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Abstract

Large pre-trained neural networks such as

BERT have had great recent success in NLP,

motivating a growing body of research investi-

gating what aspects of language they are able

to learn from unlabeled data. Most recent anal-

ysis has focused on model outputs (e.g., lan-

guage model surprisal) or internal vector rep-

resentations (e.g., probing classifiers). Com-

plementary to these works, we propose meth-

ods for analyzing the attention mechanisms of

pre-trained models and apply them to BERT.

BERT’s attention heads exhibit patterns such

as attending to delimiter tokens, specific po-

sitional offsets, or broadly attending over the

whole sentence, with heads in the same layer

often exhibiting similar behaviors. We further

show that certain attention heads correspond

well to linguistic notions of syntax and coref-

erence. For example, we find heads that at-

tend to the direct objects of verbs, determiners

of nouns, objects of prepositions, and corefer-

ent mentions with remarkably high accuracy.

Lastly, we propose an attention-based probing

classifier and use it to further demonstrate that

substantial syntactic information is captured in

BERT’s attention.

1 Introduction

Large pre-trained language models achieve very

high accuracy when fine-tuned on supervised tasks

(Dai and Le, 2015; Peters et al., 2018; Radford

et al., 2018), but it is not fully understood why.

The strong results suggest pre-training teaches the

models about the structure of language, but what

specific linguistic features do they learn?

Recent work has investigated this question by

examining the outputs of language models on

carefully chosen input sentences (Linzen et al.,

2016) or examining the internal vector representa-

tions of the model through methods such as prob-

ing classifiers (Adi et al., 2017; Belinkov et al.,

2017). Complementary to these approaches, we

study1 the attention maps of a pre-trained model.

Attention (Bahdanau et al., 2015) has been a

highly successful neural network component. It is

naturally interpretable because an attention weight

has a clear meaning: how much a particular word

will be weighted when computing the next repre-

sentation for the current word. Our analysis fo-

cuses on the 144 attention heads in BERT (De-

vlin et al., 2019), a large pre-trained Transformer

(Vaswani et al., 2017) network that has demon-

strated excellent performance on many tasks.

We first explore generally how the attention

heads behave. We find that there are common pat-

terns in their behavior, such as attending to fixed

positional offsets or attending broadly over the

whole sentence. A surprisingly large amount of

BERT’s attention focuses on the deliminator to-

ken [SEP], which we argue is used by the model

as a sort of no-op. Generally we find that attention

heads in the same layer tend to behave similarly.

We next probe each attention head for linguis-

tic phenomena. In particular, we treat each atten-

tion head as a simple no-training-required classi-

fier that, given a word as input, outputs the most-

attended-to other word. We then evaluate the abil-

ity of the heads to classify various syntactic rela-

tions. While no single head performs well at many

relations, we find that particular heads correspond

remarkably well to particular relations. For exam-

ple, we find heads that find direct objects of verbs,

determiners of nouns, objects of prepositions, and

objects of possesive pronouns with >75% accu-

racy. We perform a similar analysis for corefer-

ence resolution, also finding a BERT head that per-

forms quite well. These results are intriguing be-

cause the behavior of the attention heads emerges

purely from self-supervised training on unlabeled

data, without explicit supervision for syntax or

coreference.

1Code will be released at https://github.com/
clarkkev/attention-analysis.

https://github.com/clarkkev/attention-analysis
https://github.com/clarkkev/attention-analysis


277

 Head 1-1 
 

Attends broadly 

 

Head 3-1 
 

Attends to next token 

 

Head 8-7 
 

Attends to [SEP] 

 

Head 11-6 
 

Attends to periods 

 

Figure 1: Examples of heads exhibiting the patterns discussed in Section 3. The darkness of a line indicates the

strength of the attention weight (some attention weights are so low they are invisible).

