
 1 

What drives the international transfer of climate 

change mitigation technologies? Empirical 

evidence from patent data 

Antoine Dechezleprêtre, Matthieu Glachant and Yann 
Ménière 

December 2009  

Centre for Climate Change Economics and Policy 
Working Paper No. 16  

Grantham Research Institute on Climate Change and 
the Environment 

Working Paper No. 14  
 



 2 

The Centre for Climate Change Economics and Policy (CCCEP) was established by the 
University of Leeds and the London School of Economics and Political Science in 2008 to 
advance public and private action on climate change through innovative, rigorous research. 
The Centre is funded by the UK Economic and Social Research Council and has five inter-
linked research programmes: 

1. Developing climate science and economics 
2. Climate change governance for a new global deal 
3. Adaptation to climate change and human development 
4. Governments, markets and climate change mitigation 
5. The Munich Re Programme - Evaluating the economics of climate risks and 

opportunities in the insurance sector 
 
More information about the Centre for Climate Change Economics and Policy can be found 
at: http://www.cccep.ac.uk. 
 
 
The Grantham Research Institute on Climate Change a nd the Environment was 
established by the London School of Economics and Political Science in 2008 to bring 
together international expertise on economics, finance, geography, the environment, 
international development and political economy to create a world-leading centre for policy-
relevant research and training in climate change and the environment. The Institute is funded 
by the Grantham Foundation for the Protection of the Environment, and has five research 
programmes: 

1. Use of climate science in decision-making 
2. Mitigation of climate change (including the roles of carbon markets and low-carbon 

technologies) 
3. Impacts of, and adaptation to, climate change, and its effects on development 
4. Governance of climate change 
5. Management of forests and ecosystems 

 
More information about the Grantham Research Institute on Climate Change and the 
Environment can be found at: http://www.lse.ac.uk/grantham. 
 
 
 
 
 
 
 
This working paper is intended to stimulate discussion within the research community and 
among users of research, and its content may have been submitted for publication in 
academic journals. It has been reviewed by at least one internal referee before publication. 
The views expressed in this paper represent those of the author(s) and do not necessarily 
represent those of the host institutions or funders. 
 



 3 

 
What Drives the International Transfer of Climate Change Mitigation 

Technologies? Empirical Evidence from Patent Data 

 

 

Antoine Dechezleprêtre+, Matthieu Glachant* , Yann Ménière*  

 

 

+
 Grantham Research Institute on Climate Change and the Environment, London School of 

Economics 

* CERNA, Mines ParisTech 

 

 

Abstract 

Using patent data from 66 countries for the period 1990–2003, we characterize the factors which 

promote or hinder the international diffusion of climate-friendly technologies on a global scale. 

Regression results show that technology-specific capabilities of the recipient countries are determinant 

factors. In contrast, the general level of education is less important. We also show that restrictions to 

international trade—e.g., high tariff rates—and lax intellectual property regimes negatively influence 

the international diffusion of patented knowledge. A counter-intuitive result is that barriers to foreign 

direct investments can promote transfers. We discuss different possible interpretations. 

 

Key words: Climate change, technology diffusion, technology transfer. 

JEL Code: O33, O34, Q54 

 

 



 4 

1 Introduction 

 

The international diffusion of technologies for mitigating climate change is at the core of 

current discussions surrounding the post-Kyoto agreement. Technology development and diffusion are 

considered strategic objectives in the 2007 Bali Road Map. North-to-south technology transfer is of 

particular interest since technologies have been developed mostly in industrialized countries and that 

technologies are urgently required to mitigate GHG emissions in fast-growing emerging economies. A 

recent study looking at patents filed in thirteen climate change mitigation technologies shows that 

two-thirds of the inventions patented worldwide between 1998 and 2003 have been developed in only 

three countries: Japan, the USA, and Germany (Dechezleprêtre et al., 2009). 

However, enhancing technology transfer involves considerable policy and economic 

challenges because developing countries are reluctant to bear the financial costs of catching up alone, 

while firms in industrialized countries refuse to give away strategic intellectual assets. This has led to 

an intense debate on policies that affect technology diffusion, with a particular focus on the role of 

intellectual property rights (IPRs) that developing countries view as barriers to technology diffusion. 

By contrast, industrialized countries advocate that IPRs provide innovators with incentives to 

disseminate their inventions through market channels, such as foreign direct investment and the 

international trade of equipment goods. In their view, every developing country could actually 

promote transfers by developing its capability to absorb new technologies. 

This paper examines these issues by identifying the factors that promote or hinder the 

international diffusion of climate-friendly technologies. We focus the analysis on the most relevant 

questions in current policy discussions. First, is the capacity of countries to absorb foreign 

technologies important? If the answer is in the affirmative, this implies that capacity building is a 

powerful lever to technology transfer. Do strict IPRs induce more transfers? Do barriers to trade or to 

foreign direct investment significantly reduce the import of technologies? Has the Kyoto Protocol—

and the related domestic policies—accelerated technology diffusion?  
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We address these questions using a data set of climate-related patents filed in 66 countries 

from 1990 to 2003. The data come from the World Patent Statistical Database (PATSTAT). We focus 

the analysis on twelve technologies: six renewable energy technologies (wind, solar, geothermal, 

ocean energy, biomass, and hydropower), waste-to-energy, methane destruction, energy conservation 

in buildings, climate-friendly cement, motor vehicle fuel injection, and energy-efficient lighting. 

Although not all climate-friendly technologies are covered—they represent around 33% of all GHG 

abatement opportunities up to 2030, excluding forestry (McKinsey and Vattenfall, 2007)—they 

concern very diverse sectors such as electricity and heat production, the manufacturing industry, and 

the residential sector. 

The literature dealing with the international diffusion of environment-related technology is 

limited but is growing rapidly1. Unlike the present work, this literature is mostly descriptive. Lanjouw 

and Mody (1996) presented the first patent-based empirical evidence for the international diffusion of 

environmentally responsive technology. Based on data from Japan, Germany, the USA, and fourteen 

developing countries, the paper identifies the leaders in environmental patenting and finds that 

significant transfers occur to developing countries. Focusing on chlorine-free technology in the pulp 

and paper industry, Popp et al. (2007) provide evidence that environmental regulation may promote 

international technology transfer. They observe for instance an increase in the number of patents filed 

by US inventors in Finland and Sweden after passage of tighter regulations in these countries. Several 

case studies discuss whether stricter patent protection promotes or hinders the transfer of climate-

related technology to developing countries (see, for example, Barton, 2007; Ockwell et al., 2008). 

Finally, we recently used PATSTAT data to describe the geography of innovation and international 

technology diffusion (Dechezleprêtre et al., 2009).  

To the best of our knowledge, our work is one of the first econometric studies in this area. 

Another very recent work is by Dekker et al. (2009) who study how sulfur protocols trigger invention 

and diffusion of technologies for reducing SO2 emissions. A paper by Hascic and Johnstone (2009) is 

the most closely related to our work. They use the same data to study the impact of the Kyoto 

protocol. Our focus is different since we deal with a broader set of policy variables (including trade 
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barriers, FDI control, etc.). Moreover, we develop a theoretical model to cope with simultaneity 

problems neglected in the other papers. 

