Cardenas, and Schuler (2010).
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necessarily imply that all possible parses are searched exhaustively, but rather that multiple 

sufficiently probable parses are considered in parallel (cf. Crocker & Brants, 2000; Jurafsky, 

1996; Lewis, 2000; see also Levy, Bicknell, Slattery, & Rayner, 2009, and Traxler, 2014 for 

discussions of this issue). If the bottom-up input is inconsistent with these predicted parses, 

they are then shifted or reweighted (Crocker & Brants, 2000; Gorrell, 1987, 1989; Jurafsky, 

1996; Levy, 2008; Narayanan & Jurafsky, 2002).

A similar debate has ensued in relation to lexico-semantic prediction. Some have suggested 

that, because cloze probabilities are derived by averaging across participants and trials (see 

footnote 1), they are not reflective of what an individual comprehender predicts on any given 

trial. These researchers assume that the comprehender first predicts the word with the 

highest cloze probability (the strength of the prediction being related to this probability), and 

if this is disconfirmed by the bottom-up input, she turns to the word with the next highest 

cloze probability (Van Petten & Luka, 2012). Others, however, interpret the cloze profile as 

reflecting the strength/probability of parallel expectations that an individual’s brain 

computes on any given trial. So, for example, if a context has a cloze profile of 55% 

probability for word X, 25% for word Y and 20% for word Z, then all three possibilities are 

computed and represented with degrees of belief that correspond to these probabilities; if the 

bottom-up input turns out to be word Z, then there is a shifting or reweighting of these 

relative beliefs such that the comprehender now believes continuation Z with nearly 100% 

probability (DeLong et al., 2005; Wlotko & Federmeier, 2012; see also Staub, Grant, 

Astheimer, & Cohen, 2015).

In practice, it can often be difficult to experimentally distinguish between serial and parallel 

probabilistic prediction (for discussion in relation to syntactic prediction, see Gibson & 

Pearlmutter, 2000; Lewis, 2000; and in relation to lexico-semantic prediction, see Van Petten 

& Luka, 2012). However, as we discuss below, under certain assumptions, there is a 

mathematical relationship between surprisal and Bayesian belief updating, which is 

consistent with the idea that we can predictively compute multiple candidates in parallel, 

each with different strengths or degrees of belief.

Computational insights

In his now highly influential work, Anderson (1990) proposed a rational approach to 

cognition (for discussion, see Simon, 1990). The ‘ideal observer’ and related models that 

have grown out of this work have had a tremendous influence on many disciplines in the 

cognitive sciences (see Chater & Manning, 2006; Clark, 2013; Griffiths, Chater, Kemp, 

Perfors, & Tenenbaum, 2010; Knill & Pouget, 2004 for reviews, and see Perfors, 

Tenenbaum, Griffiths, & Xu, 2011, for an excellent introductory overview). This is also true 

of language processing (e.g., Bejjanki et al., 2011, Chater, Crocker & Pickering, 1998; 

Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Feldman et al., 2009; Kleinschmidt & Jaeger, 

2015; Levy, 2008; Norris, 2006; Norris & McQueen, 2008; see also Crocker & Brants, 2000; 

Hale, 2001; Jurafsky, 1996; Narayanan & Jurafsky, 2002, for important antecedents of this 

work in the parsing literature).

Within this framework, the way that a rational comprehender can maximize the probability 

of accurately recognizing new linguistic input is to use all her stored probabilistic 
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knowledge, in combination with the preceding context, to process this input. The reason for 

this is that we communicate in noisy and uncertain environments — there is always 

uncertainty about the bottom-up input, and neural processing itself is noisy (for reviews and 

references, see Feldman et al., 2009; Norris, 2006; Shadlen & Newsome, 1994). However, so 

long as our probabilistic knowledge closely resembles the actual statistics of the linguistic 

input, then we should be able to use this knowledge to maximize the average probability of 

correct recognition (see e.g., Bicknell, Tanenhaus, & Jaeger, under review; Kleinschmidt & 

Jaeger, 2015; Norris & McQueen, 2008, for discussion). Similar arguments hold for the 

speed of processing new inputs, although here more complex considerations hold (for 

relevant discussion, see Lewis, Shvartsman, & Singh, 2013; Smith & Levy, 2013), and, 

indeed, as noted above, there is strong evidence that the speed of processing new input 

depends on the probability of this input.

To illustrate the principles of how a probabilistic framework can be used to understand the 

incremental process of sentence comprehension, we describe a model of parsing by Levy 

(2008; see also Hale, 2003; Jurafsky, 1996; Linzen & Jaeger, in press; Narayanan & 

Jurafsky, 2002). As in many probabilistic frameworks of cognition, a basic assumption of 

this model is that, at any given time, the agent’s knowledge is encoded by multiple 

hypotheses. In this case, the parser’s probabilistic hypotheses are about the syntactic 

structure of the sentence. These hypotheses are each held with different strengths or degrees 

and, in Bayesian terms, are known as beliefs. Together, these beliefs can be described as a 

probability distribution. The comprehender’s goal is to infer the underlying latent or 

‘hidden’ higher level cause of the observed data — the underlying syntactic structure — 

with as much certainty as possible. To achieve this goal, the parser draws upon a 

probabilistic grammar (in the broadest sense). Importantly, because the input unfolds 

linearly, word by word, this goal must be achieved in an incremental fashion — by updating 

parsing hypotheses after encountering each incoming word. The rational way to update 

probabilistic beliefs upon receiving new information (new evidence) is by using Bayes’ rule, 

which acts to shift an original prior probability distribution to a new posterior probability 

distribution. This posterior distribution then becomes the new prior distribution for a new 

cycle of belief updating when the following word is encountered. In this way, the parser 

‘homes in on’ or discovers the underlying structure of the observed word sequences.

The process of shifting from a prior to a posterior probability distribution on any given cycle 

is called belief updating, and the degree of belief updating as the comprehender shifts from a 

prior to a posterior distribution is known as Bayesian surprise (Doya, Ishii, Pouget, & Rao, 

2007), which is quantified as the Kullback-Leibler divergence between these two probability 

distributions. Bayesian surprise is therefore one way of computationally formalizing 

prediction error — the difference between the comprehender’s predictions at a given level of 

representation before and after encountering new input at that level of representation.3 

3There are, of course, other ways of formalizing prediction error, dating back to Bush & Mosteller (1951) and Rescorla & Wagner 
(1972). One difference between these formalizations and a Bayesian formalization (Bayesian surprise) is that the former do not take 
into account uncertainty during inference or prediction (see Kruschke, 2008 for an excellent discussion). Regardless of how it is 
formalized, however, prediction and prediction error, play a central role in both learning and processing, providing a powerful way of 
bridging literatures and of potentially linking across computational and algorithmic levels of analysis (see Jaeger & Snider, 2013 and 
Kuperberg, under review, for discussion).
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Unless the parser abandons the process, this cycle of belief updating will continue until it is 

fairly certain of the structure of the sentence being conveyed. Certainty is represented by the 

spread or entropy of the probability distribution. Thus, the parser may start out relatively 

uncertain of the structure of the sentence (described as a relatively flat probability 

distribution, with small probabilities of belief distributed over multiple possible structures). 

By the end of the sentence, however, the parser will tend to be more certain of the structure 

of a sentence (described as a more peaked probability distribution, with high probability 

beliefs that over this particular structure).

Conceptualizing comprehension as an incremental process of belief updating (and thus 

probabilistic inference) helps address a potential criticism that is sometimes levied against 

prediction — even graded forms of prediction: the idea that it might entail costs of 

suppressing predicted candidates that do not match the bottom-up input. Because all beliefs/

hypotheses within a probability distribution must add up to 1, increasing belief about new 

bottom-up information will necessarily entail decreasing belief over any ‘erroneous’ 

predictions. While this will entail Bayesian surprise (the shift in belief entailed in 

transitioning from the prior to the posterior distribution), so will not predicting at all 

(shifting from a flat high uncertainty prior distribution to a higher certainty posterior 

distribution).

An important contribution of Levy (2008, see also Levy, 2005) is that he showed that, under 

certain assumptions, there is a mathematical equivalence between Bayesian surprise and the 

information theoretic construct of surprisal, which, as noted above is correlated with the 

processing times and neural activity to words during sentence comprehension. Given that the 

Bayesian formalization assumes that we hold multiple beliefs in parallel, this equivalence 

therefore can also be taken to provide indirect support for parallel probabilistic prediction. It 

also helps explain some phenomena in the ERP literature, for example, why the amplitude of 

the N400 is large, not only to low probability words that violate highly constraining/

predictable sentence contexts, such as “plane” following context (2), but also to low 

probability words that follow non-constraining contexts, such as “plane” following context 

(3) (Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007),4 and indeed to words 

encountered in isolation of any context (see Kutas & Federmeier, 2011 for a comprehensive 

review). In all of these cases, the probability of the incoming word is small, and there is a 

large shift from a prior to a posterior distribution (Bayesian surprise is large; see also 

Rabovsky & McRae, 2014, for related discussion).

