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Abstract—Model-driven data acquisition techniques aim at
reducing the amount of data reported, and therefore the energy
consumed, in wireless sensor networks (WSNs). At each node,
a model predicts the sampled data; when the latter deviate
from the current model, a new model is generated and sent to
the data sink. However, experiences in real-world deployments
have not been reported in the literature. Evaluation typically
focuses solely on the quantity of data reports suppressed at
source nodes: the interplay between data modeling and the
underlying network protocols is not analyzed.

In contrast, this paper investigates in practice whether
i) model-driven data acquisition works in a real application;
ii) the energy savings it enables in theory are still worthwhile
once the network stack is taken into account. We do so in the
concrete setting of a WSN-based system for adaptive lighting in
road tunnels. Our novel modeling technique, Derivative-Based
Prediction (DBP), suppresses up to 99% of the data reports,
while meeting the error tolerance of our application. DBP is
considerably simpler than competing techniques, yet performs
better in our real setting. Experiments in both an indoor
testbed and an operational road tunnel show also that, once
the network stack is taken into consideration, DBP triples the
WSN lifetime—a remarkable result per se, but a far cry from
the aforementioned 99% data suppression. This suggests that,
to fully exploit the energy savings enabled by data modeling
techniques, a coordinated operation of the data and network
layers is necessary.

I. INTRODUCTION

Wireless sensor networks (WSNs) provide the flexibility

of untethered sensing, but pose the challenge of achieving

extended lifetime with a limited energy budget, often pro-

vided by batteries. In this respect, it is well-known that

communication causes the biggest energy drain. This is

unfortunate, given that the ability to report sensed data is

the one motivating the use of WSNs in several pervasive

computing applications.

An approach to reduce communication without compro-

mising data quality is to predict the trend followed by

the data being sensed. This technique is referred to as

model-driven data acquisition and is applicable when data is

reported periodically—the common case in many pervasive

computing applications. In these cases, a model of the data

trend can be computed locally to a node, and constitutes

the information being reported to the data collection sink,

in place of several raw samples. As long as the locally-

sensed data are compatible with the model prediction, no

further communication is needed: only when the sensed data

deviates from the model, must the latter be updated and sent

to the sink.

The aforementioned approach is well-known, and adopted

by several works we concisely survey in Section V. Never-

theless, to the best of our knowledge none of these works has

been applied in a real-world pervasive application. There-

fore, their practical applicability remains unascertained.

Moreover, these works typically evaluate the gains only in

terms of messages suppressed w.r.t. a standard approach

sending all samples. This data-centric view, however, is

quite optimistic. WSN network protocols consume energy

not only when transmitting and receiving data, but also

in several continuous control operations, e.g., when main-

taining a routing tree for data collection, or probing for

ongoing communication at the MAC layer. Therefore, the

true question, currently unanswered by the literature, is to

what extent the theoretical savings enabled by model-driven

data acquisition are actually observable in practice when the

application and network stack are combined.

Hence, in contrast with the existing literature, our goal is:

• to investigate the benefits of model-driven data acqui-

sition in an existing deployment [1] providing closed-

loop adaptive lighting in an operational road tunnel.

As described in Section II, the WSN is used to pe-

riodically report light samples, and is therefore repre-

sentative of several pervasive computing applications,

e.g., smart environments, building management, home

automation [2];

• to assess the interplay of data modeling and the un-

derlying network protocols, by evaluating qualitatively

and quantitatively the relationship between the two.

We achieve these goals with the following contributions:

• we propose a novel method, called Derivative-Based

Prediction (DBP) for locally predicting the trend

of data sensed by a WSN node. DBP, described

in Section III, is considerably simpler than existing

methods—a plus on resource-scarce WSN platforms.

Nevertheless, our evaluation based on real-world data
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Figure 1. Physical placement of WSN nodes in the tunnel.

from the tunnel deployment shows that DBP performs

comparably to existing techniques. As shown in Sec-

tion IV, DBP suppresses up to 99% of the raw reports

in our application, while maintaining its data quality

within the required error tolerance.

• we analyze to what extent this staggering improvement

is affected by the interaction with network protocols,

by running our application on top of popular WSN

protocols (i.e., CTP [3] and Box-MAC [4]). Moreover,

we feed the application the same light data “replayed”

from the tunnel deployment, to directly compare the

theoretical gains against the practical ones. We do so

in two settings: an operational tunnel, representative of

our target application, and a 40-node indoor testbed,

representative of alternate application scenarios. Our

results in Section IV confirm the expectation that the

gains attained in practice when considering the network

stack are dramatically lower than those derived in

theory by taking into account only the application mes-

sages. However, the improvements are still remarkable

in absolute terms: DBP triples the WSN lifetime w.r.t.

a standard solution with periodic reporting.