As a measure of diffusion, our approach is similar to that of Lanjouw and Mody (1996), Eaton 

and Kortum (1999), or Hascic and Johnstone (2009). We count the number of patent applications in 

recipient countries for technologies invented abroad. Because patent data include the inventor’s 

country of residence, we know precisely the geography of technology flows and we can run 

regressions to understand what drives cross-border technology exchanges. This indicator is a proxy of 

technology transfer because holding a patent in a country gives the holder the exclusive right in that 

country to exploit the technology commercially. This does not necessarily mean that the inventor will 

actually use the technology there. Yet, as patenting is both costly and risky, it implies that the inventor 

definitely plans to do so. 

This approach appears similar to the method based on patent citation analysis used in many 

studies seeking to measure the extent of international knowledge flows (see Jaffe et al., 1993; Peri, 

2005). But there is an important difference. Inventors obviously patent abroad to reap private benefits. 

Therefore, while citations made by inventors to previous patents are an indicator of knowledge 

spillovers, our indicator is a proxy for market-driven knowledge flows.  

The study is organized as follows: Section 2 discusses the use of patents as indicators of 

technology transfer. The data set is presented in Section 3 along with data issues. In Section 4 we 

develop a theoretical model that describes the diffusion of inventions between countries. The model is 

estimated in Section 5. A final section summarizes the main results. 

 

2 Patents as indicators of technology transfer 

In the empirical literature, scholars have proposed a number of solutions for the measurement 

of international technology transfers. Because major transmission channels of knowledge across 

countries include international trade and foreign direct investments (FDI), many studies use the import 

flows of intermediate goods or FDI as a proxy variable for international transfer (for example, Coe 

and Helpman, 1995; Lichtenberg and van Pottelsberghe de la Potterie, 2001). Data on trade and FDI 
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are easily available from a large number of countries, thereby allowing a very broad geographical 

coverage. However, such data are highly aggregated, which prevents their use in measuring the flows 

of climate-friendly technologies. More generally, that data are only indirect vehicles of knowledge 

transfer. 

This is why more recent papers tend to rely on patent data.2 Patent data focus on outputs of the 

inventive process (Griliches, 1990). They provide a wealth of information on the nature of the 

invention and the applicant. Most important, they can be disaggregated to specific technological areas. 

Finally, they indicate not only the countries where inventions are made, but also where these new 

technologies are used. These features make our study of climate change mitigation technologies 

possible. Of course, patent data also present drawbacks, which will be discussed below. 

To accurately explain how we use patent data in this paper, we must briefly recall how the 

patent system works. Consider a simplified innovative process. In the first stage, an inventor from 

country i develops a new technology. He then decides to patent the new technology in certain 

countries. A patent in country j grants him the exclusive right to commercially exploit the innovation 

in that country. Accordingly, the inventor patents his invention in country j if he plans to use it there. 

The set of patents protecting the same invention in several countries is called a patent family. 

In this paper we use the number of patents invented in country i and filed in country j as an 

indicator of the number of innovations transferred from country i to country j. As mentioned in the 

introduction, this indicator has already been used in previous work (see, for instance, Lanjouw and 

Mody, 1996; Eaton and Kortum, 1999). It differs, however, from those indicators that are based on 

backward patent citation and are used in the literature measuring knowledge spillovers (see Jaffe et al., 

1993).3 

Our approach is obviously imperfect. The first limitation is that for protecting innovations, 

patents are only one of several means, along with lead time, industrial secrecy, or purposefully 

complex specifications (Cohen et al., 2000; Frietsch and Schmoch, 2006). In fact, inventors may 

prefer secrecy to avoid the public disclosure of the invention imposed by patent law, or to save the 

significant fees attached to patent filing. However, there are very few examples of economically 
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significant inventions that have not been patented (Dernis and Guellec, 2001), although the propensity 

to patent differs between sectors, depending on the nature of the technology (Cohen et al., 2000) and 

the risk of imitation in a country. These factors behind the propensity to patent have a significant 

effect on our data, because patenting is more likely in countries that have strong technological 

capabilities and that strictly enforce intellectual property rights. However, we will see that the 

econometric models developed below partly control for this problem. 

More generally, certain forms of knowledge are not patentable. Know-how or learning-by-

doing, for example, cannot be easily codified, particularly because these are skills incorporated in 

individuals. The nature of such knowledge limits the accuracy of our data. Nevertheless, research 

shows that flows of patented knowledge and of tacit knowledge are positively correlated (Cohen et al., 

2000; Arora et al., 2008). 

A further limitation is that a patent grants the exclusive right to use the technology only in a 

given country; it does not mean that the patent owner will actually do so. This could significantly bias 

our results if applying for protection did not cost anything, so that inventors might patent widely and 

indiscriminately. But this is not the case in practice. Dechezleprêtre et al. (2009) show that the average 

invention is patented in two countries.4 Patenting is costly, in both the preparation of the application 

and the administration associated with the approval procedure (see Helfgott, 1993; and Berger, 2005, 

for EPO applications). In addition, possessing a patent in a country is not always in the inventor’s 

interest if that country’s enforcement is weak, since the publication of the patent in the local language 

can increase vulnerability to imitation (see Eaton and Kortum, 1996 and 1999). Therefore, inventors 

are unlikely to apply for patent protection in a country unless they are relatively certain of the 

potential market for the technology covered. Finally, because patenting protects an invention only in 

the country where the patent is filed, inventors are less likely to engage in strategic behavior to protect 

their inventions abroad and prevent the use of their technology in the production of goods imported by 

foreign competitors in their domestic markets. 

In addition to the above limitations, the value of individual patents is heterogeneous and its 

distribution is skewed: Since many patents have very little value, the number of patents does not 

perfectly reflect the value of innovations. This problem is probably less acute in this paper than in 
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other works, as we focus on international diffusion. Exported technologies are of the highest value and 

make up only about a quarter of all inventions (Lanjouw et al., 1998). 

 

3 Data description 

Over the past several years, the European Patent Office (EPO), along with the OECD’s 

Directorate for Science, Technology and Industry, have developed a worldwide patent database—the 

EPO/OECD World Patent Statistical Database (PATSTAT). PATSTAT is unique in that it covers 

more than 80 patent offices and contains over 70 million patent documents. PATSTAT data have not 

been exploited much until now because they became available only recently. Our study is the first to 

use PATSTAT data to explain the diffusion of climate change mitigation technologies. 

We extracted all the patents filed from 1990 to 2003 in 12 climate-mitigation fields: six 

renewable energy technologies (wind, solar, geothermal, ocean energy, biomass, and hydropower), 

waste use and recovery, methane destruction, climate-friendly cement, energy conservation in 

buildings, motor vehicle fuel injection, and energy-efficient lighting. The precise description of the 

fields covered by the study can be found in Table 1. This represents 186,660 patent applications filed 

in 76 countries.5 On average, climate-related patents included in our data set represent 1% of the total 

annual number of patents filed worldwide. Since our interest is on technology diffusion, we only 

consider inventions that are patented in several countries, leaving us with 110,170 patents. 

 

Table 1. Description of the technology fields covered  

Technology 
field Description of aspects covered 

Biomass Solid fuels based on materials of non-mineral origin (i.e. animal or plant); 
engines operating on such fuels (e.g. wood). 

Buildings Elements or materials used for heat insulation; double-glazed windows; 
energy recovery systems in air conditioning or ventilation. 

