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WHAT DOES THE SPECTRAL THEOREM SAY? 
P. R. HALMOS, University of Michigan 

Most students of mathematics learn quite early and most mathematicians 
remember till quite late that every Hermitian matrix (and, in particular, every 
real symmetric matrix) may be put into diagonal form. A more precise statement 
of the result is that every Hermitian matrix is unitarily equivalent to a diagonal 
one. The spectral theorem is widely and correctly regarded as the generalization 
of this assertion to operators on Hilbert space. It is unfortunate therefore that 
even the bare statement of the spectral theorem is widely regarded as somewhat 
mysterious and deep, and probably inaccessible to the nonspecialist. The pur- 
pose of this paper is to try to dispel some of the mystery. 

Probably the main reason the general operator theorem frightens most peo- 
ple is that it does not obviously include the special matrix theorem. To see the 
relation between the two, the description of the finite-dimensional situation has 
to be distorted almost beyond recognition. The result is not intuitive in any 
language; neither Stieltjes integrals with unorthodox multiplicative properties, 
nor bounded operator representations of function algebras, are in the daily tool- 
kit of every working mathematician. In contrast, the formulation of the spectral 
theorem given below uses only the relatively elementary concepts of measure 
theory. This formulation has been part of the oral tradition of Hilbert space for 
quite some time (for an explicit treatment see [6]), but it has not been called the 
spectral theorem; it usually occurs in the much deeper "multiplicity theory." 
Since the statement uses simple concepts only, this aspect of the present formu- 
lation is an advantage, not a drawback; its effect is to make the spirit of one of 
the harder parts of the subject accessible to the student of the easier parts. 

Another reason the spectral theorem is thought to be hard is that its proof 
is hard. An assessment of difficulty is, of course, a subjective matter, but, in 
any case, there is no magic new technique in the pages that follow. It is the state- 
ment of the spectral theorem that is the main concern of the exposition, not the 
proof. The proof is essentially the same as it always was; most of the standard 
methods used to establish the spectral theorem can be adapted to the present 
formulation. 

Let 4 be a complex-valued bounded measurable function on a measure space 
X with measure ,t. (All measure-theoretic statements, equations, and relations, 
e.g., "4 is bounded," are to be interpreted in the "almost everywhere" sense.) 
An operator A is defined on the Hilbert space 22(p) by 

(Af )(x)-=*t(x)f (x), x E- X; 

the operator A is called the multiplication induced by 4. The study of the rela- 
tion between A and 4 is an instructive exercise. It turns out, for instance, that 
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the adjoint A* of A is the multiplication induced by the complex conjugate + 
of 4. If ifr also is a bounded measurable function on X, with induced multiplica- 
tion B, then the multiplication induced by the product function 044 is the prod- 
uct operator AB. It follows that a multiplication is always normal; it is Hermi- 
tian if and only if the function that induces it is real. (For the elementary con- 
cepts of operator theory, such as Hermitian operators, normal operators, projec- 
tions, and spectra, see [3]. For present purposes a concept is called elementary 
if it is discussed in [3] before the spectral theorem, i.e., before p. 56.) 

As a special case let X be a finite set (with n points, say), and let ,t be the 
"counting measure" in X (so that ,t({x}) =1 for each x in X). In this case 
?2(,g) is n-dimensional complex Euclidean space; it is customary and convenient 
to indicate the values of a function in ?2(M) by indices instead of parenthetical 
arguments. With this notation the action on f of the multiplication A induced 
by 4 can be described by 

A(f1, ... ,fn) = (Oifi, ... * ,fn) 

To say this with matrices, note that the characteristic functions of the single- 
tons in X form an orthonormal basis in ?2(M); the assertion is that the matrix 
of A with respect to that basis is diag (41, * , On)4 

The general notation is now established and the special role of the finite- 
dimensional situation within it is clear; everything is ready for the principal 
statement. 