Our results confirm that model-driven data acquisition can

yield substantial lifetime improvements in practical settings.

However, as we point out in the final remarks of Section VI,

the results also suggest that, to fully exploit the energy

savings made possible by model-driven data acquisition, co-

ordination between the data and network layers is necessary.

II. WSN-BASED ADAPTIVE LIGHTING IN ROAD

TUNNELS

Our application case study is a WSN deployed in a road

tunnel to acquire light readings [1]. These are relayed in

multi-hop to a gateway, and from there to a Programmable

Logic Controller (PLC) that closes the control loop by

setting the intensity of the lamps inside the tunnel. In

contrast with the state of the art in tunnels, where light

intensity is pre-set based on the current date and time, or

at best determined by the external conditions, this closed-

loop adaptive lighting system maintains optimal light levels

by considering the actual conditions inside the tunnel. This

increases safety, and enables considerable energy savings.

WSNs are an asset in this scenario, as the nodes can

be placed at arbitrary points along the tunnel, not only

where power and networking cables can reach. This drasti-

cally reduces installation and maintenance costs, and makes

WSNs particularly appealing for already existing tunnels,

where changes to the infrastructure should be minimized.

The downside to such flexibility is the reliance on an

autonomous energy source. Nevertheless, battery costs are

minimal and the replacement process can be easily combined

with regularly-planned tunnel maintenance.

Figure 1 shows the placement of WSN nodes inside our

260 m-long, two-way, two-lane tunnel. Overall, 40 nodes

are split evenly between the tunnel walls and placed at a

height of 1.70 m, compatible with legal regulations. Their

data reports are collected by a gateway, installed 2 m from

the entrance. Each node is functionally equivalent to a

TelosB mote [5], augmented with a sensor board equipped

with 4 ISL29004 digital light (illuminance) sensors. The

light readings, collected at a sampling rate of 5 s, are

locally aggregated and filtered. Every 30 s, the result of this

aggregation is reported to the sink. The WSN nodes are not

time synchronized: a node reports its light value whenever

its 30 s timer expires.

This setup is similar to the one reported in [1], where

we detail and evaluate the operational WSN-based, closed-

loop adaptive lighting system. In this paper we use a

different application and network stack, and compare our

model-driven data acquisition technique against the baseline

constituted by the aforementioned periodic reporting of all

raw light samples.

III. DATA MODELING OF TIME SERIES WITH DBP

We define the data modeling problem we address in this

paper, and illustrate our novel DBP technique.

A. Problem Formulation

The application we described in Section II is an instance

of a general class of WSN applications where nodes periodi-

cally take sensor measurements and report the corresponding

samples to a data sink. Moreover, we make the additional

assumption that the application running at the sink allows

for a small tolerance in the accuracy of the reported data. In

contrast with the ideal requirements of the sink obtaining

exact values in all data reports, the correctness of these

applications is unaffected as long as i) the reported values

match closely the exact ones; ii) inaccurate values occur

only occasionally. In other words, deviations from the exact



Figure 2. Value and time tolerance.

reports are acceptable, as long as their extent in terms

of difference in value and time interval during which the

deviation occurs are small enough.

We capture these assumptions, common to many applica-

tions, with the following definitions:

• Let Vi be an exact measurement taken at time ti. The

value tolerance is defined by the maximum relative

and absolute errors acceptable, εV = (ǫrel , ǫabs). From

the application perspective, reading a value Vi becomes

equivalent to reading any value V̂i in the range RV de-

fined by the maximum error, V̂i ∈ RV = [Vi−ǫ, Vi+ǫ],
where ǫ = max{ Vi

100
ǫrel , ǫabs}. In other words, the

application considers a value V̂i ∈ RV as correct.

• Let T = |tj − tk| be a time interval, and V̂T =
{V̂j , . . . , V̂k} the set of values reported to the applica-

tion during T . The time tolerance εT is the maximum

acceptable value of T such that all the values reported

in this interval are incorrect, i.e., V̂i /∈ RV , ∀ V̂i ∈ V̂T .

The intuition behind these definitions is shown in Figure 2.