Cement Natural pozzuolana cements; cements containing slag; iron ore cements; 
cements from oil shales, residues or waste; calcium sulfate cements. 
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Fuel injection Motor fuel-injection apparatus (allowing reduced fuel consumption) 

Geothermal Use of geothermal heat; devices for producing mechanical power from 
geothermal energy. 

Hydro Hydro power stations; hydraulic turbines; submerged units incorporating 
electric generators; devices for controlling hydraulic turbines. 

Lighting Compact Fluorescent Lamps; Electroluminescent light sources (LED) 

Methane 
Equipment for anaerobic treatment of sludge; biological treatment of waste 
water or sewage; anaerobic digestion processes; apparatus aiming at 
collecting fermentation gases. 

Ocean Tide or wave power plants; mechanisms using ocean thermal energy 
conversion; water wheels. 

Solar 

Solar photovoltaic (conversion of light radiation into electrical energy), 
incl. solar panels; concentrating solar power (solar heat collectors having 
lenses or reflectors as concentrating elements); solar heat (use of solar heat 
for heating & cooling). 

Waste 
Solid fuels based on waste; recovery of heat from waste incineration; 
production of energy from waste or waste gasses; recovery of waste heat 
from exhaust gases. 

Wind Wind motors; devices aimed at controlling such motors. 

 

Patent applications related to climate change are identified using the International Patent 

Classification (IPC) codes, developed at the World Intellectual Property Organization (WIPO).6 We 

identify the IPC classes corresponding to the climate mitigation technologies in two alternative ways. 

First, we search the descriptions of the classes online to find those that are appropriate.7 Second, using 

the online international patent database maintained by the European Patent Office,8 we search patent 

titles and abstracts for relevant keywords. The IPC classes corresponding to the patents that come up 

are included, provided their description confirms their relevancy.  

When building the data sets, two possible types of error may arise: irrelevant patents may be 

included or relevant ones left out. The first error happens if an IPC class includes patents that bear no 

relation to climate mitigation. To avoid this problem, we carefully examine a sample of patent titles 

for every IPC class considered for inclusion, and exclude those classes that consist of patents 

unrelated to climate change mitigation. Key technologies involved with carbon reduction potential, 
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therefore, are outside the scope of this study, which means that electric vehicles, energy efficient 

technologies in industry, or clean coal technologies are not part of our study. 

The second error—relevant inventions are left out—is less problematic. We can reasonably 

assume that all innovations in a given field behave in a similar way and hence our data sets can be 

seen at worst as good representations of innovative activity in the field considered. Overall innovative 

activity may be underestimated, however, and may thus be less reliable than trends. 

The definitions of the IPC codes used to build the data sets can be found in Annex 1. Further details 

on data construction can be found in Dechezleprêtre et al. (2009). In addition to climate-friendly 

patents, other data are also used, in particular in order to describe the demand for technology. These 

data are described in section 5.  

 

4 Theoretical framework 

We now present a model that we use to specify estimation equations in the next section. We seek to 

explain cross-border knowledge flows. The ideal structural model would therefore account for the 

interplay between inventors and technology adopters as well as for the dynamics of innovation and 

diffusion, since inventors arguably anticipate diffusion outcomes when they define their innovation 

strategy. The model could then simultaneously determine innovation and diffusion outcomes. Such a 

comprehensive approach was developed, for instance, by Eaton and Kortum (1999). But econometric 

estimation requires much data—for instance, on R&D expenditures—that are not available in our case 

given the broad geographical scope of our study and its focus on climate technologies. 

Alternatively, we could estimate gravity-like models such as those frequently used in the 

literature about knowledge spillovers. The micro-foundations of this approach are weak, however. 

This is probably not a serious limitation when dealing with the spillover type of knowledge flows: The 

mechanisms through which diffusion occurs—e.g., labour mobility—are not driven by the market for 

technologies, and inventors who own the technologies do not play an active role, as they derive no 

profits from diffusion. But using a gravity model is more problematic in our case because we seek to 

explain intentional technology transfer through the market. 
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Based on these arguments, we have opted for an intermediate solution: a model of diffusion 

that ignores the innovation stage. The model characterizes the flows of technology between M 

countries. The ultimate goal of our study is to explain nijt, which denotes the number of inventions 

invented in country i and adopted in another country j (i ≠ j) in year t. The problem is that competition 

between technologies in the recipient country j implies that nijt is influenced by inventions provided by 

local inventors, njjt, and by inventions imported from other foreign countries nkjt (k ≠ i, j). As a result, 

the nijt, njjt and nkjt are jointly determined. Our model aims to solve this simultaneity problem. 

Consider first the adopters. Let Ujt be the aggregate utility of all adopters located in country j. 

We adopt a Cobb-Douglas functional form9: 
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The utility depends on the number of technologies transferred from the different foreign countries and 

on the number of technologies locally invented. Note that we make the simplifying assumption that all 

foreign inventions exhibit the same elasticity. Kjt is the stock of knowledge accumulated in the 

recipient country. This captures the usual view in the literature on technology diffusion that 

accumulated knowledge increases the ability to exploit new technologies. Djt is a variable capturing 

factors affecting the demand for technology in the recipient country. Finally, ai, with i = 1,..4 are 

coefficients that do not vary over time and across countries. Furthermore, we impose 0 < ai < 1 so that 

U increases with the demand factors while marginal utility is decreasing. 

Turning next to the supply side, innovators of country i can commercially exploit their 

technologies in country j at unit cost Cijt. This is an implementation cost which captures factors that 

are specific to the recipient country, such as the strictness of the intellectual property regime and 

transfer costs hindering the international trade of technology (such as tariffs when the technology is 

embodied in an intermediate good, geographical distance, or linguistic barrier). 

For the sake of simplicity, we assume away any inefficiency in the market for technology. 

Such an assumption can be justified with the argument that the inventor of a particular technology is a 

monopolist who can perfectly discriminate technology adopters.10 This assumption implies that the 
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overall allocation of technologies is socially efficient.11 It simplifies the analysis by allowing us to 

focus on the social welfare maximization program: 
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We solve this program in Annex 2, leading to 

Proposition The number of technologies invented in country i and subsequently transferred in 
country j at time t is given by: 
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Proof. See Annex 2. 

 

The reduced-form equation (2) will serve as a basis for our econometric equation. It gives an 

expression of the flow of inventions between country i and country j as a function of the exogenous 

variables. The LHS does not include the endogenous variables njjt and Πnkjt that are simultaneously 

determined with nijt through competition on the technology market. In fact, the potential for 

substitution between technologies imported from country i and the domestic inventions of country j is 

captured by the variable Cjjt: as α3  is positive, the higher the implementation cost of local 

technologies, the greater the number of technologies imported from country i ≠ j. The variable ΠCkjt 

plays a similar role and controls for the substitutability with technologies from countries k ≠ i, j. 
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5 Empirical issues 

We have constructed a panel data set for each of the 12 technology fields described in Section 3. 

This is a strong point of our study: Estimating the model on each field allows us to control for 

technology-specific factors. The panels extend over 14 years, from 1990 to 2003. The final samples 

include between 2,176 and 3,181 country pairs over that period. 