(2) The day was breezy so the boy went outside to fly a…

(3) It was an ordinary day and the boy went outside and saw a…

Levy’s (2008) model, and other probabilistic models of syntactic parsing, are inherently 

predictive because, over each cycle of belief updating, the newly computed posterior 

probability distribution (the new set of inferred hypotheses) becomes the prior distribution 

for the next cycle, just before new input is encountered. This new prior probability 

4As we will discuss in section 4, however, very low probability incoming words that mismatch the most likely continuation in a highly 
constraining context can evoke a qualitatively distinct late anterior positivity ERP effect, in addition to the N400 effect.
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distribution thus corresponds to probabilistic predictions for a new sentence structure at the 

beginning of the next cycle. These frameworks are also generative in nature, in the sense that 

an underlying syntactic structure can be conceptualized as generating words (Levy, 2008) or 

word sequences (Bicknell & Levy, 2010; Bicknell, Levy, & Demberg, 2009; Fine, Qian, 

Jaeger, & Jacobs, 2010; Kleinschmidt, Fine, & Jaeger, 2012), and the comprehender must 

infer this underlying structure from these observed data.5 On the other hand, none of these 

frameworks are actively generative: none of them assume that the comprehender’s 

hypotheses about syntactic structure are used to predictively pre-activate information at 

lower levels of representation — that is, change the prior distribution of belief at these lower 

levels, prior to encountering bottom-up input. We will consider what an actively generative 

computational framework of language comprehension might look like when we consider 

predictive pre-activation in section 3.

Section 2: Using different types of information within a context to facilitate 

processing of new inputs at multiple levels of representation

The data and the debates

As noted in section 1, we assume that, just before encountering any new piece of bottom-up 

information, the comprehender has built an internal representation of context from the 

linguistic and non-linguistic information in the context that she has encountered thus far. We 

assume that this internal representation of context includes partial representations inferred 

from previously processed contextual input, ranging from subphonemic representations 

(e.g., Bicknell et al., under review; Connine, Blasko, & Hall, 1991; Szostak & Pitt, 2013) all 

the way up to higher level representations. Such higher level representations may include 

partial representations of specific events, event structures,6 event sequences, general 

schemas (see Altmann & Mirkovic, 2009; Kuperberg, 2013, and McRae & Matsuki, 2009, 

for reviews and discussion), as well as partial message-level representations (in the sense of 

Bock & Levelt, 1994, and Dell & Brown, 1991).

In section 1, we discussed the idea that the comprehender can use her representation of 

context to facilitate syntactic and lexical processing. Syntactic and lexical information, 

however, are not the only types of information that can be facilitated by context during 

processing. In this section, we survey the evidence that a comprehender can use information 

in a context to facilitate the processing of new information at multiple levels of 

5In this sense, the meaning of the word generative has some similarities with Chomsky’s original conception of a generative syntax, in 
which a grammar generated multiple possible structures (Chomsky, 1965). There is, however, an important difference: whereas 
generative grammars in the Chomskyan tradition served to test whether a sentence could be generated from a grammar (in which case 
it is accepted by that grammar), the generative computational models referred to here represent distributions of outputs (e.g., 
sentences). That is, rather than to stop at the question of whether a sentence can be generated, these models aim to capture how likely a 
sentence is to be generated (although it is worth noting that a generative syntax was formalized in probabilistic terms as early as 
Booth, 1969, and that probabilistic treatments of grammars have long been acknowledged in the field of sociolinguistics, see Labov, 
1969 and Cedergren & Sankoff, 1975 for early discussion).
6Here, we refer to knowledge, stored at multiple grains within memory about the conceptual features that are necessary (Chomsky, 
1965; Dowty, 1979; Katz & Fodor, 1963), as well as those that are most likely (McRae, Ferretti, & Amyote, 1997) to be associated 
with a particular semantic-thematic role of an individual event or state. This knowledge might also include the necessary and likely 
temporal, spatial, and causal relationships that link multiple events and states together to form sequences of events. The latter are 
sometimes referred to as scripts, frames, or narrative schemas (Fillmore, 2006; Schank & Abelson, 1977; Sitnikova, Holcomb, & 
Kuperberg, 2008; Wood & Grafman, 2003; Zwaan & Radvansky, 1998).
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representation, and that she can draw upon multiple different types of information within her 

internal representation of context to facilitate such processing. At this point we continue to 

remain agnostic about whether the comprehender is actually able to use information within 

her internal representation of context to predictively pre-activate upcoming information at 

lower level(s) of representation prior to bottom-up input reaching these lower levels. We will 

consider this question in section 3.

There is evidence that a comprehender can use her internal representation of context to 

facilitate the processing of coarse-grained semantic categories (Altmann & Kamide, 1999; 

Kamide et al., 2003;Paczynski & Kuperberg, 2011, 2012) as well as finer-grained semantic 

properties (Altmann & Kamide, 2007; Chambers et al., 2002; Federmeier & Kutas, 1999; 

Kamide et al., 2003; Kuperberg et al., 2011; Matsuki et al., 2011;Metusalem et al., 2012; 

Paczynski & Kuperberg, 2012; Xiang & Kuperberg, 2015) of incoming words. This can 

been taken as evidence that we are able to predict (in the minimal sense, as defined in 

section 1) the most likely structure of an upcoming event (a representation of ‘who does 

what to whom’: e.g. Altmann & Kamide, 1999; Garnsey et al., 1997; Hare, McRae, & 

Elman, 2003; Kamide, Altmann, & Haywood, 2003; Paczynski & Kuperberg, 2011, 2012; 

Wilson & Garnsey, 2009), quite specific information about an upcoming event (e.g. 

Chambers, Tanenhaus, Eberhard, Filip, & Carlson, 2002; Kaiser & Trueswell, 2004; Kamide 

et al., 2003; Matsuki et al., 2011; Metusalem et al., 2012; Paczynski & Kuperberg, 2012), 

information about future events and states (e.g. Altmann & Kamide, 2007; Hare et al., 2003; 

Kuperberg, Paczynski, & Ditman, 2011; Pyykkönen & Järvikivi, 2010; Rohde & Horton, 

2014; Xiang & Kuperberg, 2015), as well as more general schema information (e.g. 

Paczynski & Kuperberg, 2012).

In addition, there is a large body of evidence that a comprehender can use her internal 

representation of context to facilitate the processing of incoming information at multiple 

other levels of representation. For example, contextual information can lead to facilitated 

processing of incoming information at the level of syntactic structure (see previous section, 

and Arai & Keller, 2013; Farmer, Christiansen, & Monaghan, 2006; Garnsey et al., 1997; 

Gibson & Wu, 2013;Hare et al., 2003; Rohde, Levy, & Kehler, 2011; Tanenhaus, Spivey-

Knowlton, Eberhard, & Sedivy, 1995; Wilson & Garnsey, 2009), phonological information 

(Allopenna, Magnuson, & Tanenhaus, 1998; DeLong et al., 2005) and orthographic 

information (DeLong et al., 2005;Dikker, Rabagliati, Farmer, & Pylkkänen, 2010).

Moreover, this type of facilitation can stem from multiple types of information within a 

given context. For example, to facilitate semantic processing of new information, 

comprehenders are able to use information within a verbal context about specific discourse 

connectives (Rohde & Horton, 2014; Xiang & Kuperberg, 2015), inferential causal 

relationships (Kuperberg et al., 2011), the selection restrictions of a verb (Altmann & 

Kamide, 1999; Paczynski & Kuperberg, 2012), the tense of a preceding verb (Altmann & 

Kamide, 2007), the combination of a specific verb and argument (Kamide et al., 2003; 

Matsuki et al., 2011; Metusalem et al., 2012; Paczynski & Kuperberg, 2012), pre-verbal 

arguments (Bornkessel-Schlesewsky & Schlesewsky, 2009; Kamide et al., 2003), specific 

prepositions (Chambers et al., 2002), and prosody (Kurumada, Brown, Bibyk, Pontillo, & 

Tanenhaus, 2014; Snedeker & Yuan, 2008). Similarly, to facilitate the processing of new 
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information at the level of syntactic structure, comprehenders can use information within a 

verbal context about its referential discourse structure (Gibson & Wu, 2013), discourse 

coherence relationships (Rohde et al., 2011), thematic relationships between verbs and 

arguments (Garnsey et al., 1997; Wilson & Garnsey, 2009), the specific sense of a verb 

(Hare et al., 2003), or even their knowledge about a verb’s phonological typicality (Farmer 

et al., 2006). There is also evidence that syntactic information within a context can facilitate 

the processing of orthographic information (Dikker et al., 2010) or even low level perceptual 

features (Dikker, Rabagliati, & Pylkkänen, 2009). In addition, comprehenders can pick up 

on non-verbal information in the context to influence the processing of a referent (e.g. 