Similarly to other model-driven data acquisition tech-

niques, DBP aims at suppressing as many data reports from

the WSN nodes as possible, while ensuring that the data used

by the application at the sink is within the value and time

tolerances εV and εT specified as part of the requirements.

The combined use of absolute and relative errors in

the value tolerance is worth commenting further, in the

context of our application. When light levels are low, e.g.,

at night, even small absolute variations are large in terms of

percentage. With only an absolute error, these minimally-

perceivable changes would trigger model changes. Instead,

by considering the maximum between the relative and abso-

lute error, our control algorithm is able to both adjust to the

meaningful changes and avoid unnecessary communication.

B. Derivative-based Prediction

DBP is based on the observation that, in our application,

the trends of the sensed values in short and medium time

intervals can be accurately approximated using a linear

model. Even though this idea has appeared in previous

works, there is a key difference to our approach: while

previous studies compute models that aim to reduce the

approximation error to the data points in the recent past,

DBP aims at producing models that are consistent with the

trends in the recently-observed data.

Figure 3 provides an illustration of DBP. Initialization

consists of a learning phase, gathering enough data to

produce the first model. The learning phase involves m data

points; the first and the last l we call edge points. The model

is linear and is computed as the slope δ of the segment that

connects the average values over the l edge points at the

beginning and end of the learning phase. This computation

resembles the calculation of the derivative, hence the name

Derivative-Based Prediction. It is interesting to note that the

computation of this prediction is not only very simple, and

therefore appealing for implementation on resource-scarce

nodes, it also mitigates the problem of noise and outliers.

The first DBP model generated is then sent to the sink,

along with its last data point. From that point on, each node

buffers a sliding window of the last m data points sampled

from its sensor. Upon sampling a point, the “true” value

sensed is compared to the “predicted” one computed by

DBP according to the current model, i.e., following the slope

δ. If the sensor reading is within a value tolerance εV w.r.t.

the model, no action is required: the sink will automatically

generate a new value that is an acceptable approximation of

the real one. Otherwise, if the readings continuously deviate

from the model for more than εT time units, a new model

must be recomputed. This is accomplished by using the last

m data points in the buffer; the resulting model is transmitted

to the sink along with the last data point.

IV. EXPERIMENTAL EVALUATION

We focus on our tunnel lighting application, and therefore

use raw data from the 40-node deployment described in Sec-

tion II. Light readings were reported every 30 s from each

node for 47 days, for a total of 5, 414, 400 measurements.

This tunnel offers a challenging scenario as its entrance is

subject to direct sunlight, creating wide variations in the

sensor readings. We also applied DBP to data collected by

40 nodes over 90 days in a second tunnel subject to less

radical light variations, yielding similar results. Due to space

constraints we present only results from the first tunnel.

To establish the proper value and time tolerances, we

consulted the lighting engineers who designed the control

algorithm that establishes the lamp levels. Notably, lamp

Figure 3. Derivative-based Prediction.
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Figure 4. Absolute light values (top) and error (bottom), reported as raw sensor values.

levels are adjusted slowly to minimize the effects of changes

on drivers, therefore tight real-time deadlines are not neces-

sary. By taking into consideration also the inherent error

of illuminance sensors, we determine a value tolerance

εV = (5, 25), i.e., values generated by the model can differ

by at most 5% or 25 w.r.t. the raw sensor reading. Further, we

identified a time tolerance of one minute. For convenience,

we express εT in terms of the 30 s reporting intervals of

the application; a one-minute time tolerance corresponds to

εT = 2. We further fix the core parameters of DBP, namely

the number of values in the learning phase m = 20, and

the size of the edge point sets l = 3. We verified that these

values yield the best performance, and that their impact is

nonetheless rather limited.

We approach the experimental evaluation from two angles.

First, we evaluate DBP’s ability to reduce the amount of data

generated at the nodes, and compare it against other existing

methods. Then, we consider the combination of DBP and

a mainstream WSN network stack, evaluating the benefits

both in an indoor testbed and an operational tunnel.

A. Performance of Model-driven Data Acquisition

Our main performance metric is the transmission ratio,

TR = # messages generated with DBP

# messages generated without DBP
. Although the suppression

ratio SR = 1 − TR directly measures the number of

messages whose reporting can be avoided thanks to DBP,

we show our results in terms of TR as it is easier to relate

the transmission of messages (instead of their absence) to

the light patterns.