SPECTRAL THEOREM. Every Hermitian operator is unitarily equivalent to a 
multiplication.. 

In complete detail the theorem says that if A is a Hermitian operator on a 
Hilbert space 3C, then there exists a (real-valued) bounded measurable function 
4 on some measure space X with measure u, and there exists an isometry U 
from ?2(M) onto JC, such that 

(U-1AUf)(x) = 4(x)f(x), x E X, 

for eachf in ?2(M). What follows is an outline of a proof of the spectral theorem, 
a brief discussion of its relation to the version involving spectral measures, and 
an illustration of its application. 

Three tools are needed for the proof of the spectral theorem. 
(1) The equality of norm and spectral radius. If the spectrum of A is A(A), 

then the spectral radius r(A) is defined by 

r(A) = sup {I X I : X E A(A)}A 

It is always true that r(A)_ ?IIAI ([3, Theorem 2, p. 52]); the useful fact here 
is that if A is Hermitian, then r(A) =IIAII ([3, Theorem 2, p. 55]). 

(2) The Riesz representation theorem for compact sets in the line. If L is a posi- 
tive linear functional defined for all real-valued continuous functions on a com- 
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pact subset X of the real line, then there exists a unique finite measure u on the 
Borel sets of X such that 

L(f) = f fd1. 

for all f in the domain of L. (To say that L is linear means of course that 

L(af + fig) = aL(f) + AL(g), 

whenever f and g are in the domain of L and ax and 3 are real scalars; to say that 
L is positive means that L(f) 0 wheneverf is in the domain of L and f> 0.) For 
a proof, see [4, Theorem D, p. 247]. 

(3) The Weierstrass approximation theorem for compact sets in the line. Each 
real-valued continuous function on a compact subset of the real line is the uni- 
form limit of polynomials. For a pleasant elementary discussion and proof see 
[I, p. 102]. 

Consider now a Hermitian operator A on a Hilbert space SC. A vector t in 
XC is a cyclic vector for A if the set of all vectors of the form q(A)t, where q runs 
over polynomials with complex coefficients, is dense in SC. Cyclic vectors may 
not exist, but an easy transfinite argument shows that XC is always the direct 
sum of a family of subspaces, each of which reduces A, such that the restriction 
of A to each of them does have a cyclic vector. Once the spectral theorem is 
known for each such restriction, it follows easily for A itself; the measure spaces 
that serve for the direct summands of a have a natural direct sum, which serves 
for SC itself. Conclusion: there is no loss of generality in assuming that A has a 
cyclic vector, say t. 

For each real polynomial p write 

L(p) = (p(A)%, t). 

Clearly L is a linear functional; since 

I L(p) I ? IIP(A)II -IIt1I2 = r(p(A)) _11t112 
= sup {JX : XE A(p(A))} IIII2 
= sup p(X) I : X E A(A)} .I| 1I2, 

the functional L is bounded for polynomials. (The last step uses the spectral 
mapping theorem; cf. [3, Theorem 3, p. 551.) It follows (by the Weierstrass 
theorem) that L.has a bounded extension to all real-valued continuous functions 
on A (A). To prove that L is positive, observe first that if p is a real polynomial, 
then 

((p(A))2, {)=IP(A){I!2 ? 0 

If f is an arbitrary positive continuous function on A(A), then approximate V/f 
uniformly by real polynomials; the inequality just proved implies that L(f) >0 
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(since f is then uniformly approximated by squares of real polynomials). The 
Riesz theorem now yields the existence of a finite measure A.t such that 

(p(A)t, t) = f pdlk 
for every real polynomial p. 

For each (possibly complex) polynomial q write 

Uq = q(A) . 

Since A is Hermitian, (q(A))*(= {(A)) is a polynomial in A, and so is (q(A)) *q(A) 
' qf 2(A)); it follows that 

f q qI 2dl = (q(A)q(A)%, ) = ((q(A))*q(A)%, ) = jq(A)t|12= =|Uq|j2. 