Our findings show that particular heads special-

ize to specific aspects of syntax. To get a more

overall measure of the attention heads’ syntac-

tic ability, we propose an attention-based probing

classifier that takes attention maps as input. The

classifier achieves 77 UAS at dependency pars-

ing, showing BERT’s attention captures a substan-

tial amount about syntax. Several recent works

have proposed incorporating syntactic information

to improve attention (Eriguchi et al., 2016; Chen

et al., 2018; Strubell et al., 2018). Our work sug-

gests that to an extent this kind of syntax-aware

attention already exists in BERT, which may be

one of the reason for its success.

2 Background: Transformers and BERT

Although our analysis methods are applicable

to any model that uses an attention mechanism,

in this paper we analyze BERT (Devlin et al.,

2019), a large Transformer (Vaswani et al., 2017)

network. Transformers consist of multiple lay-

ers where each layer contains multiple attention

heads. An attention head takes as input a sequence

of vectors h = [h1, ..., hn] corresponding to the

n tokens of the input sentence. Each vector hi
is transformed into query, key, and value vectors

qi, ki, vi through separate linear transformations.

The head computes attention weights α between

all pairs of words as softmax-normalized dot prod-

ucts between the query and key vectors. The out-

put o of the attention head is a weighted sum of the

value vectors.

αij =
exp (qTi kj)

∑n
l=1

exp (qTi kl)
oi =

n
∑

j=1

αijvj

Attention weights can be viewed as governing how

“important” every other token is when producing

the next representation for the current token.

BERT is pre-trained on 3.3 billion tokens of un-

labeled text to perform two tasks. In the “masked

language modeling” task, the model predicts the

identities of words that have been masked-out of

the input text. In the “next sentence prediction”

task, the model predicts whether the second half

of the input follows the first half of the input in

the corpus, or is a completely separate random text

segment. Further training the model on supervised

data results in impressive performance across a va-

riety of tasks ranging from sentiment analysis to

question answering. An important detail of BERT

is the preprocessing used for the input text. A spe-

cial token [CLS] is added to the beginning of the

text and another token [SEP] is added to the end. If

the input consists of multiple separate texts (e.g., a

reading comprehension example consists of a sep-

arate question and context), [SEP] tokens are also

used to separate them. As we show in the next sec-

tion, these special tokens play an important role in

BERT’s attention. We use the “base” sized BERT

model, which has 12 layers containing 12 attention

heads each. We use <layer>-<head number> to

denote a particular attention head.

3 Surface-Level Patterns in Attention

Before looking at specific linguistic phenomena,

we first perform an analysis of surface-level pat-

terns in how BERT’s attention heads behave. Ex-

amples of heads exhibiting these patterns are

shown in Figure 1.
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[SEP]
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Figure 2: Each point corresponds to the average atten-

tion a particular BERT attention head puts toward a to-

ken type. Above: heads often attend to “special” to-

kens. Early heads attend to [CLS], middle heads attend

to [SEP], and deep heads attend to periods and com-

mas. Often more than half of a head’s total attention is

to these tokens. Below: heads attend to [SEP] tokens

even more when the current token is [SEP] itself.

Setup. We extract the attention maps from

BERT-base over 1000 Wikipedia segments. We

follow the setup used for pre-training BERT

where each segment consists of at most 128

tokens corresponding to two consecutive para-

graphs of Wikipedia. The input presented to the

model is [CLS]<paragraph-1>[SEP]<paragraph-

2>[SEP].

3.1 Relative Position

First, we compute how often BERT attention

heads attend to the current token, the previous to-

ken, or the next token. We find that most heads

put little attention on the current token. However,

there are heads that specialize to attending heavily

on the next or previous token, especially in ear-

lier layers of the network. In particular four atten-

tion heads (in layers 2, 4, 7, and 8) on average put

>50% of their attention on the previous token and

five attention heads (in layers 1, 2, 2, 3, and 6) put

>50% of their attention on the next token.
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[SEP]
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Figure 3: Gradient-based feature importance estimates

for attention to [SEP], periods/commas, and other to-

kens.
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Figure 4: Entropies of attention distributions. In the

first layer there are particularly high-entropy heads that

produce bag-of-vector-like representations.