Our evaluation is divided in three parts. First, we gain

a deeper understanding of DBP in the context of our

application by considering the operation of a single node

over a single day. Second, we report DBP performance

across our entire 47-day data set, and analyze the parameter

space, investigating the impact of various settings on the

suppression rate. Finally, we compare to the state of the art.

1) DBP in Action: Our first goal is to understand whether

DBP satisfies the error tolerance requirements of our appli-

cation and, in this context, understand its operation. For this,

we set εV = (5, 25) and εT = 2, as discussed earlier.

We begin by analyzing DBP in the small, dissecting the

operation of a single node over a single day of operation. We

choose node 1 because, as shown in Figure 1, it is placed

at the tunnel entrance, and subject to radical changes in its

light readings. The top of Figure 4 shows the light values

for this node both in the original case where data is reported

every 30 s and when DBP is applied. In the latter case, the

cross points indicate the generation of a new model, while

the lines between the points show the light values calculated

from those models. The two curves are very similar, and

yet a significant reduction in messages is achieved. Notably,

without DBP, 2, 880 messages are sent, instead, with DBP,

only 25 messages are sent: a suppression ratio of 99.1%.

As expected, the majority of the DBP models are gener-

ated in the time intervals where light trends change, namely

sunrise and sunset. The rest of the time, DBP generates very

few models. Interestingly, even though the light at night is

quite constant, a few models are generated in order to correct

for models that have a non-zero derivative.

Node 1 is placed at the tunnel entrance, where the

widest excursion in light values are expected. Nevertheless,

improvements are achieved throughout the tunnel. To mea-

sure this, we divide our 24-hour experiment into 5-minute

intervals and count the number of models generated by all

nodes in each interval. We report the totals in Figure 5. As

one expects, the majority of changes are concentrated during

daylight hours, in particular around sunrise and sunset.
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Nevertheless the total number of models in any 5-minute

interval was below 10 and usually below 4. At night, there

are even fewer updates, with many intervals in which no

models are generated.

Finally, in the bottom of Figure 4 we focus again on

the entrance node 1 as a representative example, to analyze

the error in the values provided by DBP to the application

during each 30 s reporting interval. The solid line indicates

the value tolerance εV = (5, 25) set by our application

requirements, while the lighter line shows the error of DBP

as the difference between the predicted value and the sensed

raw value. In most cases, the error falls below the value

tolerance. Excursions above the value tolerance are caused

by data predicted at the sink that, albeit incorrect, are within

the time tolerance. In each of these cases, either subsequent

values fell back below value tolerance or a new model was

generated after the maximum number of incorrect reports

(εT = 2 in our case) was exceeded. Interestingly, at night,

one can see the absolute error growing for a while, then

dropping and growing again. The drop in error corresponds

to the generation of a new model, visible also in the top of

Figure 4. The growing error is because the DBP model is

linear with a small, but non-zero slope, which is slightly off

the measured light values that remain mostly constant.

2) Impact of Error Tolerance: The previous evaluation

shows that DBP performs well for the requirements of

the tunnel application. However, we want to explore the

parameter space for DBP, to understand the effect of

changes in the value and time tolerances on the transmission

ratio. Figures 6(a)–6(c) show how TR changes at individual

nodes for various combinations of parameters. Recall from

Figure 1 that nodes 1–20 are placed on the same North wall,

while nodes 21–40 belong to the South wall. We plot a line

connecting the TR at each node, because this best highlights

the trends as one proceeds from the entrance to the interior

of the tunnel (e.g., from node 1 to 20 on the North wall).

In Figure 6(a) we vary the relative error ǫrel from 1%

to 25%, keeping the absolute error constant ǫabs = 25. By

setting the time tolerance to εT = 0, we force all deviations

from the value tolerances to be reported. To put these values

in context, recall that the value tolerance εV is defined as

the maximum between the relative and absolute errors, ǫrel

and ǫabs . In Figure 6(b) we fix ǫrel = 5% and vary ǫabs

between 0 and 50, keeping εT = 0. In Figure 6(c), we use

the value tolerance εV = (5, 25) of our target application

and vary εT between 0 and 4, i.e., from 0 to 2 minutes.

In all cases it is worth noting that, as expected, the biggest

savings are harvested from the nodes inside the tunnel, where

light variations are rarer, and absolute values of illuminance

are smaller. Under these conditions, the linear nature of DBP

accurately models the linear nature of the data.