This means that the linear transformation U from a dense subset of 22(yt) into 
SC is an isometry, and hence that it has a unique isometric extension that maps 
22(y) into SC. The assumption that t is a cyclic vector implies that the range of 
U is in fact dense in, and hence equal to, the entire space E. 

It remains only to prove that the transform of A by U is a multiplication. 
Write +(X) =X for all X in A(A). Given a complex polynomial q, write g(X) 
=Xq(X) =45(X)q(X); then 

U-'AUq = U-'Aq(A)t = UIq(A)t- U-= U = Q. 

In other words U-'A U agrees, on polynomials, with the multiplication induced 
by q, and that is enough to conclude that U'-1A U is equal to that multiplica- 
tion. This completes the outline of the proof of the spectral theorem for Her- 
mitian operators. 

The formulation of the spectral theorem given above yields fairly easily all 
the information contained in the more common versions. Thus if A is the multi- 
plication on S2(,) induced by the real function 4 on X, and if F is a (complex) 
Borel measurable function that is bounded on A(A), then F(A) can be defined 
as the multiplication induced by the composite function F o 4. The mapping 
F- ,F(A) is the homomorphism that is frequently known by the impressive 
name of "the functional calculus." If, in particular, F= FM is the characteristic 
function of a Borel set M in the real line, and if E(M) is the multiplication in- 
duced by FM o 0, then E is the spectral measure of A. The verification that E 
is indeed a spectral measure is easy. To prove that it belongs to A (i.e., that 
A =fXdE(X)), proceed as follows. Fix f and g in 22(yg) and write 

v(M) = (E(M)f, g) 

for each Borel set M; it is to be proved that 

(Af, g) = Xdv(X). 
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Since (E(M)f, g) =f(FM o 0)fgdy and v(M) =fFMdv, it follows that 

f (FM o )fgdy = Fmd 
for all Borel sets M. This implies that 

(E o q$)fgdy = Fd 

whenever F is a simple function, and hence, by approximation, whenever F is a 
bounded Borel measurable function. This conclusion (for F(X) OX) is just what 
was wanted. 

The multiplication version of the spectral theorem implies the spectral meas- 
ure version, but the latter is canonical (E is uniquely determined by A) whereas 
the former is not. Consider, for instance, the identity operator on a separable 
infinite-dimensional Hilbert space in the role of A. It is unitarily equivalent to 
multiplication by the constant function 1 on, say, the unit interval (with 
Lebesgue measure); it is also unitarily equivalent to multiplication by the con- 
stant function 1 on the set of positive integers (with the counting measure). 

There is a spectral theorem for normal operators also; its statement can be 
obtained from the one given above by substituting "normal" for "Hermitian." 
It is a well-known technical nuisance that the proof of the spectral theorem for 
normal operators involves some difficulties that do not arise in the Hermitian 
case. The source of the trouble is that it is not enough just to replace polynomials 
in a real variable by polynomials in a complex variable; the Weierstrass theorem 
demands the consideration of polynomials in two real variables. There is a con- 
sequent difficulty in extending the spectral mapping theorem to the kind of func- 
tions (polynomials in the real and imaginary parts of a complex variable) that 
arise in the imitation of the proof above. Even the equality of norm and spectral 
radius, while true for normal operators, requires a proof quite a bit deeper than 
in the real case. One way around all this is not to imitate the proof but to use 
the result. In [3, p. 72], for instance, the spectral theorem for normal operators 
(spectral measure version) is derived from the Hermitian theorem (spectral 
measure version); the only additional tool needed is an essentially classical ex- 
tension theorem for measures in the plane. 

In any case, all this talk about proof is somewhat beside the point in this 
paper. The reason a proof is outlined above is not so much to induce belief in 
the result as to clarify it. The emphasis here is not on how but on what, not on 
proof but on statement, not on How does the spectral theorem come about? but on 
What does the spectral theorem say? 