5.1 Estimation equations 

 
A practical problem in estimating equation (2) is that we do not observe the number of 

inventions transferred but rather the patent flow between country i and country j. There are differences 

between these variables for the two reasons mentioned earlier. First, the number of patents that are 

granted for a given innovation varies significantly across countries. A common illustration is Japan, 

where the “amount” of technology covered by a patent—referred to by IPR experts as the patent 

breadth—is said to be particularly low. For example, the same wind turbine covered by one patent in 

Germany may require three patents in Japan. Second, patenting is not the only way to protect 

innovation, and the propensity to patent varies across sectors and countries. 

To tackle these problems, we follow Peri (2005) and Branstetter (2001) by assuming that the 

patent flow Pijt is such that: 

 
 
P
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e
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In this expression, Φj is an observed fixed factor which measures patent breadth in country j. 

We will explain later how this variable is constructed. In contrast,  e
γ jt is an unobserved random term 

reflecting the propensity to patent inventions in country j at time t. 

We then substitute (2) in (3), take the logs on both sides, adopt new notations, and add time 

dummies to control for potential endogeneity due to transitory shocks. This leads to the model we will 

estimate: 
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where lower case letters denote the logs of the initial variables. We allow the error term in (4) 

to contain γjt, the random term capturing the unobserved propensity to patent, a country-pair specific 

component and random time-varying effects such that 

 
 
u

ijt
= γ

jt
+ ν

ij
+ ε

ijt
 (5) 

 
 where the latter term is assumed to be a normal iid disturbance. 

5.2 Variable description 
 

PATSTAT only yields information on Pijt. We do not have readily available data on absorptive 

capacities kjt, the implementation costs cijt with i,j = 1,..M, the demand variable djt, and the patent-

breadth variable φj= ln Φj. For these variables, we will use a linear combination of different proxies, 

which we now describe in turn.  

The recipient country’s absorptive capability
 
k

jt
: 

We seek to understand whether transferring a technology requires generic skills and/or 

technology-specific knowledge. This leads us to use two different proxy variables to describe local 

technological knowledge. The first variable is Sjt-1, the discounted stock of previously filed patents in 

the technology at date t–1 by local inventors in the recipient country j. This is an indicator of the local 

absorptive capabilities that are specific to each technology. Following Peri (2005), the patent stock is 

calculated using the perpetual inventory method. We initialize patent stocks for the year 1978 and use 

the recursive formula 

  
S

jt −1
= (1− δ )S

jt −2
+ P

jjt −1
 

where Pjjt is the number of patented technologies invented by domestic inventors in year t. The value 

chosen for δ, the depreciation of R&D capital, is 10%, a value commonly used in most of the literature 

(see Keller, 2002).12 Note that using Sjt-1—i.e., lagging the variable by one year to predict transfers in 

year t given the stocks in year t-1—eliminates the potential problem of endogeneity. 
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The second proxy variable is edujt, the tertiary gross enrollment ratio, which is the average 

percentage of the population of official school age for tertiary education actually enrolled in this level 

over the previous 10 years.  

The implementation cost 
   
c

ijt
, with  i, j = 1,..M  

Note that we describe here not only the cost cijt, but also cjjt and ckjt, with k ≠ i j. We use five 

variables to measure the cost of adopting a patented invention. A country-specific index built by Park 

and Lippoldt (2008), iprjt, measures the strictness of intellectual property rights in the recipient 

country. A lax patent system can deter the import of foreign technologies, because of the fear of 

counterfeiting (see, for example, Maskus, 2000; Smith, 2001; and Barton, 2007). This issue is hotly 

debated in the political arena. 

Note that iprjt likely affects the propensity to patent in country j, which may make our results more 

difficult to interpret. McCalman (2001) shows that the value of patent rights significantly increased in 

those countries that had signed the TRIPS agreement in 1994. That increase in value may have two 

consequences. First, the increase in the payoff associated with patenting may result in more transfers 

of patented technologies, which is what we want to measure. However, it may also result in additional 

patent applications for technologies that would have been transferred anyway through trade or FDI. 

Consequently, we can overestimate the effect of iprjt on technology transfer. 

The variables tariffjt and trade_blocijt capture the existence of potential barriers to international 

trade. More precisely, tariffjt is the recipient country’s mean of tariff rates based on data from the 

World Trade Organization and the World Bank. Meanwhile, trade_blocijt is a dummy variable 

indicating whether the countries are part of the same trade bloc. Arguably, restrictions to trade may 

hinder the transfer of technologies embodied in capital equipment goods. 

As is usual in the trade literature, we also include the log of the geographic distance13 between 

country i and country j, called distanceij. This distance variable is generally viewed as a proxy for 

transportation costs. Empirical evidence shows that knowledge flows are affected by distance (Peri, 

2005), though less than trade flows.14  
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Foreign direct investments are another well-known channel of technology diffusion. Accordingly, 

we include the variable fdi_controljt, which is an index of international capital market control based on 

data from the World Economic Forum and the International Monetary Fund.15 

Finally, one can reasonably assume that filing a patent in a country where the same language is 

spoken reduces transaction costs. Indeed, the applicant saves translation costs, and national legal 

systems are likely to be closer. Therefore, languageij is a dummy variable which equals 1 if both 

countries share a common official language and 0 otherwise. 

The demand for climate change technologies 
 
d

jt
 

We use three variables that are common to all technologies: gdp_per_capitajt, popjt,
16 and kyotojt.

17
 

The first one describes country j’s per capita GDP in PPP USD, the second one is the log of its 

population, and the last one is a dummy variable equal to one if t > 1997 and if country j is an Annex 

1 country that has ratified the Kyoto Protocol. We also use technology-specific demand variables, 

which are listed in Table 2. 

 

Table 2. Description of demand variables, by technology 

Technology field Variable Definition and sources 

Biomass elec_biomassjt Energy production from biomass (Mtoe) 

Buildings 
urbanjt 

constructionjt 
winter_tempj 

Urban population (million inhabitants) 
Construction sector (bn USD) 
Average winter temperature 1991-2000 (°C) 

Cement constructionjt Construction sector (bn USD) 

Fuel injection carsjt 
gas_pricejt 

# of passenger cars per 1,000 people 
Gasoline price (USD per liter) 

Geothermal elec_renewjt Production of renewable energy (Mtoe) 

Hydro elec_hydrojt Production of hydro electricity (Mtoe) 

Lighting urbanjt  

constructionjt 
Urban population (million inhabitants) 
Construction sector (bn USD) 

Methane agriculturejt Agriculture sector (bn USD) 

Ocean elec_renewjt 

coast_lengthj 
Production of renewable energy (Mtoe) 
Coast length (1,000 km) 

Solar 
elec_renewjt 

cloud_coverj 

latitudej 

Production of renewable energy (Mtoe) 
Average cloud cover (%) 
Latitude of main city (absolute value) 

Waste elec_renewjt Production of renewable energy (Mtoe) 

Wind elec_renewjt Production of renewable energy (Mtoe) 
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coast_lengthj Coast length (1,000 km) 

 
Sources: International Energy Agency, World Bank 2008, Tyndall Center, World  

resources Institute, CEPII, United Nations Statistics Division 
 

 