3.2 Attending to Separator Tokens

Interestingly, we found that a substantial amount

of BERT’s attention focuses on a few tokens (see

Figure 2). For example, over half of BERT’s at-

tention in layers 6-10 focuses on [SEP]. To put

this in context, since most of our segments are 128

tokens long, the average attention for a token oc-

curring twice in a segments like [SEP] would nor-

mally be 1/64. [SEP] and [CLS] are guaranteed

to be present and are never masked out, while pe-

riods and commas are the most common tokens

in the data excluding “the,” which might be why

the model treats these tokens differently. A sim-

ilar pattern occurs for the uncased BERT model,

suggesting there is a systematic reason for the at-

tention to special tokens rather than it being an ar-

tifact of stochastic training.

One possible explanation is that [SEP] is used

to aggregate segment-level information which can

then be read by other heads. However, further

analysis makes us doubtful this is the case. If this
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hypothesis were true, we would expect attention

heads processing [SEP] to attend broadly over the

whole segment to build up these representations.

However, they instead almost entirely (more than

90%; see bottom of Figure 2) attend to themselves

and the other [SEP] token. Furthermore, qualita-

tive analysis (see Figure 5) shows that heads with

specific functions attend to [SEP] when the func-

tion is not called for. For example, in head 8-10

direct objects attend to their verbs. For this head,

non-nouns mostly attend to [SEP]. Therefore, we

speculate that attention over these special tokens

might be used as a sort of “no-op” when the atten-

tion head’s function is not applicable.

To further investigate this hypothesis, we ap-

ply gradient-based measures of feature importance

(Sundararajan et al., 2017). In particular, we com-

pute the magnitude of the gradient of the loss from

BERT’s masked language modeling task with re-

spect to each attention weight. Intuitively, this

value measures how much changing the attention

to a token will change BERT’s outputs. Results are

shown in Figure 3. We find that starting in layer 5

– the same layer where attention to [SEP] becomes

high – the gradients for attention to [SEP] become

small. This indicates that attending more or less to

[SEP] does not substantially change BERT’s out-

puts, supporting the theory that attention to [SEP]

is used as a no-op for attention heads.

3.3 Focused vs Broad Attention

Lastly, we measure whether attention heads fo-

cus on a few words or attend broadly over many

words. To do this, we compute the average en-

tropy of each head’s attention distribution (see

Figure 4). We find that some attention heads, es-

pecially in lower layers, have very broad atten-

tion. These high-entropy attention heads typically

spend at most 10% of their attention mass on any

single word. The output of these heads is roughly

a bag-of-vectors representation of the sentence.

We also measured entropies for all attention

heads from only the [CLS] token. While the av-

erage entropies from [CLS] for most layers are

very close to the ones shown in Figure 4, the

last layer has a high entropy from [CLS] of 3.89

nats, indicating very broad attention. This find-

ing makes sense given that the representation for

the [CLS] token is used as input for the “next sen-

tence prediction” task during pre-training, so it at-

tends broadly to aggregate a representation for the

whole input in the last layer.

4 Probing Individual Attention Heads

Next, we investigate individual attention heads to

probe what aspects of language they have learned.

In particular, we evaluate attention heads on la-

beled datasets for tasks like dependency parsing.

An overview of our results is shown in Figure 5.

4.1 Method

We wish to evaluate attention heads at word-level

tasks, but BERT uses byte-pair tokenization (Sen-

nrich et al., 2016), which means some words

(∼8% in our data) are split up into multiple to-

kens. We therefore convert token-token attention

maps to word-word attention maps. For attention

to a split-up word, we sum up the attention weights

over its tokens. For attention from a split-up word,

we take the mean of the attention weights over its

tokens. These transformations preserve the prop-

erty that the attention from each word sums to

1. For a given attention head and word, we take

whichever other word receives the most attention

weight as that model’s prediction2

4.2 Dependency Syntax

Setup. We extract attention maps from BERT on

the Wall Street Journal portion of the Penn Tree-

bank (Marcus et al., 1993) annotated with Stanford

Dependencies. We evaluate both “directions” of

prediction for each attention head: the head word

attending to the dependent and the dependent at-

tending to the head word. Some dependency rela-

tions are simpler to predict than others: for exam-

ple a noun’s determiner is often the immediately

preceding word. Therefore as a point of compar-

ison, we show predictions from a simple fixed-

offset baseline. For example, a fixed offset of -2

means the word two positions to the left of the de-

pendent is always considered to be the head.