To see how the multiplication point of view can be used, consider the 
Fuglede commutativity theorem [2]. A possible statement is this: if A is nor- 
mal and if B is an operator that commutes with A, then B commutes with F(A) 
for each Borel measurable function bounded on A(A). (An alternative state- 
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ment, only apparently weaker, is that if B commutes with A, then B commutes 
with A*; for a recent elegant proof see [5].) The spectral theorem shows that 
there is no loss of generality in assuming that A is the multiplication induced 
by X, say, on a measure space X with measure ,u. If FM is, for each Borel set M 
in the complex plane, the characteristic function of M, and if E(M) is the multi- 
plication induced by FM o 0, then it is sufficient to prove that B commutes with 
each E(M). (Approximate the general F by simple functions, as before.) If 
8(M) is the range of the projection E(M), then the desired result is that 8(M) 
reduces B, but it is, in fact, sufficient to prove that 8(M) is invariant under B. 
Reason: apply the invariance conclusion, once obtained, to the complement of 
M, and infer that both 8(M) and (8(M))' are invariant under B. 

Observe now that &(M) is the set of all those functions in 2Q(,u) that vanish 
outside 4-1(M), and consider first the case of the closed unit disc, 

M= {X: I XI < 11; 
then 

?-1(M)= {X: I+(X)| ?1}. 

Assertion: 8(M) consists of all f in 22(yA) for which the sequence {I Afl!, 
IIA2fll II||Afll, * } is bounded. Indeed, if f vanishes outside +-1(M), then 

I|A f 112 = f |?nfI I 2dA =J I 
fM 

n l 2 . If !l2dA < If If2dA. 

If, on the other hand, there is a set S of positive measure on which fF0 and 
I01 >1, then 

I!Anfll2 =f IpnfI2dy ?f I& 0InIfI2dA X*c,. 

The assertion is proved, and the invariance of 8(M) under B follows: if 
JAnfII5 ?c for all n, then JJAnBfll =|JBAnfII <JJBJ .JJAnfJ _?|IBIIJ c for all n. 

If Mis any closed disc, M= {X: IX- XoIr , then 

0-1(M) =x: I (X)-o I < r}{x: ) (x) < i} 

Since B commutes with multiplication by q, it commutes with multiplication 
by (O-Xo)/r also, and it follows from the preceding paragraph that 8(M) is 
invariant under B. 

The rest of the proof is easy measure theory; from this point of view spectral 
measures behave even better than numerical measures. Since 8(M) is invariant 
under B whenever M is a disc, the same is true whenever M is the union of 
countably many discs. This implies that 8(M) is invariant under B whenever 
M is open, and hence (regularity) for arbitrary Borel sets M. 
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AN EXTENSION OF THE FERMAT THEOREM 
L. CARLITZ, Duke University 

1. If p is a prime, e > 1 and (a, p)=1 then 
(1) aw _ 1 (mod pe) 

provided pe-l(p- 1) w. It follows from (1) that 

(2) (_1)( r- an+sw = an(aw - 1)r _ 0 (mod pre) 

for all r2?0. This congruence is useful for example in deriving Kummer's con- 
gruence for the Euler and Bernoulli numbers [1, Ch. 14]. 

It may be of interest to examine the sum 
r 

(3) Ara nk= > (_ 1)r ( a (n+8w)k 
8=0 s 

where k is a fixed integer ? 1. We remark that (3) is suggested by some recent 
work [2] on colored graphs. We shall prove 

THEOREM 1. Let pe-l(p -1) I w and let X > e be the largest integer such that 

(4) 1 (mod px). 

Then 

(5) E (- 1)r ( r ) a(n+sw)k _ 0 (mod pXrk), 

where 

(6) rk= [(r+k-1)/k], 

the greatest integer _ (r+k - 1)/k. 
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