Knoeferle, Crocker, Scheepers, & Pickering, 2005; Sedivy, Tanenhaus, Chambers, & 

Carlson, 1999; Tanenhaus et al., 1995).

Taken together, this literature supports the idea that, at any given time, a comprehender’s 

internal representations of context encodes multiple different types of information, at 

different grains of representation (see also Jackendoff, 1987, pages 112-115 for theoretical 

discussion). How much information is maintained at each of these different levels, and for 

how long, remains an open question (see, e.g., Bicknell et al., under review; Dahan, 2010), 

but it seems fair to assume that maintenance of lower level information within the internal 

representation of context is shorter-lived than higher level information. This literature also 

highlights the fact that, because language processing is highly interactive, with extensive 

communication across representational levels during processing (Elman, Hare, & McRae, 

2004; McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982), a comprehender 

can use many of these different types of information, encoded within her internal 

representation of context, to facilitate the processing of incoming information at almost any 

other level of representation (see Altmann & Steedman, 1988; Crain & Steedman, 1985; 

Tanenhaus & Trueswell, 1995, for reviews and discussion). We next consider the 

computational implications of this type of interactivity for understanding the role of 

prediction in language comprehension.

Computational insights

In the probabilistic models of parsing we considered in section 1, the aim of the parser was 

to infer the structure of the sentence that was being communicated. This structure was 

conceptualized as generating words or word sequences. Several other generative 

probabilistic models of language have attempted to model inference at different levels and 

types of representation. For example, phonetic categories can be understood as generating 

phonetic cues (Clayards et al., 2008; Feldman et al., 2009; Kleinschmidt & Jaeger, 2015; 

Sonderegger & Yu, 2010), while semantic categories (Kemp & Tenenbaum, 2008) or topics 

(Griffiths, Steyvers, & Tenenbaum, 2007; Qian & Jaeger, 2011) can be understood as 

generating words.

One simplifying feature of all these models is that they each generate just one type of input 

(although see Brandl, Wrede, Joublin, & Goerick, 2008; Feldman, Griffiths, Goldwater, & 

Morgan, 2013; Kwiatkowski, Goldwater, Zettlemoyer, & Steedman, 2012, for exceptions in 

the developmental literature). The ultimate goal of comprehension, however, is not to infer a 

syntactic structure, a phonemic category, a semantic category or a topic. Rather, it is to infer 
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its full meaning — the message (Bock, 1987; Bock & Levelt, 1994; Dell & Brown, 1991) or 

situation model (Johnson-Laird, 1983; Van Dijk & Kintsch, 1983; Zwaan & Radvansky, 

1998) that the speaker or writer intends to communicate (Altmann & Mirkovic, 2009; Jaeger 

& Ferreira, 2013; Kuperberg, 2013; McClelland, St. John, & Taraban, 1989). For a 

comprehender to infer this message, she must draw upon multiple different types of stored 

information. Given this logic, any complete generative model of language comprehension 

(the process of language understanding) must consider message-level representations as 

probabilistically generating information at these multiple types and levels of representation. 

One way of modeling this type of architecture might be within a multi-representational 

hierarchical generative framework — the type of framework that been proposed as 

explaining other aspects of complex cognition (Clark, 2013; Friston, 2005, Hinton 2007; see 

Farmer, Brown & Tanenhaus, 2013, Pickering & Garrod, 2007, and Brown & Kuperberg, 

2015, for perspectives on language processing).

Within such a framework, the comprehender would achieve her goal of inferring the 

producer’s message by incrementally updating her hypotheses about the underlying message 

being conveyed on the basis of each new piece of information as it becomes available. Such 

inference and belief updating, which we described for syntactic parsing in section 1, would 

proceed at all levels of the hierarchy of linguistic representation. As discussed in section 1, 

so long as the comprehender’s probabilistic knowledge at these levels of the hierarchy 

closely resembles the actual statistics of the linguistic input, then she should be able to use it 

to maximize the average probability of correctly (and perhaps more quickly) recognizing 

incoming information at these levels of representation. This, in turn, should enable 

information to pass more efficiently up the hierarchy so that she can update her message-

level representation of context (indeed, within some frameworks, such as predictive coding, 

it is only the information that is unpredicted — or ‘unexplained’ — that is passed up from 

lower to higher levels of the hierarchy, see Clark, 2013; Friston, 2005). In the next section, 

we will extend this idea by arguing that, under some circumstances, information does not 

just flow up the hierarchy, in a bottom-up fashion, but that it can also flow down the 

hierarchy, with information at higher levels being used, under some circumstances, to 

predictively pre-activate information at lower levels.

Section 3: Predictive pre-activation

The data and the debates

In section 2 we presented further evidence that we can use multiple types of information in 

the context to facilitate processing of new inputs at multiple different representational levels. 

Facilitation, however, does not necessarily imply predictive pre-activation. To give a 

concrete example, imagine reading the context in (2) and finding that it can be used to 

facilitate processing at the phonological level (e.g. the consonant /kh/ or the phonemes /k/`, /

αI/`, and /t/). Just before encountering the incoming word “kite”, our internal representation 

of context is likely to include a hypothesis, held with a high degree of belief, at an event 

level of representation, that the event being conveyed is <boy flies kite>. In theory, there are 

two possibilities for how this high level inference/hypothesis might facilitate phonological 

processing of the incoming word, “kite”. The first is that we wait for the bottom-up input, 
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“kite”, to activate its phonological representation (and its neighbors), and we then use our 

high level event hypothesis to select the correct phonological representation. The second 

possibility is that we use our high level event hypothesis to predictively pre-activate the 

phonological representation of “kite” prior to the bottom-up input reaching this lower 

phonological level of representation.

In this section, we discuss this debate about whether or not we can actually predictively pre-

activate information at lower representational levels on the basis of information at higher 

levels within our internal representations of context, ahead of the bottom-up input reaching 

these lower levels. This debate has a long history in the language processing literature, and 

has been discussed with respect to the relationships between several different levels and 

types of representation.

In the speech recognition literature, many researchers would acknowledge that higher level 

lexical information that has been activated by prior bottom-up phonetic input can be used to 

predictively pre-activate upcoming potential phonemes, prior to new bottom-up acoustic 

information arriving at the phonemic level of representation (Dahan & Magnuson, 2006; 

McClelland & Elman, 1986). In this literature, the main debate has been whether feedback 

connections from the lexical level to the phonological level can continue to affect the 

processing of the phonetic/phonological input that is currently being processed, such as 

lexical activity to fish leading to further enhancement of activity to /fl/ (see Norris, 1994; 

Norris & McQueen, 2008; Norris, McQueen, & Cutler, 2000 for discussion).

In the sentence and discourse processing literatures, there has been more controversy about 

whether higher level information within our internal representations of context can be used 

to predictively pre-activate upcoming information at lower levels of representation (see 

Federmeier, 2007; Kutas et al., 2011 for discussion). Early models argued for lexical 

predictive pre-activation (Morton, 1969). Later models, however, argued that a message-

level representation of context influenced processing of new inputs only after lexical 

(Forster, 1981; Marslen-Wilson, 1987; Swinney, 1979) or more distributed (Gaskell & 

Marslen-Wilson, 1997; Gaskell & Marslen-Wilson, 1999) representations had been initially 

activated from the bottom-up input (see Frauenfelder, 1987, for discussion). Only at this 

stage could this message-level representation exert its effect, acting to select the most 

appropriate candidates. This slightly later effect of context was said to lead to facilitated 

integration of the incoming word7, and it distinguished these frameworks from the more 

fully interactive activation models from which they were originally inspired (Elman & 

McClelland, 1984; McClelland & Rumelhart, 1981). While constraint-based models of 

sentence processing generally remained agnostic as to the role of pre-activation in 

processing, there was sometimes an implicit assumption that high level contextual influences 

like plausibility and coherence act primarily to select syntactic frames that had already been 

activated by the bottom-up lexical input (see Kuperberg, 2007, and Ferreira, 2003, for 

discussion).