Interestingly, the trends seen for nodes 21-24 in Fig-

ure 6(a) are due to the flickering of a light that introduced

noise to the sensor readings. Nevertheless, even in this

case DBP achieved suppression ratios greater than 95%

for these nodes. Further, in Figure 6(b), we clearly see the

need for both the absolute and relative value tolerances,

as when the error tolerances are very low, e.g., ǫabs = 0
or ǫabs = 10, TR is off the charts. This is because the

light sensors themselves have an error that often takes them

outside the small, fixed relative error ǫrel = 5%, triggering

unpredictable model changes. Further, the flickering light

introduces additional noise that DBP cannot compensate for

with low error thresholds.

For each of these parameter combinations we also show,

in Figure 6(d), the average TR over all nodes. An increase

in the value of ǫrel brings a near linear reduction of TR.

Instead, ǫabs and εT both achieve the greatest benefit at small

values, with diminishing returns as the value increases. In

the former case, the reduction in TR progresses rapidly as

ǫabs varies from 0 to 10, going from a suppression ratio of

88% to 98%; a further (and larger) ǫabs increase from 10 to

25 yields only an additional 2% reduction of TR. Similarly,

time tolerance reflects the fact that changes in light values

are gradual, and thus introducing even a small delay εT = 1
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achieves most of the possible gain.

In addition to the combinations in Figure 6, we also

computed the TR achieved with the strictest combination of

the three parameters: ǫrel = 1%, ǫabs = 0, and εT = 0. Even

with these worst-case requirements DBP still suppresses, on

average, 63% of the reports. More interesting is the real

combination of parameters (ǫrel = 5%, ǫabs = 25, and

εT = 2) suggested by the tunnel engineers, and used in the

rest of our experiments. In this case, the average suppression

rate is a staggering 99.7%—TR is reduced by almost two

orders of magnitude w.r.t. reporting all raw values. The

individual TR achieved at each node is shown in Figure 7,

where we compare DBP against state-of-the-art techniques,

as discussed next.

3) Comparison to Other Approaches: We compared DBP

against the following techniques, which in Section V are also

put in the wider context of related work:

• Piecewise Linear Approximation (PLA) is a popular

technique that uses least square error linear segments

to approximate a set of values [6]. In our case, each

node uses a single segment to model for sensed values.

• Similarity-based Adaptable Framework (SAF) [7] relies

on an autoregressive moving-average model of order 3
with moving-average parameter of order 0. In SAF a

value Vi is predicted by a linear combination of the

last three: Vi = li + α1(Vi−1 − li−1) + α2(Vi−2 − li−2) +

α3(Vi−3 − li−3), where α1, α2, α3 are constants the

model must estimate, and li models the linear trend of

data over time.

• As an additional point of comparison, we implemented

a Polynomial Regression (POR) method. In contrast to

DBP, POR allows the use of non-linear models for pre-

diction. Intuitively, this may yield better performance

through a better fit to the data. Like PLA, POR uses

the least squares measure for selecting the most ap-

propriate coefficients for the polynomials, which have

the form y =
∑p

k=0
αix

i. In this study, we evaluated

polynomials of order p = 2, 3, 4. We used p = 2 as it

provides the best results for POR.

We used εV = (5, 25) and εT = 2, the requirements of

our target tunnel application. Table 7(a) shows the results

w.r.t. the error in predicting the actual sensor readings.

The values shown are the average error per point, over the

entire 47-day dataset and over all nodes, computed as the

Euclidean distance between the real sensed value and the

value predicted by the corresponding model. We note that

PLA achieves a lower error than DBP. This is because DBP

inherently permits some amount of error in the model, while

PLA employs an objective function that explicitly chooses

the model that minimizes the error. However, as we present

next, DBP achieves a higher reduction in TR, because it

better models the data trends.

In terms of communication performance, all approaches

perform quite well, however, DBP achieves the best results,

as shown in Table 7(b) and Figure 7(c). As already men-

tioned, DBP suppresses 99.7% of the message reports with

our tunnel application requirements.

Because all approaches achieve very good results, it is

worth noting that finding the derivative of the sensed data,

at the core of DBP, is significantly less complex than solving

linear equations with 2 or 3 unknowns, as required by

PLA, POR and SAF. Notably, in our DBP implementation,

used in the in-network evaluation explained in the following

section, the core module to calculate the derivative contains

only 25 lines of TinyOS code, notably with no floating

point arithmetic. As node memory is limited, eliminating

the floating point arithmetic module is greatly desirable.