Results. Table 1 shows that there is no single at-

tention head that does well at syntax “overall”; the

best head gets 34.5 UAS, which is not much better

than the right-branching baseline, which gets 26.3

UAS. This finding is similar to the one reported by

Raganato and Tiedemann (2018), who also evalu-

ate individual attention heads for syntax.

However, we do find that certain attention heads

specialize to specific dependency relations, some-

2We ignore [SEP] and [CLS], although in practice this
does not significantly change the accuracies for most heads.
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Head 9-6 
 

- Prepositions attend to their objects 
 

- 76.3% accuracy at the pobj relation 

Head 8-11 
 

- Noun modifiers (e.g., determiners) attend 
  to their noun 
 

- 94.3% accuracy at the det relation 

Head 8-10 
 

- Direct objects attend to their verbs 
 

- 86.8% accuracy at the dobj relation 

Head 7-6 
 

- Possessive pronouns and apostrophes 
  attend to the head of the corresponding NP 
 

- 80.5% accuracy at the poss relation 

Head 4-10 
 

- Passive auxiliary verbs attend to the 
  verb they modify 
 

- 82.5% accuracy at the auxpass relation 

Head 5-4 
 

- Coreferent mentions attend to their antecedents 
 

- 65.1% accuracy at linking the head of a  
  coreferent mention to the head of an antecedent 

Figure 5: BERT attention heads that correspond to linguistic phenomena. In the example attention maps, the

darkness of a line indicates the strength of the attention weight. All attention to/from red words is colored red;

these colors are there to highlight certain parts of the attention heads’ behaviors. For Head 9-6, we don’t show

attention to [SEP] for clarity. Despite not being explicitly trained on these tasks, BERT’s attention heads perform

remarkably well, illustrating how syntax-sensitive behavior can emerge from self-supervised training alone.
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Relation Head Accuracy Baseline

All 7-6 34.5 26.3 (1)

prep 7-4 66.7 61.8 (-1)

pobj 9-6 76.3 34.6 (-2)

det 8-11 94.3 51.7 (1)

nn 4-10 70.4 70.2 (1)

nsubj 8-2 58.5 45.5 (1)

amod 4-10 75.6 68.3 (1)

dobj 8-10 86.8 40.0 (-2)

advmod 7-6 48.8 40.2 (1)

aux 4-10 81.1 71.5 (1)

poss 7-6 80.5 47.7 (1)

auxpass 4-10 82.5 40.5 (1)

ccomp 8-1 48.8 12.4 (-2)

mark 8-2 50.7 14.5 (2)

prt 6-7 99.1 91.4 (-1)

Table 1: The best performing attentions heads of

BERT on WSJ dependency parsing by dependency

type. Numbers after baseline accuracies show the best

offset found (e.g., (1) means the word to the right is

predicted as the head). We show the 10 most common

relations as well as 5 other ones attention heads did well

on. Bold highlights particularly effective heads.

times achieving high accuracy and substantially

outperforming the fixed-offset baseline. We find

that for all relations in Table 1 except pobj, the

dependent attends to the head word rather than the

other way around, likely because each dependent

has exactly one head but heads have multiple de-

pendents. We also note heads can disagree with

standard annotation conventions while still per-

forming syntactic behavior. For example, head 7-

6 marks ’s as the dependent for the poss relation,

while gold-standard labels mark the complement

of an ’s as the dependent (the accuracy in Table 1

counts ’s as correct). Such disagreements high-

light how these syntactic behaviors in BERT are

learned as a by-product of self-supervised train-

ing, not by copying a human design.