7Note, however, that the term integration has been used in different ways in the literature. The usage described here contrasts 
integration with pre-activation (Federmeier, 2007; see also Van Petten & Luka, 2012, for discussion). Others, however, have used the 
term integration to refer more specifically to the process by which a word is combined or unified with its context to come up with a 
propositional meaning (e.g. Hagoort, Baggio, & Willems, 2009; Jackendoff, 2002; Lau, Phillips, & Poeppel, 2008).
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Predictive pre-activation versus pre-activation through priming—One theme that 

emerged from the lexical, sentence, and discourse processing literatures, was a distinction 

between pre-activation through top-down prediction, and pre-activation through priming.8 

Some researchers distinguished between these processes, allowing pre-activation through 

priming, but not predictive pre-activation, to influence processing of new bottom-up input. 

Unlike predictive pre-activation, which entailed the use of high level information within the 

internal representation of context to pre-activate upcoming information at lower level(s) of 

representation, priming was assumed to stem from lower level information that was retained 

with the comprehender’s internal representation of context in a relatively raw form. The 

assumption was that this lingering lower level information might pre-activate upcoming 

information at this same lower level, through mechanisms such as spreading activation (e.g. 

Forster, 1981; see also Fodor, 1983).9 Priming was therefore often viewed as non-targeted 

(in that activation was taken to spread indiscriminately to related nodes at a single level of 

representation), and short-term (in that any lingering activation from processing of previous 

material was assumed to decay rapidly).

Some researchers also assumed other differences between priming and predictive pre-

activation. For example, priming was often taken to be non-strategic (in that it serves no 

purpose), automatic (in that it occurs without conscious control), and sometimes even 

involuntary (in that it cannot be suppressed). This was again taken to be different from 

predictive pre-activation, which as noted in section 1, was originally believed to be strategic 

and sometimes targeted in that only one or a few highly probable candidates were taken to 

be predicted (Becker, 1980, 1985; Forster, 1981; Neely, Keefe, & Ross, 1989; Posner & 

Snyder, 1975).

A problem with interpreting this literature, however, is that not every account that appealed 

to priming subscribed to all of these assumptions, and exactly what distinguished pre-

activation through priming from predictive pre-activation was not always made explicit. 

Moreover, there has sometimes been a tendency to hold on to some older assumptions about 

both priming and predictive pre-activation. For example, as discussed in section 1, prediction 

is no longer assumed to be strategic or all-or-nothing, but rather implicit and probabilistic in 

nature (e.g. DeLong et al., 2005; Federmeier & Kutas, 1999), and there is also evidence that 

even ‘automatic’ priming can sometimes be subject to some strategic control (e.g., 

Hutchison, 2007).

8The term, priming, is sometimes used simply to describe the phenomenon of facilitated processing of a target that is preceded by a 
prime, with which it shares one or more representation(s), regardless of mechanism. Pre-activation is just one of these mechanisms. 
For example, multiple different mechanisms have been proposed to account for the phenomena of both semantic priming (see Neely, 
1991 for a review) and syntactic priming (e.g. Chang, Dell, & Bock, 2006; Jaeger & Snider, 2013; Tooley & Traxler, 2010).
9For example, memory-based models of text processing assumed that simple lexico-semantic relationships within the internal 
representation of context, approximating to a ‘bag of words’ (quantified using measures like Latent Semantic Analysis, Kintsch, 2001; 
Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998), could interact with lexico-semantic relationships stored within long-
term memory, and prime upcoming lexico-semantic information through spreading activation (Kintsch, 1988; McKoon & Ratcliff, 
1992; Myers & O'Brien, 1998; Sanford, 1990; Sanford & Garrod, 1998). This was known as resonance, and it can be distinguished 
from the use of high level representations of events or event structures (that include information about ‘who does what to whom’) to 
predictively pre-activate upcoming semantic features or categories (see Kuperberg et al., 2011; Lau et al., 2013; Otten & Van Berkum, 
2007; Paczynski & Kuperberg, 2012 for discussion).

Kuperberg and Jaeger Page 14

Lang Cogn Neurosci. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Arguments against predictive pre-activation—By the late 1990s, many 

psycholinguists were somewhat dubious that predictive pre-activation played much of a role 

in normal language comprehension (but see Altmann, 1999; Federmeier & Kutas, 1999; 

Federmeier et al., 2007, and also Tanenhaus et al., 1995, for early discussions of predictive 

pre-activation in the behavioral and ERP literatures). There was certainly widespread 

acknowledgment that high level information within the comprehender’s internal 

representation of context could influence comprehension quickly and incrementally. 

However, most sentence processing frameworks assumed (either implicitly or explicitly) that 

such high level information facilitated the processing of new lower level information only 

after this new lower level information had initially been activated by the bottom-up input.

There were several reasons for this skepticism. The first was an intuition that allowing 

predictive pre-activation to influence processing might afford our prior beliefs too much 

power, leading to distortions of perceptual or interpretational reality (e.g. Massaro, 1989). 

These initial concerns, however, may have been overblown. Within the speech recognition 

literature, there remain some legitimate concerns that feedback loops between lexical and 

phonemic representations might lead to auditory hallucinations (see Norris et al., 2000, p. 

302 for discussion). However, under the current proposal, lexical inferences based on prior 
bottom-up input would be used to pre-activate upcoming phonemic information. Moreover, 

we argue that any predictive pre-activation would primarily influence perception in cases 

when there is relative uncertainty about the bottom-up input, as in, for example, the 

phonemic restoration effect (Warren, 1970), or, more generally, processing in the presence of 

high degrees of environmental noise (McGowan, 2015; Miller, Heise, & Lichten, 1951; Stilp 

& Kluender, 2010; Woods, Yund, Herron, & Ua Cruadhlaoich, 2010, reviewed by Davis & 

Johnsrude, 2007).10 Similarly, in the sentence processing literature, our prior knowledge, 

based on real-world knowledge or strongly canonical structures, seems to primarily lead to 

misinterpretation of the bottom-up input — so-called ‘good enough processing; (Ferreira, 

2003) — when there are strong syntactic expectations (for related discussion, see Kuperberg, 

2007). The key point is that these phenomena are, in effect, examples of perceptual 

hallucinations (in the case of speech perception) or ‘cognitive’ hallucinations (in the case of 

‘good enough processing’), and the way that they can be explained is precisely through the 

combination of strong predictive pre-activation and (relative) uncertainty about the bottom-

up input.

A second concern that was sometimes raised about predictive pre-activation is similar to that 

discussed in section 1: that it may entail costs of inhibiting or suppressing predicted 

candidates that are not supported by the bottom-up input. As we argued in section 1, 

however, so long as prediction is based on our prior beliefs and the statistics of the input, 

10There is, however, also evidence that top-down influences on the perception of lower level information is not the exception, but 
rather the norm, at least at the lowest levels of speech perception. For example, the internal distributional structure of phonological 
categories is known to affect the perception of subphonemic acoustic similarity (known as the perceptual magnet effect, Feldman et 
al., 2009; Kuhl, 1991). This effect has been shown to be a rational consequence of the fact that there is always uncertainty about the 
perceptual input (due to noise in the neural systems underlying perception). In inferring the percept, comprehenders thus rely on what 
they know about the statistical structure underlying the speech signal (Feldman et al., 2009; see also Haefner, Berkes, & Fiser, 2014, 
for a discussion of how sampling-based top-down pre-activation can explain otherwise surprising correlations in firing rates in neural 
populations).
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then, within a purely rational framework of comprehension, the benefits of facilitation 

should, on average, outweigh the costs.

A third argument against using higher level information in our internal representation of 

context to predictively pre-activate upcoming information is that doing so might be 

metabolically costly. Proponents of predictive pre-activation have sometimes ignored this 

issue, focusing on the idea that, under cost-free assumptions, it is computationally the most 

efficient way for the comprehender to keep up with the rapidly unfolding bottom-up input. 

In fact, both sides of the argument are likely to be valid, and when we turn next to 

computational insights, we will see how it may be possible to formalize the trade off 

between the costs of predictively pre-activating lower level representation(s), and the 

benefits of facilitated bottom-up processing at multiple levels of representation.