Finally, in the course of our investigation, we stressed

DBP by artificially modifying the data set, specifically

introducing a significant amount of noise while maintaining

the trends. Notably, DBP was still able to achieve the best

suppression ratios, even though the error of DBP was the

largest among the alternate approaches. This is due to the

fact that the other approaches are designed to operate on

relatively smooth data, while DBP focuses on accurately

predicting trends. The ability of DBP to achieve significant

gains in the presence of noisy data can lead to a significant

advantage with other data sets. For example in the same

tunnel project, we collected carbon monoxide (CO) data, and

although the sampling period was lower (5 minutes instead

of 30 seconds), the noise in this data is significantly greater.

Nevertheless, linear trends are present, as CO increases

during the day when traffic is higher and decreases at

night. Therefore we expect DBP to perform quite well,

significantly reducing the generated data.

B. Impact of the Network Stack

We study the performance of DBP in conjunction with the

commonly-used network stack composed of CTP [3], BoX-

MAC [4], and TinyOS v2.1.1. We experiment in two set-

tings: an operational road tunnel to evaluate DBP in the real

conditions of our target application, and an indoor testbed,

representative of scenarios with different connectivity.
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(a) Average error.
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(b) Average TR.
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Figure 7. Comparing DBP to alternative approaches.



Tunnels are complex environments where factors such

as road traffic affect network behavior. For example, we

previously observed [8] that in the presence of high traffic,

nodes consistently select parents on their same side of the

tunnel, while at low traffic nodes across the tunnel are

often selected. This is due to the interference caused by

vehicles, nevertheless, it profoundly affects the shape and

maintenance cost of the routing tree. For these experiments,

we relied on the 40-node WSN in Figure 1. The testbed is

composed of 40 TelosB nodes in a 60x40 m2 office area

shown in Figure IV-B. The node placement, along with the

power setting of −1 dBm, creates a network topology that

approximately forms three segments, loosely reminiscent of

the linear tunnel topology, but with larger diameter.

To assess directly the impact of the network stack on

the improvements theoretically attainable by DBP, we “re-

played” the same data we used in Section IV-A both in the

tunnel and testbed. As we could not re-execute the entire

47-day dataset with multiple combinations of parameters,

for the tunnel we selected a single 23-hour period, ensuring

variability in the vehicular traffic. Moreover, restrictions

on the usage of the testbed forced us to run only 2-hour

experiments. Therefore, in this latter case we chose to focus

on the sunrise period, the most challenging because values

change dramatically and, unlike sunset, are not followed by

the night constant light levels. Figure 9 shows the number

of models generated by each node in both cases. We begin

the evaluation after DBP has been initialized, specifically

after generation and transmission of the first model.

We now study how data delivery to the application,

network lifetime, and routing costs are affected by DBP.

All of these aspects, and particularly the first two, are deeply

affected by the operation of the MAC layer, specifically the

rate at which the radio duty cycles, which therefore becomes

a key parameter in our experiments. At low sleep intervals,

nodes frequently check the channel but find no activity,

increasing idle listening costs. At large sleep intervals, the

cost to transmit a packet increases. In BoX-MAC, trans-

mission to a non-sink node takes on average half the sleep

interval, due to the fact that the sender must transmit until the

Figure 8. Testbed map and connectivity.
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Figure 9. Number of model update messages.

receiver wakes up, receives the packet, then acknowledges its

reception [4]. This long transmission interval also increases

the probability of packet collisions among hidden terminals,

further decreasing the delivery ratio and increasing energy

consumption. The ideal sleep interval balances idle listening

and active transmission costs. To identify the best interval for

our application, we ran experiments with a range of values

from 500 to 3000 ms.

1) Data Delivery: DBP greatly reduces the amount of

data in the network w.r.t. the baseline where all nodes send

data every 30 s. The reduction in data transmitted reduces

the probability of collisions, therefore increasing the delivery

ratio. This is evident in Figure 10, where the system with

DBP loses fewer messages than without DBP. In all cases

the delivery is very good, above 97%, but DBP actually

achieves 100% in all cases and in both scenarios, except for

the case with the maximum sleep interval of 3000 ms in

the testbed. In this case, a single model message was lost;

however, as the absolute number of model changes is small,

the total delivery ratio drops by almost 3%. Although this

loss rate may be acceptable without DBP, losing a single

DBP model has the potential to introduce large errors at the

sink, as the latter will continue to predict sensor values with

an out-of-date model until the next one is received. This

suggests that, based on the target environment or parameter

settings, dedicated mechanisms may be required to ensure

reliability of model transmissions.