Figure 5 shows some examples of the attention

behavior. While the similarity between learned at-

tention weights and human-defined syntactic re-

lations are striking, we note these are relations

for which attention heads do particularly well on.

There are many relations for which BERT only

slightly improves over the simple baseline, so we

would not say individual attention heads capture

dependency structure as a whole.

4.3 Coreference Resolution

Having shown BERT attention heads reflect cer-

tain aspects of syntax, we now explore using at-

tention heads for the more challenging semantic

task of coreference resolution. Coreference links

are usually longer than syntactic dependencies and

state-of-the-art systems generally perform much

worse at coreference compared to parsing.

Setup. We evaluate the attention heads on coref-

erence resolution using the CoNLL-2012 dataset3

(Pradhan et al., 2012). In particular, we compute

antecedent selection accuracy: what percent of the

time does the head word of a coreferent mention

most attend to the head of one of that mention’s

antecedents. We compare against three baselines

for selecting an antecedent:

• Picking the nearest other mention.

• Picking the nearest other mention with the

same head word as the current mention.

• A simple rule-based system inspired by Lee

et al. (2011). It proceeds through 4 sieves: (1)

full string match, (2) head word match, (3)

number/gender/person match, (4) all other

mentions. The nearest mention satisfying the

earliest sieve is returned.

We also show the performance of a recent neural

coreference system from (Wiseman et al., 2015).

Results. Results are shown in Table 2. We find

that one of BERT’s attention heads achieves de-

cent coreference resolution performance, improv-

ing by over 10 accuracy points on the string-

matching baseline and performing close to the

rule-based system. It is particularly good with

nominal mentions, perhaps because it is capable

of fuzzy matching between synonyms as seen in

the bottom right of Figure 5.

5 Probing Attention Head Combinations

Since individual attention heads specialize to par-

ticular aspects of syntax, the model’s overall

“knowledge” about syntax is distributed across

multiple attention heads. We now measure this

overall ability by proposing a novel family of

attention-based probing classifiers and applying

them to dependency parsing. For these classifiers

we treat the BERT attention outputs as fixed, i.e.,

3We truncate documents to 128 tokens long to keep mem-
ory usage manageable.
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Model All Pronoun Proper Nominal

Nearest 27 29 29 19

Head-word

match

52 47 67 40

Rule-based 69 70 77 60

Neural coref 83* – – –

Head 5-4 65 64 73 58

*Only roughly comparable because on non-truncated docu-
ments and with different mention detection.

Table 2: Accuracies (%) for different mention types of

systems selecting a correct antecedent given a corefer-

ent mention in the CoNLL-2012 data. One of BERT’s

attention heads performs fairly well at coreference.

we do not back-propagate into BERT and only

train a small number of parameters.

The probing classifiers are basically graph-

based dependency parsers. Given an input word,

the classifier produces a probability distribution

over other words in the sentence indicating how

likely each other word is to be the syntactic head

of the current one.

Attention-Only Probe. Our first probe learns a

simple linear combination of attention weights.

p(i|j) ∝ exp

( n
∑

k=1

wkα
k
ij + ukα

k
ji

)

where p(i|j) is the probability of word i being

word j’s syntactic head, αk
ij is the attention weight

from word i to word j produced by head k, and n

is the number of attention heads. We include both

directions of attention: candidate head to depen-

dent as well as dependent to candidate head. The

weight vectors w and u are trained using standard

supervised learning on the train set.

Attention-and-Words Probe. Given our finding

that heads specialize to particular syntactic rela-

tions, we believe probing classifiers should benefit

from having information about the input words. In

particular, we build a model that sets the weights

of the attention heads based on the GloVe (Pen-

nington et al., 2014) embeddings for the input

words. Intuitively, if the dependent and candi-

date head are “the” and “cat,” the probing classi-

fier should learn to assign most of the weight to

the head 8-11, which achieves excellent perfor-

mance at the determiner relation. The attention-

and-words probing classifier assigns the probabil-

ity of word i being word j’s head as

p(i|j) ∝ exp

( n
∑

k=1

Wk,:(vi ⊕ vj)α
k
ij+

Uk,:(vi ⊕ vj)α
k
ji

)

Where v denotes GloVe embeddings and ⊕ de-

notes concatenation. The GloVe embeddings are

held fixed in training, so only the two weight ma-

trices W and U are learned. The dot product

Wk,:(vi⊕vj) produces a word-sensitive weight for

the particular attention head.