A final reason why many psycholinguists in the late 1990s were reluctant to endorse 

predictive pre-activation was that, at the time, there was little direct evidence for it. As 

discussed in section 2, behavioral and ERP studies provided evidence that higher level 

information in the internal representation of context could facilitate processing of incoming 

information at multiple lower representational levels. However, as also noted above, it was 

often possible to argue that such facilitation was not actually due to predictive pre-activation 

at lower representational levels, but rather due to reduced integration at higher 

representational levels (see Federmeier, 2007; Kutas et al., 2011). This changed with a series 

of studies showing that, at least under some circumstances, it was possible to detect 

behavioral or neural activity to predicted versus unpredicted inputs before the onset of these 

inputs.

First, the visual world paradigm allowed for the measurement of eye movements while 

participants listened to (and sometimes acted upon) spoken language while viewing an array 

of images (for an in-depth review of these paradigms and their experimental logic, see 

Tanenhaus & Trueswell, 2006). If a linguistic context constrains towards the semantic, 

syntactic or phonological properties of an upcoming word, our eyes tend to move towards 

images that are related (versus unrelated), along this representational dimension, to the 

predicted word or referent. Importantly, these eye movements are sometimes anticipatory — 

detectable before the target word is spoken. There have now been numerous studies using 

the visual world paradigm, and together they provide strong evidence that, under certain 

circumstances, we are able to predictively pre-activate upcoming information at multiple 

representational levels, including syntactic (Arai & Keller, 2013; Kamide, 2012; Tanenhaus 

et al., 1995), semantic (Altmann & Kamide, 1999; Altmann & Mirkovic, 2009) and 

phonological (Allopenna et al., 1998) information.

A second line of direct evidence for predictive pre-activation came from a series of ERP 

studies that reported differential modulation of neural activity prior to the onset of predicted 

versus unpredicted words. These studies used clever designs in which ERPs were measured 

to function elements that were dependent on a subsequent predicted content word (DeLong 

et al., 2005; Van Berkum, Brown, Zwitserlood, Kooijman, & Hagoort, 2005; Wicha, 

Moreno, & Kutas, 2004). For example DeLong et al. (2005) showed that, in written contexts 

like (2), a smaller negativity was evoked by the article “a”, relative to the article “an”. “An” 
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can only precede words starting with a vowel, and so it is inconsistent with the predicted 

noun, “kite”. This therefore provides strong evidence for predictive pre-activation — not 

only for upcoming semantic, but also for upcoming phonological and orthographic 

information. Other studies using similar types of designs in other languages have shown 

evidence for predictive pre-activation of syntactic gender (Van Berkum et al., 2005; Wicha et 

al., 2004), not only during reading but also in spoken language comprehension (Van Berkum 

et al., 2005). In addition, a recent study using MEG reported increase evoked activity, 

localizing to the left middle temporal gyrus, in response to the presentation of highly 

predictive (versus less predictive) adjectives, which was taken to reflect lexical-level pre-

activation (Fruchter, Linzen, Westerlund & Marantz, 2015).

Finally, a few MEG studies have reported differential low frequency oscillatory neural 

activity to contexts that are more versus less predictive for upcoming perceptual features. 

Unlike evoked ERP or MEG responses, which index phase-locked activity that is time-

locked to specific events (Luck, 2014), and which are therefore best suited to detecting 

facilitation when a new incoming stimulus appears, low frequency oscillatory activity may 

be better suited for capturing top-down predictive neural activity (for general discussion, see 

Arnal & Giraud, 2012; Engel & Fries, 2010; Weiss & Mueller, 2012, and for recent 

discussion in relation to language comprehension, see Lewis & Bastiaansen, 2015). These 

studies generally used simple contexts that constrained strongly (versus weakly) for the 

perceptual features of new inputs. They report differential oscillatory activity prior to the 

appearance of such inputs that localized to early visual (Dikker & Pylkkänen, 2013) and 

auditory (Sohoglu, Peelle, Carlyon, & Davis, 2012) cortices. They therefore provide some 

suggestive evidence that it is possible to predictively pre-activate upcoming information, 

even at these low level perceptual representations.

Together, these studies provide strong evidence that, at least under some circumstances, 

higher level information within our internal representations of context can lead to the pre-

activation of incoming information at multiple lower level representations. This is important 

because it implies that there are no hard architectural or neuroanatomical constraints on the 

flow of activity activated by our internal representation of context on the processing of new 

bottom-up inputs. However, it is important to recognize that, just because we can use 

information in a context to pre-activate multiple types of information, this doesn't 

necessarily mean that we will do so in every situation. Indeed, as we discuss below, several 

factors have been shown to influence both the degree and the representational level at which 

upcoming information is predictively pre-activated.

Factors influencing predictive pre-activation—The first important factor known to 

influence predictive pre-activation is the constraint of the context. As discussed above, 

DeLong et al. (2005) provided evidence that, following highly lexically constraining 

contexts like (2), predictive pre-activation of the semantic, phonological, and orthographic 

features of “kite” could modulate the ERP waveform, both before and as the critical word, 

“kite”, was actually presented. Importantly, these ERP effects were inversely proportional to 

the lexical constraint of the context, providing strong evidence that lexical constraint of a 

context can influence the degree of pre-activation.
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In addition to influencing the degree of pre-activation, there is also evidence that contextual 

constraint can influence the representational level of predictive pre-activation. Highly 

lexically constraining contexts can influence the very early stages of processing incoming 

words, suggesting that they can be used to pre-activate information at sublexical levels of 

representation (see Staub, 2015, for a recent review of the behavioral eye-tracking 

literature), with evidence from ERP and MEG studies for facilitation on early ERP 

components (prior to the N400) that reflect phonological (Brothers, Swaab, & Traxler, 2015; 

Connolly & Phillips, 1994; Groppe et al., 2010), orthographic (Federmeier, Mai, & Kutas, 

2005; Kim & Lai, 2012; Lau et al., 2013), or even early perceptual (Dikker & Pylkkänen, 

2011) processing. Contexts that are less lexically constraining, however, do not appear to 

modulate these early ERP components, even when they facilitate semantic processing, as 

reflected by modulation within the N400 time window (e.g. Dikker & Pylkkänen, 2011; 

Paczynski & Kuperberg, 2012, see also Lau et al., 2013).

Most empirical work has focused on the effects of lexical constraint, as operationalized 

using cloze procedures (see footnote 1 in section 1). Contexts that are lexically constraining, 

by definition, constrain strongly for multiple types of representation at the same time 

(semantic, phonological and syntactic). It is important to recognize however, that a context 

can constrain strongly for just one type of upcoming representation, leading just to 

facilitation of incoming information at this representational level, independently of any 

other. For example, a discourse context can constrain strongly for a general semantic schema 

(e.g. a restaurant schema), but not for a specific event or specific lexical item, in which case 

it can lead to facilitated semantic processing of words whose semantic features are related to 

this schema, as reflected by an attenuation of the N400 ERP component, even when this 

incoming word is lexically highly unexpected or even anomalous (e.g. Kolk, Chwilla, van 

Herten, & Oor, 2003; Kuperberg, 2007; Kuperberg, Sitnikova, Caplan, & Holcomb, 2003; 

Metusalem et al., 2012; Paczynski & Kuperberg, 2012).

A second important factor that can influence predictive pre-activation is the comprehender’s 

current goal. One way of experimentally examining the effect of goal is to manipulate task 

instructions or demands, and there is indeed evidence that task can influence whether neural 

(ERP) facilitation is seen to incoming words (for examples, see Chwilla, Brown, & Hagoort, 

1995; Kuperberg, 2007; Paczynski & Kuperberg, 2012; Xiang & Kuperberg, 2015; see also 

McCarthy & Nobre, 1993). For example, in a recent ERP study, Xiang & Kuperberg (2015) 

showed that, with a requirement to explicitly judge discourse coherence, comprehenders 

were able to construct a deep situation-level representation of context and use it to access 

their stored knowledge of real-world event relationships to predict upcoming events, thereby 

facilitating semantic processing of incoming coherent words. With no such requirement, 

however, no such semantic facilitation was seen, at least for some types of sentences. There 

is less work using the visual world paradigm that explicitly contrasts patterns of eye 

movements with different task instructions. However, there is at least some evidence that 

task demands can influence the degree to which anticipatory eye movements are seen 

towards a particular referent (Altmann & Kamide, 1999; Ferreira, Foucart, & Engelhardt, 

2013; Sussman, 2006, see Salverda, Brown, & Tanenhaus, 2011 for discussion in relation to 

the visual world paradigm, and see Hayhoe & Ballard, 2005 for more general discussion).
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Goals, of course, are not only influenced by the types of explicit tasks given to participants 

in psycholinguistic experiments; they play a critical role in everyday language 

comprehension (see Clark, 1992; Kuperberg, 2007, and Tanenhaus & Brown-Schmidt, 2008, 

for discussion). As noted above, one can understand the broad goal of comprehension as 

being to infer the message communicated by the speaker or writer. However, a 

comprehender’s specific goal will depend on the particular situation. During everyday 

conversation, it will often be to discern the producer’s underlying intention as conveyed by 

speech acts (see Brown-Schmidt, Yoon, & Ryskin, 2015; Levinson, 2003; Yoon, Koh, & 