2) Lifetime: To study the impact on lifetime, we measure

the duty cycle of the radio. Indeed, as this is the most

power-hungry component, the time spent in communication

activities is the most significant factor contributing to the

system lifetime. Figure 11 clearly shows that DBP enables
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Figure 11. Average duty cycle. The y-axis scale is different.

significant savings at any sleep interval. Indeed, the best

sleep interval, corresponding to the lowest duty cycle, is

1500 ms without DBP. Further increasing the sleep interval

decreases the idle listening cost, but it increases the trans-

mission cost as the average transmission duration is half the

sleep interval. This phenomenon instead bears a negligible

effect in DBP where transmissions are greatly reduced. In

this case, longer sleep intervals can be used to increase

lifetime without affecting data delivery.

Figure 11(a) shows that in the testbed, with a sleep interval

of 1500 ms (i.e., the best without DBP), DBP yields more

than twice the lifetime of the no-DBP baseline—i.e., the

WSN running DBP lasts twice as long, with the same

MAC settings. Using the best sleep interval in both cases

(i.e., 1500 and 3000 ms, respectively) yields a three-fold

lifetime improvement. The energy savings in the tunnel, in

Figure 11(b), are less remarkable although still significant.

The network diameter in the tunnel is much smaller w.r.t.

the testbed, due to the waveguide effect described in [8];

many direct, 1-hop links to the sink exist, leaving less room

for improvement.
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The impact of

1-hop links to

the sink is worth

commenting further.

Indeed, because the

sink is always on,

it quickly receives

and acknowledges

a packet, making

transmissions from

its direct children very short and therefore low-energy. This

can be seen clearly in Figure 12 where, for the tunnel

experiments, we measure separately the duty cycle of the

nodes that spent their entire lifetime directly connected

to the sink and those that, at any time, were more than

one hop away. Directly-connected nodes enjoy much lower

energy costs. The plot considers only the case without

DBP. Interestingly, with DBP all the nodes reporting

model changes (Figure 9(b)) where in direct range of the

sink. Indeed, as shown in Figure 1, the latter is attached to

the gateway placed at the entrance, where light variations,

and hence model changes, occur. This placement was not

our deliberate choice, as it was originally determined by
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Figure 13. Tunnel: total link-level transmissions for a sleep interval of
1500 ms. The y-axis scale is different.

the available power panels in the tunnel. Nevertheless, it

hints at the fact that, if a priori application knowledge

is available about the sensors that are likely to generate

the most variations, this can be exploited by a consequent

placement of the gateway. A similar optimization is not

possible without DBP, as all nodes must send data.

3) Routing Costs: A natural question arises at this point:

if DBP suppresses over 99% of the messages, why does the

network lifetime increase “only” three-fold? This is due to

the costs of the network stack, in particular the idle listening

and average transmission times of the MAC protocol, and to

the overhead of the routing protocol to build and maintain

the data collection tree. As we already evaluated the impact

of the MAC layer, here we turn to the routing layer.

To isolate the inherent costs (e.g., tree maintenance)

of CTP, we ran experiments with no application traffic.

The corresponding duty cycle is shown as Only CTP in

Figure 11; interestingly, the DBP cost is very close to

the cost of CTP tree maintenance, regardless of the sleep

interval. A finer-grained view is provided by Figure 13,

where we analyze the different components of traffic in the

network. Without DBP, the dominate component is message

transmission and forwarding; significant retransmissions are

present for some nodes, while the component ascribed to

CTP (i.e., the beacons probing for link quality) is negli-

gible. When DBP is active, the number of CTP beacons

remains basically unchanged. However, because application-

level traffic is dramatically reduced, CTP beacons become

the dominant component of network traffic.

In conclusion, these last observations highlight that further

reductions in data traffic would have little practical impact

on the system lifetime, as routing costs are dominated by

topology maintenance rather than data forwarding. Further,

applying alternate data modeling techniques, e.g., PLA, SAF

and POR, will not have a significant effect on system

lifetime, as they cannot reduce these fixed, routing costs.

Therefore, improvements are more likely to come from

radical changes at the routing and MAC layers, taking into

account the traffic patterns of model-driven data acquisition.

V. RELATED WORK

The limited resources, variable connectivity, and spatio-

temporal correlation among sensed values make efficiently



collecting, processing and analyzing WSN data challenging.