Table 3. Descriptive statistics for independent variables 

Variable Observations Mean Std deviation 

Pij, Depending on the technology 
Sjt-1 Depending on the technology 
edujt  59150 33.64 20.35 
iprjt 60060 3.261 0.998 
tariffjt  55315 12.17 11.29 
trade_blocjt  60060 0.064 0.245 
fdi_controljt  58240 4.311 2.907 
distanceijt 60060 8.586 0.945 
languageijt  60060 0.094 0.292 

  
trade_blockjt

k≠i, j
∑  60060 4.16 6.05 

  
distancekjt

k≠i, j
∑  60060 558.1 29.55 

  
languagekjt

k≠i, j
∑  60060 6.121 5.814 

kyotojt 60060 0.201 0.401 
popjt 60060 9.907 1.576 
elec_renewit  58240 14.855 36.065 
elec_biomassit 58240 10983 32185 
elec_hydroit 58240 2988.5 5931.8 
urbanjt  59150 34.766 64.811 
agriculturejt  57070 1.5885 2.7058 
constructionjt 57070 0.0233 0.0609 
gas_pricejt  58240 0.6922 0.3869 
carsjt  57330 217.8 181.5 
coast_lengthj 60060 19.039 40.391 
cloud_coverj 59150 58.64 14.19 
latitudej 60060 35.32 16.65 
GDP_percapitajt 59605 12953.1 9107.0 
winter_tempj 59150 7.355 11.20 
 

The patent breadth variable φj 
 

We computed patent breadth coefficients in a previous study (Dechezleprêtre et al., 2009). That 

strategy consists in analyzing so-called international patent families that include patents protecting a 

given technology in several countries. By doing so, we found, for instance, that on average, one patent 

filed at the European Patent Office (EPO) translates up to 1.4 patent when the same technology is 
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patented at the Japanese patent office. Setting the weight of applications at the EPO to unity, we 

calculated patent breadth coefficients Φj for every patent office included in the PATSTAT database. 

These coefficients are available in Dechezleprêtre et al. (2009). We use φj =log Φj in this study. 

5.3 Other econometric issues 
 

A notable feature of our data is that most patents are only filed in one country (usually, the 

inventor’s country), implying that the patent flow between two countries in a given year frequently 

equals zero. As shown in Table 4, the proportion of zeros in the data sets ranges from 68% to 81%, 

depending on the technology. Therefore, the use of OLS may generate inefficient estimates. The 

Poisson distribution would be too restrictive, as it imposes a mean that is equal to the variance. In our 

case, the data are highly over dispersed with a sample variance that is on average 10 times greater than 

the mean. For this reason, we use a negative binomial regression model, which tests and corrects for 

over-dispersion. Following Branstetter (2001), we run the regressions with the number of patents Pijt 

as the dependent variable. 

 

Table 4. Descriptive statistics for the dependent variable, by technology 

Technology Obs Mean Std. Dev. Frequency of 0 

Biomass 23205 0.152 1.018 72.0% 

Buildings 30615 0.167 1.014 73.4% 

Cement 17875 0.064 0.352 79.9% 

Fuel injection 33020 0.682 8.243 81.9% 

Geothermal 17225 0.048 0.736 67.4% 

Hydro 20930 0.044 0.299 76.0% 

Lighting 31525 0.725 10.279 68.5% 

Methane 25415 0.082 0.501 78.3% 

Ocean 28080 0.039 0.273 68.9% 

Solar 39975 0.162 1.638 71.5% 

Waste 27365 0.316 3.289 69.8% 

Wind 37440 0.118 1.197 79.0% 
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A further difficulty is that the propensity to patent is just partly controlled by the variable iprjt, which 

only reflects cross-border heterogeneity. Yet we know that patenting propensity also varies much 

across sectors and technologies. We mitigate this problem by running sector-specific regressions.  The 

remaining unobserved part is captured by the random term γjt in (5). If γjt is uncorrelated with the 

regressors on the right-hand side, then this effect can be estimated using a random-effects model. But 

if the random term is correlated, then estimates are biased. A fixed effect estimator cannot totally fix 

this problem, since this effect varies over time.  

For our estimations, we opted for a random-effects model for the following reasons. First, key 

variables such as iprjt or trade_blocijt do not vary much across time. They are thus highly correlated 

with country-pair specific effects, which leads to inefficient estimates of their coefficients when using 

a fixed effect model. Second, fixed effect estimation causes all groups with zero patent transferred 

during the 1990–2003 period to be dropped from the regression, including many potential technology 

suppliers, which induces a selection bias. For that same reason, we cannot perform the standard 

Hausman test of the random versus fixed effects specification as the models are ran on different 

samples. 

 

6 Results 

We report the results in Tables 3a and 3b. Estimates across technologies are relatively stable, 

although there are some differences, which we will discuss below. We focus the interpretation on six 

policy-relevant questions. 

1) Does accumulated knowledge facilitate the import of technology? The local stock of 

technology-specific knowledge Sjt-1 has a positive impact on the flows of patents in 11 regressions out 

of 12. The coefficient is statistically significant at the 0.1% level. There is no doubt that patent 

transfers increase if the recipient country is actively involved in R&D in the same technology field. 

In contrast, the recipient country’s level of education is statistically significant and has a positive 

impact only in five regressions. This suggests that generic absorptive capabilities are less important 

than technology-specific knowledge. 
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Counter to an intuitive assessment of the situation, the impact of higher technology-specific 

knowledge stock is negative in buildings insulation technologies. A possible explanation is that high 

technological capabilities imply strong imitation capacities, which lead some innovators to refrain 

from introducing new technologies in the recipient country. 

2) Do strict intellectual property rights promote technology transfer? As mentioned earlier, 

this issue is very high in the political agenda. Our results suggest a positive influence of strict IP rights 

on technology transfer. More precisely, this result holds in 7 regressions out of 12. Exceptions are 

three renewable energy technologies (ocean energy, hydro power, and geothermal energy), as well as 

methane destruction and cement, on which IP rights have no statistically significant impacts.  

When IPR strictness has a significant positive effect, part of the induced patenting could also 

reflect a substitution between patented and non-patented knowledge flows, rather than additional 

technology flows. 

3) Do restrictions on international trade hinder technology transfer? Restrictions to trade 

seem to be more important than IPR strictness: Higher tariff rates have a statistically significant 

negative impact on patent flows in 11 regressions. This result is confirmed by the fact that being part 

of the same trade bloc significantly increases patent flows in seven regressions. This suggests that 

transferred technologies are frequently incorporated in equipment goods. 

4) Do restrictions on foreign direct investments hinder technology transfer? Stricter 

international capital control has a statistically significant positive effect in seven regressions. This is 

clearly counter-intuitive. Several factors may explain this result, involving either a real effect on 

technology transfers or simply an increased use of patents as a means to secure these transfers. We do 

not know the precise contents of FDI regulations in the different countries, since we use a synthetic 

index developed by the World Economic Forum, but in some cases FDI control may directly aim at 

promoting the transfer of technology through foreign investments. More generally, it is likely that 

regulations increase the risk of losing control of transferred technology,18 thus pushing foreign 

investors to rely more heavily on patents as a way to secure their intellectual assets. A final 

interpretation could be that restrictions on FDI tend to shift technology transfer to other channels—

such as licensing to local users—that are more patent-intensive than FDI. 
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5) Has the Kyoto Protocol accelerated the diffusion of climate-related technology? The 

variable kyoto has a statistically significant positive impact on patent flows in 4 regressions over 12. 

This suggests that the impact of domestic policy measures related to the protocol is differentiated 

across technologies.  