Brown-Schmidt, 2012 for discussion), and there are now several studies using the visual 

real-world paradigm showing that the presence or absence of anticipatory eye movements 

can be influenced by multiple different types of information in both the discourse and non-

verbal context, which can cue comprehenders towards carrying out the particular action that 

the producer intended them to produce (see Salverda et al., 2011; Tanenhaus, Chambers, & 

Hanna, 2004; Tanenhaus & Trueswell, 2006 for discussion and reviews). For example, 

Chambers, Tanenhaus, & Magnuson (2004) asked participants to act on spoken instructions 

like “Pour the egg in the bowl over the flour”, and showed that anticipatory eye movements, 

which reflected participants syntactic parse of the sentence, were influenced by whether or 

not there were pourable liquid eggs in a bowl (versus solid eggs in a bowl that were not 

pourable). In addition, when we are listening to a lecture or reading text, our overall goal can 

also influence mechanism of processing, as well as our future recall of its contents — 

contrast carefully reading an academic paper with reading a novel for pleasure (see van den 

Broek, Lorch, Linderholm & Gustafson, 2001 for discussion).

Finally, whether or not we see pre-activation at any particular representational level will 

likely depend on the speed at which the bottom-up input unfolds: contextual facilitation is 

greater when linguistic input is presented at slower than faster rates (e.g. Camblin, Ledoux, 

Boudewyn, Gordon, & Swaab, 2007, Wlotko & Federmeier, 2015). Moreover, the degree to 

which predictive pre-activation (versus bottom-up input) drives button presses during self-

paced reading or eye-movements during reading is known to be sensitive to the relative 

importance of comprehension speed versus accuracy (see Norris, 2006 for discussion), 

which can, in turn, be affected by external reward structures (cf. Bicknell, 2011; Bicknell & 

Levy, 2010; Lewis et al., 2013, see also Lewis, Howes, & Singh, 2014).

Taken together, all these factors suggest that the question we should be asking is not whether 
we can use higher level information in our representation of context to predictively pre-

activate upcoming information at lower levels of representation, but rather when we do so. 

We now consider the computational issues that may shed light on the question of when, and 

to what degree, we use higher level information within our internal representation of context 

to pre-activate upcoming information at lower representational level(s).

Computational insights

In computational terms, predictive pre-activation can be understood as the use of beliefs at a 

higher level of representation (level k) to change the prior distribution at a lower level of 

representation (k-1), ahead of new bottom-up input reaching this lower level representation. 

So long as such predictive pre-activation is based on the comprehender’s stored probabilistic 
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knowledge, then, on average, it will serve to reduce the degree of shift that the 

comprehender expects when she encounters new input at this lower level of representation: it 

will reduce her expected surprise at k-1. In other words, by shifting her prior beliefs at k-1 

prior to encountering new information at k-1, when such new information does reach k-1, 

any further shift in belief (Bayesian surprise) will, on average, be less than if she had not 

pre-activated (shifted the prior at k-1) at all. Information that has been pre-activated at k-1 

should therefore, on average, be supported by the new bottom-up input to k-1, and its 

processing should therefore be relatively facilitated.

Note that an architecture in which inferences at higher levels of representation lead to the 

generation of predictions at lower level(s) by changing the prior probability belief 

distributions at these lower levels, is not only generative in the theoretical sense described in 

sections 1 and 2; it is actively generative in the sense that, during real-time processing, 

information is passed down to lower levels of representation (i.e. higher-level information is 

used to predictively pre-activate lower level information). This propagation of probabilistic 

beliefs from higher to lower level representations is said to be subserved by internal 
generative models (Friston, 2005 Hinton, 2007; cf forward models in the motor literature).11

Faster recognition at lower levels of representation should enable information to pass more 

efficiently up the hierarchy to the highest message-level representation. Therefore, if we 

assume a completely rational framework, predictive pre-activation should, on average, lead 

to more efficient comprehension. There is, however, an important caveat to this claim: our 

brains do not have unbounded metabolic resources, and there are likely to be metabolic costs 

of predictively passing down information from higher to lower level representations (e.g. 

Attwell & Laughlin, 2001; Laughlin, de Ruyter van Steveninck, & Anderson, 1998). 

Suppose, for example, a comprehender invested large metabolic costs in passing down 

information from level k to k-1, then even if, on average, Bayesian surprise was less if she 

had not pre-activated information at k-1, she might still have unnecessarily wasted metabolic 

resources by pre-activating information at k-1 in the first place (for related discussion, see 

Norris, 2006, p. 330).

One way of understanding how a comprehender might best trade off the benefits and costs of 

predictive pre-activation is to assume that she uses the metabolic and cognitive resources she 

has at her disposal in a rational fashion (e.g., Simon, 1956; Griffiths, Lieder, & Goodman, 

2015; Howes, Lewis, & Vera, 2009; for applications and discussion in relation to language 

processing, see e.g., Bicknell et al. under review; Lewis, Howes, & Singh, 2014; Norris 

2006). Within this type of bounded rational framework, both predictive pre-activation, as 

well as any resulting predictive behavior, can be considered as having a utility function that 

weighs its advantages and disadvantages. The aim of a resource-bound comprehender is to 

maximize the utility of any predictive pre-activation. Below we discuss two mutually 

compatible ways in which she can do this.

11Actively generative models also provide a link between language comprehension and language production (for discussion, see 
Jaeger & Ferreira, 2013; Pickering & Garrod, 2007, 2013, and for further discussion of the relationship between prediction in language 
comprehension and production, see Dell & Chang, 2014; Federmeier, 2007; Garrod & Pickering, 2015; Jaeger & Snider, 2013; 
Magyari & de Ruiter, 2012).
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The first way in which the comprehender can maximize utility is to only predictively pre-

activate to the degree and at the level(s) of representation that, on average, serve her ultimate 

goal. Intuitively, it seems wasteful to predictively pre-activate information when it is not 

necessary to do so. For example, if our goal is to deeply comprehend a sentence, then we 

will be likely to use higher level representations (events and event structures) to predictively 

pre-activate relevant lower levels of representation (including semantic, syntactic, etc.) that 

will enable us to more efficiently reach our goal. If, however, our goal is to monitor for the 

word “reviewer”, then we may be more likely to pre-activate the lower levels of 

representation (e.g. orthographic) that will enable us to most efficiently perform this task.

One way of understanding the role of goal in relation to the type of architecture outlined 

above, is to conceptualize it as defining the generative model that the agent is employing at 

any given time, so that the goal is achieved by minimizing Bayesian surprise across the 

whole model (see Friston et al., 2015, for a more general discussion of the relationships 

between utility and generative models). Extrapolating to language comprehension, achieving 

the goal of inferring the producer’s underlying message would entail minimizing Bayesian 

surprise at the message level representation, as well as the levels of representation below 

this, to the degree that they allow the comprehender to achieve this goal.

Understanding the role of goal within this type of framework can also help explain how task 

can influence how much the comprehender values, for instance, speed or accuracy of 

recognition (for applications of this idea to reading, see Bicknell & Levy, 2012; Lewis et al., 

2013; see also Howes et al., 2009). Finally, this framework extends nicely to understanding 

decisions about behaviors that are predictively triggered as a function their utility. For 

example, it might potentially explain when anticipatory eye-movements are seen based on 

the expected gain or utility of such eye-movements (for related discussion, see Hayhoe & 

Ballard, 2005; for applications to reading, see Bicknell & Levy, 2012; Lewis et al., 2013). 

More generally, this perspective suggests that a failure to observe behavioral evidence of 

predictive pre-activation at a particular representational level does not necessarily imply that 

we aren’t able to predictively pre-activate information at this level of representation (even 

when this information is, in principle, available within the preceding context). Since the 

utility of predictive behaviors depends on task, goal, and stimuli-structure, it is necessary to 

consider their contributions before concluding that predictive pre-activation at any given 

representational is not possible. Critically, as noted in the Introduction, there is evidence for 

predictive behavior during naturalistic language processing tasks (Brown-Schmidt & 

Tanenhaus, 2008) and in everyday conversation (de Ruiter et al., 2006), suggesting that the 

utility of predictive pre-activation is relatively high during everyday language processing.