Early approaches use in-network aggregation to reduce the

transmitted data, with later approaches addressing missing

values, outliers, and intermittent connections [9]–[11].

Model-driven data acquisition has also been extensively

studied. Probabilistic models [12], [13] approximate the data

with a user-specified confidence, but special characteristics

of the data, such as periodic drifts, must be explicitly en-

coded by domain experts. In a similar parametric approxima-

tion technique [14], nodes collaborate to fit a global function

to local measurements, but this requires an assumption about

the number of estimators required to fit the data. In contrast,

DBP requires neither expert domain knowledge nor lengthy

training, but provides hard accuracy guarantees on the col-

lected data. PAQ [15], SAF [7], and DKF [16], employ

linear regression, autoregressive models, and Kalman filters

respectively for modeling sensor measurements, with SAF

outperforming the others. All are applicable in our target

application but, as shown in Section IV-A3, SAF is more

sensitive than DBP to the noise in our dataset.

As an alternative to data modeling, some solutions seek

to suppress reporting at the source by using spatio-temporal

knowledge of data [17] or by identifying a set of represen-

tative nodes and restricting data collection to it [18]–[22].

Others take the remaining energy of individual nodes [23]

into account. These approaches further reduce communica-

tion costs and can be applied in combination with DBP.

Work on continuous queries for data streams studies the

tradeoff between precision and performance when querying

replicated, cached data [24]. Finally, several studies focus

on summarizing streaming time series, showing that the

choice of the summarization method does not greatly affect

the accuracy of the summary [6]. In our experiments, we

compared against PLA [6], as it can be efficiently computed.

The above data driven approaches have been evaluated

theoretically, but no prior work explores the real effect of

the network stack on the overall energy savings. Network-

level energy savings approaches can be classified into MAC

level, cross-layer, or traffic-aware.

At the MAC layer [25], low-power listening protocols

such as BoX-MAC [4] dominate real deployments due to

their availability, simplicity and effectiveness in reducing

duty cycle. Nevertheless, as our analysis shows, parameters

such as the listening interval must be carefully tuned.

Vertical solutions crossing network layers achieve ex-

tremely low duty cycles. Dozer [26] achieves permille

(0.1%) duty cycle by taking a TDMA-like approach in which

a tree parent autonomously schedules its transmissions to

and from its children. Unfortunately, Dozer does not scale

well and is prone to choose poor quality parents. Koala [27]

achieves similar low duty cycles, but by explicitly accept-

ing delays between data generation and delivery. Koala is

characterized by long periods of very low-power local data

sampling followed by brief, high-consumption data collec-

tion intervals. While the energy savings are significant, the

significant delays are not acceptable in our target application.

Other techniques [28], [29] adapt sleep schedules accord-

ing to traffic statistics. Unfortunately, the data modeling ap-

proaches outlined above, of which DBP is another example,

are difficult to predict due to the variability of the application

data itself and the interaction with the modeling technique.

VI. CONCLUSIONS

Model-driven data acquisition relies on the fact that many

applications can operate with approximated data, as long

as the difference w.r.t. the real one remains within certain

limits. In these cases, WSN nodes can avoid reporting all

sensed data, communicating only deviations from the trend.

In this paper, we proposed our technique, DBP, motivated

by a real-world WSN-based application deployment in an

operational road tunnel. Based on a 47-day, 40-node dataset

gathered in this deployment we showed that DBP suppresses

99% of the message reports. This is in line with other ap-

proaches, although the DBP implementation is significantly

less complex. Our results confirm that model-driven data

acquisition can have a significant practical impact. However,

we did not stop at counting the messages suppressed as

an indirect indication of lifetime improvement. Instead, we

took the whole network stack into account, discovering that

the improvements remain important—lifetime is tripled—

but significantly reduced w.r.t. the above.

Our results suggest a few conclusions. First, a large frac-

tion of energy costs arise from the continuous maintenance

of the data collection tree. These costs are negligible for

frequent reporting, but become dominant with model-driven

data acquisition as it greatly reduces data generation. To

improve lifetime further, we must revisit network design

choices and address the extremely low data rates resulting

from data modeling techniques. Second, although a certain

amount of loss is usually tolerable, the loss of a single

data model may significantly increase the error of data used

by the application. Therefore, reliable mechanisms, beyond

those of most routing protocols, should be considered.

Based on our experiments, new network solutions ex-

pressly targeting model-driven data acquisition are needed

to achieve significant lifetime improvements.
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