Consider first the renewable energy technologies. It appears that the protocol has had an impact on 

three technologies—ocean, solar and geothermal technologies—that have a large potential for energy 

generation but that are still at an early stage of their technology development and commercial 

deployment. The potential for further development of these technologies contrasts with more mature 

technologies, such as hydropower, wind power, biomass energy, for which the kyoto dummy is not 

statistically significant.  

The kyoto variable also has a statistically significant positive impact on the diffusion of motor 

vehicle fuel injection, which suggests that the transfer of this technology is particularly responsive to 

public policies. 

Other variables 

Demand variables are either not significant or exhibit the expected signs. For instance, the cloud 

coverage in the recipient country reduces the number of solar technologies that are imported. The 

transfer of fuel-injection technologies increases with gasoline prices and with number of cars. The 

production of renewable electricity promotes the import of renewable energy technologies (see 

elec_renew, elec_biomass, elec_hydro), etc. 

As expected, technology flows fall as geographic distance increases and rise if both countries 

speak the same language. The recipient country’s size (pop) and economic wealth (GDP_percapita) 

also promote the importation of technologies. 

Finally, the control variable Σdistance has the expected positive impact in many regressions: the 

longer the geographical distance between the recipient country j and the technology providers from 

countries k≠ i, j, the larger the transfer from country i. Similarly, the higher the number of countries 

speaking the same language among countries k≠ i, j (captured by Σlanguage), the less the transfer 

from country i. The only potential problem concerns Σtrade_bloc, which should have a negative 
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impact but is actually statistically positive in eight regressions. A likely explanation is that 

Σtrade_bloc is a proxy variable for the overall trade openness of the recipient country. 

6 Conclusions 

In this paper we use the PATSTAT database to analyze the international diffusion of patented 

inventions in twelve climate-related technologies between 1990 and 2003. This allows us to draw 

conclusions about those factors which promote or hinder international technology transfer.  

Regressions show that absorptive capacities of recipient countries are determinant factors. This is 

particularly true for technology-specific knowledge, whereas the general level of education exerts less 

influence. 

We are also able to assess the impacts of different policy barriers. The results stress that 

restrictions to international trade—e.g., high tariff rates—and lax intellectual property regimes 

negatively influence the international diffusion of patented knowledge. In addition, results suggest 

that, unexpectedly, barriers to Foreign Direct Investments promote technology transfer in those cases 

where the coefficients are significant. This puzzle can have different interpretations. Perhaps strict 

FDI regulations include requirements of technology transfers. Another interpretation is that 

restrictions on FDI lead foreign technology owners to rely more systematically on patents, either to 

secure their FDI or as an alternative to it. 

In conclusion, it is crucial to recall that patents are imperfect proxies of technology transfer 

for reasons explained in the paper. This should be kept in mind when interpreting the results. If the 

transfer of patented technologies is positively correlated with non-patented knowledge flows (e.g., 

know-how), our work gives a general view of the international diffusion of knowledge. Alternatively, 

if they are negatively correlated, because they are substitutes, our results only give a partial view of 

the overall picture. Further work is clearly necessary to clarify these points. 
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Table 3a. Results for wind, ocean, solar, hydro, biomass, and geothermal. 

Variable Wind Ocean Solar Hydro biomass Geothermal 
0.0698** 0.2345** 0.3561** 0.2292** 0.0824** 0.1611** Sjt-1 (0.0157) (0.0427) (0.0363) (0.0383) (0.0247) (0.0447) 
0.0093* 0.0059 -0.0044 -0.0023 0.008* 0.0209** edujt (0.0041) (0.0051) (0.0034) (0.0048) (0.0038) (0.0052) 
0.3126** -0.0261 0.1586* 0.1309 0.2192* -0.2499 iprjt (0.0948) (0.1266) (0.0791) (0.1371) (0.0905) (0.1576) 
-0.0505** -0.0464** -0.0122 -0.0252* -0.0288** -0.0434** tariffjt  (0.0097) (0.0122) (0.0067) (0.0127) (0.0084) (0.014) 

0.2676 1.27** -0.2135 0.4898** 0.0431 0.4656* trade_blocjt (0.1494) (0.1863) (0.112) (0.1788) (0.1295) (0.2108) 
0.0892** 0.086* 0.0558* 0.0084 -0.0032 0.0272 fdi_controljt  (0.0288) (0.0395) (0.0224) (0.0452) (0.027) (0.0468) 
0.1908 0.9381** 0.7667** 0.6429** 1.228** 0.8953** languageijt (0.1809) (0.187) (0.189) (0.2196) (0.2283) (0.2335) 

-0.3455** 0.0137 -0.318** -0.2179* -0.2501** -0.0284 distanceijt (0.0696) (0.0829) (0.063) (0.0853) (0.085) (0.0869) 

0.007* 0.0178** 0.0087** 0.0136** -0.0008 -0.0004 

  
distancekjt

k≠i, j
∑  

(0.0028) (0.0036) (0.0032) (0.0043) (0.0034) (0.0042) 

0.0481** 0.0343* 0.0485** 0.0351* 0.0016 0.0349* 

  
trade_blockjt

k≠i, j
∑  

(0.0112) (0.0153) (0.0089) (0.0147) (0.0107) (0.0148) 

-0.0235* -0.0222 -0.0209 -0.025 -0.0484** -0.0372* 

  
languagekjt

k≠i, j
∑  

(0.0118) (0.0142) (0.0121) (0.0158) (0.0139) (0.0154) 
0.0134 0.3717** 0.1769** -0.1844 0.0472 0.4816** kyotojt (0.1004) (0.1291) (0.0684) (0.1495) (0.093) (0.1802) 
-1.04** -0.6256 -0.4808 0.6719 -0.4496 -2.001** patent_breadth 
(0.499) (0.6698) (0.5557) (0.8799) (0.6132) (0.6582) 
0.039** 0.044** 0.055** 0.043** 0.057** 0.032* GDP_percapitajt (0.0098) (0.012) (0.0093) (0.012) (0.01) (0.014) 
0.3087** 0.2039** 0.2559** 0.2812** 0.4035** 0.1882* 

popjt (0.0549) (0.0705) (0.0592) (0.0722) (0.0681) (0.0751) 

0.0067** 0.0075** 0.0031   0.0087** elec_renewit 
(0.0015) (0.0017) (0.0016)   (0.0021) 

0.0001 0.0009     coast_lengthj 
(0.0013) (0.0017)     

  -0.0267**    cloud_coverj 
  (0.005)    

  0.0051    latitudej 
  (0.0069)    

   0.0415**   elec_hydrojt 
   (0.0092)   

    0.0048*  elec_biomassjt 
    (0.0021)  

-6.276** -1.513 -5.59** -8.485** -4.202** -3.818 constant 
1.595 265.9 1.924 2.476 1.814 2.373 

Log-likelihood -5809 -3045 -7187 -2384 -4442 -1861 
Observations 32973 24795 35179 18562 20500 15271 
Notes: Standard error in parentheses; * denotes significance at 5% level, ** denotes significance at 
1% level. Time dummies included in each regression (not reported for brevity) 
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Table 3b. Results for waste, cement, lighting, building, methane, and fuel injection 