The second (and related) way in which the resource-bound comprehender might be able to 

maximize the utility of her predictions and rationally allocate resources, is to estimate the 

reliability of both her prior knowledge as well as new input to any given level of 

representation within her actively generative model, and use these estimates to modulate the 

degree to which she updates her beliefs (for a given prior distribution and likelihood 

function) at this level of representation (i.e. ‘weight’ prediction error, for related discussion, 

see Friston, 2010; Feldman & Friston, 2010). Such estimations of reliability may play an 

important role in allowing us to flexibly adapt comprehension to the demands of a given 
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situation. For example, during speech perception, it may allow us to quickly recognize 

familiar individual speakers, generalize our mechanism of processing to similar groups of 

speakers, accents and dialect, and adapt to novel speakers (see Kleinschmidt & Jaeger, 2015 

for discussion), and, as discussed in section 4, it may allow us to comprehend words that 

violate contexts that are highly lexically constraining.

Finally, this broad utility-based framework could, in theory, accommodate the metabolic 

costs of predictive pre-activation itself (as well as any metabolic costs of bottom-up 

message-passing). Such metabolic costs might, for example, be influenced by the speed at 

which the bottom-up linguistic input unfolds. This is because it presumably takes more 

energy to pre-activate upcoming information at a given level of representation before this 

new input arrives at this level of representation, and so we are most likely to predictively 

pre-activate upcoming lower level information when the input unfolds at a slower rather than 

a faster rate. The costs of predictive pre-activation are also likely to be influenced by the 

speed of neural information flow, which is likely to differ between individuals, within 

individuals across the lifespan (e.g. Federmeier, 2007; Federmeier, Kutas, & Schul, 2010), 

and which is likely to be affected by different psychopathologies (see Kuperberg, 2007, and 

Brown & Kuperberg, 2015, for discussion).

In sum, by considering our predictions as having a utility, which is influenced by Bayesian 

surprise, our goals, as well as the metabolic costs of predictive pre-activation, it may be 

possible to understand when, to what degree, and at what level(s) of representation we use 

within our internal representation of context to pre-activate upcoming information at any 

given time, and to what degree we weight these predictions against new evidence from the 

bottom-up input.

Section 4: Predictive pre-updating and the consequences of prediction 

violation

The data and the debates

Within the psycholinguistics literature, some have argued that, even if we do use higher level 

information within our internal representation of context to predictively pre-activate 

information at lower representational level(s), this still does not constitute true prediction; 

‘true’ prediction, these researchers might argue, goes beyond predictive pre-activation by 

entailing some kind of ‘commitment’ to these pre-activated candidates, ahead of 

encountering or combining the bottom-up input.

Different researchers have discussed the idea of commitment in different ways. Some have 

distinguished between a graded pre-activation of multiple candidates, and a predictive 

commitment to one specific pre-activated candidate such as a single lexical item (Van Petten 

& Luka, 2012). Others have distinguished between a graded pre-activation of multiple 

candidates within long-term memory (which we have referred to here as predictive pre-

activation), and some kind of commitment to using one (or more) of these candidate(s) to 

pre-update the internal representation of context (e.g. Kamide, 2008; Lau et al., 2013). For 

example, Lau et al. (2013) suggested that, after reading context (2), just before encountering 
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the incoming word (“kite”), the comprehender builds a partial representation of the event 

(<boy flies>) within working memory, which she uses to predictively pre-activate lower 

level representation(s) of <kite> (e.g. its semantic features and its phonological properties) 

within long-term memory. Pre-updating would refer to the additional step of updating her 

internal representation of context, within working memory, such that it now contains the pre-

activated lower level information in addition to the partial event representation.

One notion that seems to be common to these views is the idea that, if such predictive 

commitments are violated by the bottom-up input (for example, the word “plane” is 

encountered instead of “kite”), this would lead to a further increase in reaction times or 

additional neural activity that goes beyond what would ensue if the comprehender had not 

committed in this fashion. These increases in reaction time or prolonged neural activity have 

sometimes been conceived of as reflecting the costs or consequences of violating a strong 

prediction (see Federmeier, 2007; Kutas et al., 2011, and DeLong et al., 2014 for 

discussion).

(4a) The day was breezy so the boy went outside to fly a…

(4b) …kite

(4c) …plane

(5a) It was an ordinary day and the boy went outside and saw a…

(5b) …plane

Experimentally, the way researchers have sought evidence for additional neural or 

behavioral processing associated with violating strong, high certainty predictions is to 

compare behavioral responses or neural activity to incoming words like “plane” in (4c) that 

violate contexts like (4a), which constrain very strongly for a different specific lexical item 

(<kite>), and a different specific event (<boy flies kite>), and incoming words like “plane” 

(5b) that follow non-constraining (non-predictable) contexts like (5a). Any differences in 

processing time or neural activity between the critical incoming words in (4c) and (5b) are 

taken to reflect the additional processing engaged as a result of violating a strong prediction. 

This difference is compared with another contrast — between (5b) and (4b). In (4b), the 

critical word is fully supported by the highly constraining context. Any differences in 

processing time or neural activity between (5b) and (4b) are taken to reflect reduced 

facilitation (due either to reduced pre-activation at lower level(s) of representation, or 

reduced integration at the higher event level of representation).

Behavioral studies using this type of logic have found mixed evidence that prediction 

violations (4c vs. 5b) lead to increased processing, over and above reduced predictive 

facilitation (5b vs. 4b) (Forster, 1981; Frisson, Rayner & Pickering, 2005; Schwanenflugel & 

Lacount, 1988; Schwanenflugel & Shoben, 1985; Stanovich & West, 1981, 1983; Traxler & 

Foss, 2000). One reason for these mixed findings may be that not all of these studies 

matched the predictability critical words in (4c) and (5b).

Some evidence for additional neural processing that is specifically associated with violating 

highly constraining contexts as in (4c) has, however, emerged from the ERP literature. While 
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a full analysis of this literature is outside the scope of this article (see Van Petten & Luka, 

2012, and Kuperberg, 2013, for reviews), we note that critical words like (4c) evoke a larger 

anteriorly distributed late positivity than critical words like (5b). This is the case even when 

the critical words in these two conditions are matched on their cloze probabilities, and even 

when they evoke N400s of the same magnitudes (e.g. Federmeier et al., 2007).

There is also evidence for additional prolonged neural processing, beyond that reflected by 

the N400, in association with words that violate contexts that constrain very strongly for a 

specific event structure (mappings between semantic and syntactic roles). This additional 

prolonged processing manifests as another late positivity ERP component with a more 

posterior scalp distribution, known as the P600 (see Kuperberg, 2007 & 2013 for reviews). 

Together, these late positivity effects provide some evidence that the brain can incur 

additional neural consequences when it encounters words that violate highly constraining 

contexts, over and above those reflected by the N400.

Computational insights

The psycholinguistic construct of pre-updating is compatible with the hierarchical, actively 

generative architecture discussed in the previous sections. Within this architecture, pre-

updating corresponds to the completion of an inference at a particular level of 

representation, in which the shift from prior to posterior gives rise a very high certainty 

posterior distribution with belief centered over only very few (and possibly one) high 

probability hypotheses. This, in turn, leads to strong predictive pre-activation at lower levels 

of representation. Note that this view is somewhat different from the account of predictive 

pre-updating described above (e.g. Lau et al., 2013), which assumed that predictive pre-

activation preceded pre-updating (e.g. after using a partial representation an event, <boy 

flies>, to predictively pre-activate lower level semantic, syntactic and/or phonological 

information, only then pre-updating the internal representation of context with this pre-

activated information). Within a hierarchical actively generative architecture, these stages 

are reversed: the comprehender is assumed to have already pre-updated her belief about the 

entire event that the producer is attempting to convey (<boy flies kite>) – a hypothesis that 

she holds with a high degree of belief (with a low degree of belief over hypotheses about 

other possible events, such that her probability distribution over all possible events is high 

certainty/low entropy). This, in turn, leads her to predictively pre-activate information at 

lower levels of representation. (Note also that, given that the comprehender’s internal 

representation of context is multi-representational, as discussed in sections 2 and 3, pre-

updating is assumed not only to occur at high levels of representation, such as events or 

event structures, but also at other representational levels. For example, inferring a particular 

lexical item with a high degree of probability might correspond to pre-updating of beliefs at 

the lexical level of representation, leading to predictive pre-activation of upcoming 

phonemes).