Results. We evaluate our methods on the Penn

Treebank dev set annotated with Stanford depen-

dencies. We compare against three baselines:

• A right-branching baseline that always pre-

dicts the head is to the dependent’s right.

• A simple one-hidden-layer network that takes

as input the GloVe embeddings for the depen-

dent and candidate head as well as a set of

features indicating the distances between the

two words.4

• Our attention-and-words probe, but with at-

tention maps from a BERT network with pre-

trained word/positional embeddings but ran-

domly initialized other weights. This kind of

baseline is surprisingly strong at other prob-

ing tasks (Conneau et al., 2018).

Results are shown in Table 3. We find the Attn

+ GloVe probing classifier substantially outper-

forms our baselines and achieves a decent UAS

of 77, suggesting BERT’s attention maps have a

fairly thorough representation of English syntax.

As a rough comparison, we also report results

from the structural probe from Hewitt and Man-

ning (2019), which builds a probing classifier on

top of BERT’s vector representations rather than

attention. The scores are not directly compara-

ble because the structural probe only uses a sin-

gle layer of BERT, produces undirected rather than

directed parse trees, and is trained to produce the

syntactic distance between words rather than di-

rectly predicting the tree structure. Nevertheless,

the similarity in score to our Attn + Glove probing

classifier suggests there is not much more syntac-

tic information in BERT’s vector representations

compared to its attention maps.

4indicator features for short distances as well as continu-
ous distance features, with distance ahead/behind treated sep-
arately to capture word order
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Model UAS

Right-branching 26

Distances + GloVe 58

Random Init Attn + GloVe 30

Attn 61

Attn + GloVe 77

Structural probe (Hewitt and

Manning, 2019)

80 UUAS*

Table 3: Results of attention-based probing tasks on

dependency parsing. A simple model taking BERT at-

tention maps and GloVe word embeddings as input per-

forms quite well at dependency parsing. *Not directly

comparable to our numbers; see text.

Overall, our results from probing both individ-

ual and combinations of attention heads suggest

that BERT learns some aspects syntax purely as a

by-product of self-supervised training. Other work

has drawn a similar conclusions from examin-

ing BERT’s predictions on agreement tasks (Gold-

berg, 2019) or internal vector representations (He-

witt and Manning, 2019; Liu et al., 2019). Tra-

ditionally, syntax-aware models have been devel-

oped through architecture design (e.g., recursive

neural networks) or from direct supervision from

human-curated treebanks. Our findings are part of

a growing body of work indicating that indirect

supervision from rich pre-training tasks like lan-

guage modeling can also produce models sensitive

to language’s hierarchical structure.

6 Clustering Attention Heads

Are attention heads in the same layer similar to

each other or different? In general, can attention

heads be clearly grouped by behavior? We inves-

tigate these questions by computing the distances

between all pairs of attention heads. Formally, we

measure the distance between two heads Hi and

Hj as:

∑

token∈data

JS(Hi(token), Hj(token))

Where JS is the Jensen-Shannon Divergence be-

tween attention distributions. Using these dis-

tances, we visualize the attention heads by apply-

ing multidimensional scaling (Kruskal, 1964) to

embed each head in two dimensions such that the

euclidean distance between embeddings reflects

the Jensen-Shannon distance between the corre-

sponding heads as closely as possible.

Figure 6: BERT attention heads embedded in two-

dimensional space. Distance between points approx-

imately matches the average Jensen-Shannon diver-

gences between the outputs of the corresponding heads.

Heads in the same layer tend to be close together. At-

tention head “behavior” was found through the analysis

methods discussed throughout this paper.