Variable Waste Cement light  Building  Methane fuel injection 

0.1472** 0.1202** 0.0818** -0.0314** 0.243** 0.0515** Sjt-1 (0.0181) (0.0308) (0.0187) (0.0104) (0.0392) (0.0161) 
0.0002 0.0086 0.0161** 0.0099* 0.0036 -0.0013 edujt (0.0033) (0.0048) (0.0034) (0.0039) (0.004) (0.0035) 
0.1566* 0.182 0.2096* 0.439** 0.1583 0.352** iprjt (0.0799) (0.1117) (0.0837) (0.0796) (0.0974) (0.079) 

-0.0434** -0.0487** -0.0228** -0.049** -0.0476** -0.0156* tariffjt  (0.0078) (0.0109) (0.0075) (0.0081) (0.0091) (0.0067) 
0.3826** 0.3091* 0.6033** -0.1511 0.3754** 0.1052 trade_blocjt (0.1264) (0.1575) (0.1346) (0.086) (0.1284) (0.1028) 

0.045 0.087* 0.0667** 0.0565* 0.0879** 0.0244 fdi_controljt  (0.025) (0.0339) (0.0235) (0.0227) (0.0283) (0.0205) 
1.033** 0.8077** 0.642** 0.9239** 0.4591* 0.2313 languageijt (0.185) (0.2411) (0.1728) (0.1969) (0.2052) (0.1609) 
-0.0651 -0.204* 0.104 -0.3648** -0.3799** -0.1903** distanceijt (0.0643) (0.0814) (0.0541) (0.0617) (0.0731) (0.0573) 
-0.0018 0.0045 -0.0146** -0.0026 0.0061 0.0017 

  
distancekjt

k≠i, j
∑  

(0.0027) (0.004) (0.0025) (0.0031) (0.0034) (0.0027) 
0.0276** -0.0358** 0.0427** 0.0056 -0.0073 0.0417** 

  
trade_blockjt

k≠i, j
∑  

(0.009) (0.0127) (0.0085) (0.0086) (0.011) (0.0084) 
-0.0441** -0.0349* -0.0553** -0.0573** -0.0127 -0.0683** 

  
languagekjt

k≠i, j
∑  

(0.0114) (0.0156) (0.0103) (0.0118) (0.0138) (0.0108) 
0.0898 0.1046 0.1228 0.0509 0.1964 0.2488** kyotojt (0.0786) (0.1453) (0.0779) (0.0863) (0.1088) (0.0794) 

-1.027** -0.9939 -1.901** -1.36** -0.3084 -0.1145 patent_breadth 
(0.4981) (0.6586) (0.4766) (0.5018) (0.614) (0.5145) 
0.037** 0.059** 0.043** 0.072** 0.029* 0.044** GDP_percapitajt (0.0089) (0.013) (0.0087) (0.0085) (0.012) (0.009) 
0.295** 0.3954** 0.1481* 0.538** 0.3275** 0.5123** popjt (0.0496) (0.0869) (0.0607) (0.0581) (0.0747) (0.0459) 
0.0055**      elec_renewit (0.0015)      

 -1.214 -0.168 0.0424   constructionjt  (0.8201) (0.2509) (0.3522)   
 0.0009 0.0045** 0.0026*   urbanjt  (0.0013) (0.0008) (0.001)   
   -0.0192*   winter_tempj    (0.0075)   
    0.0364  agriculturejt      (0.0238)  
     0.3557** gas_pricejt      (0.0956) 
     0.0015** carsjt      (0.0005) 

-2.677 3.8 3.201* -4.273* -4.772* -7.415** constant 
1.479 532.5 1.424 1.722 1.892 1.396 

Log-likelihood -6861 -2611 -8386 -6700 -4002 -8103 
Observations 24148 15644 27688 26799 22288 29580 
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Annex 1. Definition of IPC codes 

 

Description Class 

Buildings 
Insulation or other protection; Elements or use of specified material for that 
purpose. 

E04B 1/62 

Heat, sound or noise insulation, absorption, or reflection; Other building 
methods affording favorable thermal or acoustical conditions, e.g. 
accumulating of heat within walls 

E04B 1/74–78  

Insulating elements for both heat and sound E04B 1/88 
Units comprising two or more parallel glass or like panes in spaced 
relationship, the panes being permanently secured together 

E06B 3/66–67  

Wing frames not characterized by the manner of movement, specially 
adapted for double glazing 

E06B3/24 

Use of energy recovery systems in air conditioning, ventilation or screening. F24F 12/00 
Biomass 
Solid fuels based on materials of non-mineral origin—animal or plant C10L 5/42-44 
Engines operating on gaseous fuels from solid fuel—e.g. wood F02B 43/08 
Liquid carbonaceous fuels - organic compounds C10L 1/14 
Anion exchange - use of materials, cellulose or wood B01J 41/16 
Cement 
Natural pozzuolana cements C04B 7/12–13  
Cements containing slag C04B 7/14–21  
Iron ore cements C04B 7/22 
Cements from oil shales, residues or waste other than slag C04B 7/24-30 
Calcium sulfate cements C04B 11/00 
Fuel injection 
Arrangements of fuel-injection apparatus with respect to engines; Pump 
drives adapted top such arrangements 

F02M 39/00 

Fuel-injection apparatus with two or more injectors fed from a common 
pressure-source sequentially by means of a distributor 

F02M 41/00 

Fuel-injection apparatus operating simultaneously on two or more fuels or on 
a liquid fuel and another liquid, e.g. the other liquid being an anti-knock 
additive 

F02M 43/00 

Fuel-injection apparatus characterized by a cyclic delivery of specific 
time/pressure or time/quantity relationship 

F02M 45/00 

Fuel-injection apparatus operated cyclically with fuel-injection valves 
actuated by fluid pressure 

F02M 47/00 

Fuel-injection apparatus in which injection pumps are driven, or injectors are 
actuated, by the pressure in engine working cylinders, or by impact of engine 
working piston 

F02M 49/00 

Fuel injection apparatus characterized by being operated electrically. F02M 51/00 
Fuel-injection apparatus characterized by heating, cooling, or thermally-
insulating means 

F02M 53/00 

Fuel-injection apparatus characterized by their fuel conduits or their venting 
means 

F02M 55/00 

Fuel injectors combined or associated with other devices F02M 57/00 
Pumps specially adapted for fuel-injection and not provided for in groups 
F02M 39/00 to F02M 57/00 

F02M 59/00 

Fuel injection not provided for in groups F02M 39/00 to F02M 57/00 F02M 61/00 
Other fuel-injection apparatus, parts, or accessories having pertinent 
characteristics not provided for 

F02M 63/00 
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Testing fuel-injection apparatus, e.g. testing injection timing F02M 65/00 
Low-pressure fuel-injection apparatus F02M 69/00 
Combinations of carburetors and low-pressure fuel-injection apparatus F02M 71/00 
Geothermal 
Other production or use of heat, not derived from combustion—using natural 
or geothermal heat 

F24J 3/00-08 

Devices for producing mechanical power from geothermal energy F03G 4/00-06 
Hydro power 

Machines or engines of reaction type (i.e. hydraulic turbines) 
F03B 3/00 
 

Water wheels F03B 7/00 
Adaptations of machines or engines for liquids for special use; Power 
stations or aggregates; Stations or aggregates of water-storage type; Machine 
or engine aggregates in dams or the like; Submerged units incorporating 
electric generators 