One question that remains concerns the neural signatures associated with violations of 

highly constraining contexts, i.e., the late positivities described above. One possibility is that 

these late positivities reflect computational mechanisms that go beyond simple belief 

updating (Bayesian surprise) at any single level of representation. They might, for example, 
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reflect a process of adaptation (or learning), in which the comprehender updates her entire 

internal generative model to better reflect the broader statistical structure of the current 

environment (see Kuperberg, under review, for further discussion; see also Kuperberg, 

2013). On this account, after encountering “plane” (instead of “kite”) following context (3a), 

the comprehender might update her beliefs about the statistical contingencies between her 

semantic, syntactic and phonological knowledge (for computational extensions of this type 

of generative framework to adaptation during language processing, see Fine et al., 2010; 

Kleinschmidt et al., 2012; Kleinschmidt & Jaeger, 2015).

A second possibility, which is slightly different although related to the first, is that the late 

positivities reflect a type of ‘model switching’. For example, the comprehender might have 

previously learned (and stored) different generative models that correspond different 

statistical environments (Kleinschmidt & Jaeger, 2015, pp180-181; for related models 

beyond language processing, see also Qian, Jaeger, & Aslin, 2012, and Gershman & Ziv, 

2012). For example, comprehenders might have learned generative models for particular 

genres (Fine, Jaeger, Farmer, & Qian, 2013; Kuperberg, 2013), dialects (Fraundorf & Jaeger, 

submitted; Niedzielski, 1999), or accents (Hanulikova, van Alphen, van Goch, & Weber, 

2012). They might even have learned a generative models for situations in which normal 

statistics completely break down, e.g., when participating in experiment (cf. Jaeger, 2010, p. 

53) or when talking to someone one believes to have a language deficit (Arnold, Kam, & 

Tanenhaus, 2007). The late positivities might then reflect a re-allocation of resources 

associated with inferring (or switching to) these new generative models (for further 

discussion, see Kuperberg, under review). Distinguishing between these possibilities will be 

an important step in fleshing out the generative architecture described here.

Section 5: Towards a hierarchical multi-representational generative 

framework of language comprehension

In this review, we considered several ways in which prediction has been discussed in relation 

to language comprehension. In section 1, we argued that, in its minimal sense, prediction 

implies that, at any given time, we use high level information within our representation of 

context to probabilistically infer (hypothesize) upcoming information at this same higher 

level representation. In section 2, we surveyed a large body of work suggesting that we can 

use multiple types of information within our representation of context to facilitate the 

processing of new bottom-up inputs at multiple other levels of representation, ranging from 

syntactic, semantic, to phonological, orthographic, and perceptual. In section 3, we 

discussed evidence that, at least under some circumstances, facilitation at lower level 

representations results from the use of higher level inferences to predictively pre-activate 
information at these lower level(s), ahead of new bottom-up information reaching these 

levels. We also discussed several factors known to influence the degree and representational 

level(s) to which we predictively pre-activate lower level information, suggesting that these 

factors might act by influencing the utility of predictive pre-activation by balancing its 

benefits and costs. Finally, in section 4, we suggested that, when our high level predictions 

are particularly certain (corresponding to the psycholinguistic construct of pre-updating), 
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and the bottom-up turns out to be incompatible with this high-certainty inference, this will 

lead to additional neural processing, which might reflect adaptation.

In the psycholinguistics literature, the constructs we considered in this review have 

sometimes been discussed as being qualitatively different to one another. For example, the 

predictability of information in a context has sometimes been viewed as distinct from pre-

activation, and predictive pre-activation has sometimes been viewed as being distinct from 

pre-updating. Here, however, we have argued that these constructs may be linked by 

appealing to a hierarchical, dynamic and actively generative framework of language 

comprehension, in which the comprehender’s goal is to infer, with as much certainty as 

possible, the message-level interpretation or situation model that the producer intends to 

communicate, at a rate that allows her to keep up with the speed at which the linguistic 

signal unfolds.

Within this framework, this goal is achieved through incremental cycles of belief updating 

(Bayesian inference) at multiple levels of representation — the highest message-level 

representation, as well as at all the levels below that allow the comprehender to achieve her 

specific goal. We have also suggested that the comprehender actively propagate beliefs/

predictions down to successively lower levels of representation (corresponding to predictive 

pre-activation) in order to minimize expected Bayesian surprise for each new bottom-up 

input. In this way, when new bottom-up input is encountered, any Bayesian surprise at these 

lower level representations will be less than if the comprehender had not predictively pre-

activated at all. Finally, we have suggested that, by weighting the degree of updating by her 

estimates of relative reliabilities of her priors and likelihoods at any given level of 

representation, a comprehender who has bounded resources can achieve this goal more 

efficiently, quickly and flexibly. Thus, within this type of actively generative framework, 

prediction is not simply an ‘add-on’ that aids the recognition of bottom-up input; it plays a 

pivotal role in driving higher level inference: the goal of comprehension itself.

Of course, there is much work to be done in formalizing and implementing this framework. 

By adopting a probabilistic framework and discussing the role of prediction in language 

comprehension at Marr’s computational level analysis, we are not claiming that the brain 

literally computes probabilities, but rather that it may be possible to describe what it is 

computing in probabilistic terms. In addition, as has sometimes been pointed out, we are 

consciously aware of only one experience (or, in the case of language, one interpretation) at 

any one time (see Jackendoff, 1987, pages 115-119, for discussion). It will therefore be 

important to understand how such probabilistic inference drives our (conscious) 

comprehension of language (for one theory in the perceptual domain, see Hohwy, Roepstorff 

& Friston, 2008, and discussion by Clark, 2013, page 184-185). It is also important to note 

that constructs such as Bayesian surprise can be instantiated in many different ways at the 

algorithmic and neural levels. For example, key components of incremental belief updating 

have been implemented within recurrent connectionist networks (e.g. Chang et al., 2006; 

Dell & Chang, 2014; Elman, 1990; Gaskell, 2003), where there are close links between 

formalizations of prediction error and Bayesian surprise (see Jaeger & Snider, 2013, 

McClelland 1998 & 2013 for discussion). Actively generative models have also been 

instantiated in some neural networks (e.g. Dayan & Hinton, 1996; Dayan, Hinton, Neal, & 
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Zemel, 1995; Hinton, 2007, see also forward models in the motor literature, e.g. Jordan & 

Rumelhart, 1992). Finally, it has been proposed that this type of hierarchical actively 

generative architecture is instantiated at the neural level in the form of predictive coding 

(Friston, 2005, 2008,12 see Lewis & Bastiaansen, 2015 and Kuperberg, under review, for 

discussion in relation to the neural basis of language comprehension), although it is 

important to recognize that the most direct evidence for predictive coding in the brain comes 

from Rao and Ballard’s (1999) initial descriptions within the visual system. Given these 

considerations, we believe that this type of multi-representational hierarchical actively 

generative architecture can potentially provide a powerful bridge across the fields of 

computational linguistics, psycholinguistics and the neurobiology of language, and we hope 

that, by sketching out its principles, this will stimulate cross-disciplinary collaboration 

across these areas.

We conclude by taking up one more important point. In this review, we have mainly focused 

on the role and value of probabilistic prediction in language comprehension, generally 

assuming that our probabilistic predictions mirror the statistics of our linguistic and non-

linguistic environments. In reality, however, during everyday communication these statistics 

are constantly changing: every person we converse with will have their own unique style, 

accent and sets of syntactic and lexical preferences. And every time we read a scientific 

manuscript, a sci-fi chapter, or a novel by Jane Austen, we will be exposed to quite different 

statistical structures in our linguistic inputs. As alluded to in sections 3 and 4 

(Computational insights), the type of actively generative framework that we have sketched 

out here is, in fact, well suited for dealing with such variability in our environments. In 

particular, our ability to weight Bayesian surprise by our estimations of the reliability of the 

priors and likelihoods may play a more general role in allowing us to rationally allocate 

resources, allowing us to switch to and/or learn new generative models that are optimally 

suited to achieving our goals in multiple different communicative environments (for 

discussion in relation to phonological and speaker-specific adaptation, see Kleinschmidt & 

Jaeger, 2015, for discussion of other aspects of syntactic, semantic variability and 

adaptation, see Fine et al., 2013, and for discussion of neural adaptation, in relation to the 

P600 and other late positivities in language comprehension, see Kuperberg, 2013, and 

Kuperberg, under review). A key goal for future research will be to understand whether the 

multi-representational hierarchical actively generative architecture that we have sketched out 

here can bridge our understanding of the relationships between language processing, 

adaptation and learning (e.g. Brown-Schmidt et al., 2015; Chang et al., 2006; Dell & Chang, 

2014; Jaeger & Snider, 2013).
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