Results are shown in Figure 6. We find that

there are several clear clusters of heads that be-

have similarly, often corresponding to behaviors

we have already discussed in this paper. Heads

within the same layer are often fairly close to each

other, meaning that heads within the layer have

similar attention distributions. This finding is a bit

surprising given that Tu et al. (2018) show that en-

couraging attention heads to have different behav-

iors can improve Transformer performance at ma-
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chine translation. One possibility for the apparent

redundancy in BERT’s attention heads is the use

of attention dropout, which causes some attention

weights to be zeroed-out during training.

7 Related Work

There has been substantial recent work perform-

ing analysis to better understand what neural net-

works learn, especially from language model pre-

training. One line of research examines the out-

puts of language models on carefully chosen in-

put sentences (Linzen et al., 2016; Khandelwal

et al., 2018; Gulordava et al., 2018; Marvin and

Linzen, 2018). For example, the model’s perfor-

mance at subject-verb agreement (generating the

correct number of a verb far away from its sub-

ject) provides a measure of the model’s syntactic

ability, although it does not reveal how that ability

is captured by the network.

Another line of work investigates the internal

vector representations of the model (Adi et al.,

2017; Giulianelli et al., 2018; Zhang and Bow-

man, 2018), often using probing classifiers. Prob-

ing classifiers are simple neural networks that take

the internal vector representations of a pre-trained

model as input. They are trained to do a supervised

task (e.g., part-of-speech tagging). If a probing

classifier achieves high accuracy, it suggests that

the vector representations reflect the correspond-

ing aspect of language (e.g., low-level syntax).

Like our work, some of these studies have also

demonstrated neural networks capturing aspects of

syntactic structures (Shi et al., 2016; Blevins et al.,

2018) or coreference (Tenney et al., 2018, 2019)

without explicitly being trained for the tasks.

With regards to analyzing attention, Vig (2019)

builds a visualization tool for the BERT’s attention

and reports observations about some of the heads’

behaviors, but does not perform any quantitative

analysis. Burns et al. (2018) analyze the attention

of memory networks to understand model perfor-

mance on a question answering dataset; we instead

aim to understand linguistic information captured

in pre-trained models. There has also been some

initial work in correlating attention with syntax.

Raganato and Tiedemann (2018) evaluate the at-

tention heads of a machine translation model on

dependency parsing, but only report overall UAS

scores instead of investigating heads for specific

syntactic relations or using probing classifiers.

Marecek and Rosa (2018) propose heuristic ways

of converting attention scores to syntactic trees,

but do not quantitatively evaluate their approach.

Concurrently with our work Voita et al. (2019)

identify syntactic, positional, and rare-word-

sensitive attention heads in machine translation

models. They also demonstrate that many atten-

tion heads can be pruned away without substan-

tially hurting model performance. Interestingly,

the important attention heads that remain after

pruning tend to be ones with identified behaviors.

Michel et al. (2019) similarly show that many of

BERT’s attention heads can be pruned. Although

our analysis in this paper only found interpretable

behaviors in a subset of BERT’s attention heads,

these recent works suggest that there might not be

much to explain for some attention heads because

they have little effect on model perfomance.

Jain and Wallace (2019) argue that attention of-

ten does not “explain” model predictions. They

show that attention weights frequently do not cor-

relate with other measures of feature importance.

Furthermore, attention weights can often be sub-

stantially changed without altering model predic-

tions. However, our motivation for looking at at-

tention is different: rather than explaining model

predictions, we are seeking to understand infor-

mation learned by the models. For example, if

a particular attention head learns a syntactic rela-

tion, we consider that an important finding from

an analysis perspective even if that head is not

always used when making predictions for some

downstream task.

8 Conclusion

We have proposed a series of analysis methods for

understanding the attention mechanisms of mod-

els and applied them to BERT. While most recent

work on model analysis for NLP has focused on

probing vector representations or model outputs,

we have shown that a substantial amount of lin-

guistic knowledge can be found not only in the

hidden states, but also in the attention maps. We

think probing attention maps complements these

other model analysis techniques, and should be

part of the toolkit used by researchers to under-

stand what neural networks learn about language.
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