F03B 13/06-10 

Controlling machines or engines for liquids F03B15/00 
Lighting 
Gas- or vapor-discharge lamps (Compact Fluorescent Lamp) H01J 61/00 
Electroluminescent light sources (LED) H05B 33/00 
Methane capture 
Anaerobic treatment of sludge; Production of methane by such processes    C02F 11/04 
Biological treatment of water, waste water, or sewage: Anaerobic digestion 
processes 

C02F 3/28 

Apparatus with means for collecting fermentation gases, e.g. methane C12M  1/107 
Ocean power 
Tide or wave power plants E02B 9/08 
Adaptations of machines or engines for special use—characterized by using 
wave or tide energy 

F03B 13/12-26 

Mechanical-power-producing mechanisms—using pressure differences or 
thermal differences occurring in nature; ocean thermal energy conversion 

F03G 7/04-05 

Water wheels F03B 7/00 
Solar power 
Semiconductor devices sensitive to infra-red radiation, light, electromagnetic 
radiation of shorter wavelength, or corpuscular radiation and specially 
adapted either for the conversion of the energy of such radiation into 
electrical energy or for the control of electrical energy by such radiation—
adapted as conversion devices, including a panel or array of photoelectric 
cells, e.g. solar cells   

H01L 31/042-058 

Generators in which light radiation is directly converted into electrical energy H02N 6/00 
Aspects of roofing for energy collecting devices—e.g. including solar panels E04D 13/18 
Use of solar heat, e.g. solar heat collectors; Receivers working at high 
temperature, e.g. solar power plants; having lenses or reflectors as 
concentrating elements  

F24J 2/06-18 

Devices for producing mechanical power from solar energy F03G 6/00-06 
Use of solar heat; Solar heat collectors with support for article heated, e.g. 
stoves, ranges, crucibles, furnaces or ovens using solar heat   F24J 2/02 

Use of solar heat; solar heat collectors F24J 2/20-54 
Drying solid materials or objects by processes involving the application of 
heat by radiation—e.g. from the sun 

F26B 3/28 

Waste 
Solid fuels based on materials of non-material origin—refuse or waste C10L 5/46-48 
Machine plant or systems using particular sources of energy—waste F25B 27/02 
Hot gas or combustion—Profiting from waste heat of exhaust gases F02G 5/00-04 
Incineration of waste—recuperation of heat F23G 5/46 
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Plants or engines characterized by use of industrial or other waste gases F01K 25/14 
Prod. of combustible gases—combined with waste heat boilers C10J 3/86 
Incinerators or other apparatus consuming waste—field organic waste F23G 7/10 
Manufacture of fuel cells—combined with treatment of residues H01M 8/06 
Wind power 
Wind motors with rotation axis substantially in wind direction F03D 1/00-06 
Wind motors with rotation axis substantially at right angle to wind direction  F03D 3/00-06 
Other wind motors  F03D 5/00-06 
Controlling wind motors F03D 7/00-06 
Adaptations of wind motors for special use F03D 9/00-02 
Details, component parts, or accessories not provided for in, or of interest 
apart from, the other groups of this subclass  

F03D 11/00-04 

 
 
 

 Annex 2. Proof of Proposition 1 

 

By differentiating (1) with respect to njjt, we obtain the following M first-order conditions: 
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Rearranging this expression, we obtain an expression of njjt which we will use in the following: 
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Then the differentiation of (1) with respect to nij with i ≠ j yields the M (M-1) conditions 
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Substituting (2) in each of these conditions and rearranging, we obtain 
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Then, we multiply for each j the M-1 conditions (A2). This leads to 
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where 
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We substitute this expression in (A2) and solve for nijt. This leads to 
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Notes  

                                                 
1 In contrast, the general empirical literature on international technology diffusion is well developed (for a good 
survey, see Keller, 2004). 

2 Alternatively Branstetter, Fisman and Foley (2006) or Smith (2001) use royalty payments and licenses. Such 
data provide an accurate view of the commercial value of technology transfers through a particular channel, 
namely IP licensing, but those data are available only for the U.S.A. Therefore it is not appropriate to assess 
global technology transfers through various channels. 

3 It is argued that the count of forward citations reflects the value of individual patents. This has been exploited 
in the literature to compute weighting coefficients. We could have done the same to control for the heterogeneity 
of patents’ value. However, citations data are not available for most countries (with the exceptions of the U.S.A. 
and the European Union). 

4 In fact, about 75% of the inventions are patented in only one country. 

5 Note that Least Developed Countries are not present in our dataset, for two related reasons: Their patenting 
activity is extremely limited, and available statistics are not reliable. 

6 Previous studies have related patent classes to industrial sectors using concordances (e.g., Jaffe and Palmer, 
1997). The weaknesses of such an approach are twofold. First, if the industry of origin of a patent differs from 
the industry of use, then it is not clear to which industrial sector a patent should be attributed in the analysis. 
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This is important when studying specifically “environmental” technology because in this case the demand (users 
of technology) and supply (inventors of technology) of environmental innovation may involve different entities. 
Often, “environmental” innovations originate in industries which are not specifically environmental in their 
focus. On the other hand, some “environmental” industries invent technologies which are widely applicable in 
non-environmental sectors (e.g., processes for separation of waste; separation of vapors and gases). More 
fundamentally, the use of sectoral classifications (and commodity classifications) will result in a bias toward the 
inclusion of patent applications from sectors that produce environmental goods and services. By contrast, the 
application-based nature of the patent classification systems allows for a richer characterization of relevant 
technologies. (See OECD 2008 for a full discussion of the relative merits of the approach adopted for this 
report.) 

7 The International Patent Classification can be searched for keywords at http://www.wipo.int/tacsy/. 

8 Available at http://ep.espacenet.com/. 

9 A Cobb Douglas specification is restrictive in that the (partial) elasticity of substitution is constant and equal to 
unity, but it is sufficiently flexible in our case as we impose limited restrictions on the coefficients (0 < ai < 1). 
More generally, a Cobb Douglas functional form, say xα yβ, is an intermediate case between αx+βy where the 
demand factors x and y are perfect substitutes and min{ αx,βy } where they are perfect complements. 

10 Note that the equilibrium allocation would be the same if we have assumed a perfectly competitive technology 
market. 

11 Or the technology market is perfectly competitive. 

12 A problem is that we do not have patent data from before 1978. In order to take inventions patented prior to 
this year into account, we set the initial value of knowledge stock at Sj1978 = Pini/(δ + g) where g is the average 
worldwide growth rate of patenting activity in the technology for the period 1978–1983 and  Pini is the average 
annual number of patents filed between 1978 and 1980. Note that the influence of the calculated initial stocks is 
greatly diminished as we perform regressions on the 1990–2003 period. 

13 Distances between countries were taken from the online CEPII data sets available at 
http://www.cepii.fr/anglaisgraph/bdd/distances.htm. 

14 Obviously, distancejjt = 0. 

15 The average tariff rate and the index of international capital market controls are from the Economic Freedom 
of the World 2008 Annual Report. Missing years were filled by interpolation. 

16 Data on population were obtained from the World Bank’s World Development Indicators 2008. 

17 In a first specification, we also included the GDP growth of the recipient country but the variable turned out to 
be statistically insignificant in all regressions. 

18 China, for instance, is notorious for usually requiring foreign companies to create joint ventures with local 
partners, so that control of transferred technologies has to be shared. 


