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What Else Does Your Biometric Data Reveal? A

Survey on Soft Biometrics
Antitza Dantcheva, Petros Elia, Arun Ross

Abstract—Recent research has explored the possibility of
extracting ancillary information from primary biometric traits,
viz., face, fingerprints, hand geometry and iris. This ancillary
information includes personal attributes such as gender, age,
ethnicity, hair color, height, weight, etc. Such attributes are
known as soft biometrics and have applications in surveillance and
indexing biometric databases. These attributes can be used in a
fusion framework to improve the matching accuracy of a primary
biometric system (e.g., fusing face with gender information), or
can be used to generate qualitative descriptions of an individual
(e.g., “young Asian female with dark eyes and brown hair”). The
latter is particularly useful in bridging the semantic gap between
human and machine descriptions of biometric data. In this paper,
we provide an overview of soft biometrics and discuss some of the
techniques that have been proposed to extract them from image
and video data. We also introduce a taxonomy for organizing
and classifying soft biometric attributes, and enumerate the
strengths and limitations of these attributes in the context of an
operational biometric system. Finally, we discuss open research
problems in this field. This survey is intended for researchers
and practitioners in the field of biometrics.

Index Terms—Soft biometrics, Biometrics, Computer Vision,
Gender, Age, Ethnicity, Race, Cosmetics, Privacy, Semantics,
Visual Attributes

I. INTRODUCTION

A. Biometrics

Biometrics is the science of recognizing individuals based

on their physical, behavioral, and physiological attributes such

as fingerprint, face, iris, gait and voice [111]. A classical

biometric system acquires biometric data from an individual

(e.g., a fingerprint image), extracts a set of features from

the data, and compares this feature set with templates in the

database in order to verify a claimed identity or to determine

an identity.

While biometric data is typically used to recognize individ-

uals, it is possible to deduce other types of attributes of an

individual from the same data. For example, attributes such

as age, gender, ethnicity, height, hair color and eye color

can be deduced from data collected for biometric recognition

purposes. Recent work [270] has established the possibility
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of computing the body mass index (BMI) from face images,

thereby suggesting the possibility of assessing health from

biometric data.

B. Soft Biometrics

These additionally deduced attributes, while not necessarily

unique to an individual, can be used in a variety of applica-

tions. Further, they can be used in conjunction with primary

biometric traits in order to improve or expedite recognition

performance.

Fig. 1. Anthropometry card of Alphonse Bertillon, who originated the
criminal identification system based on profile and full-face photos, and key
body measurements (1892). These key measurements include body height,
body weight, build, complexion, head length, head width, cheek width,
measurements of right ear and left foot, as well as “peculiar marks” such
as birthmarks, scars, and tattoos.

It is perhaps this latter application that has led to these

attributes being referred to as soft biometrics [109], [110],

[180] or light biometrics [4]. In this context, soft biometrics

can be traced back to Bertillon [211] (see Figure 1), who

brought to the fore the idea of using anatomical, morphological

and anthropometrical characteristics for person identification.

These attributes have also been referred to as semantics [223],

[207], in reference to their semantic interpretation (e.g., de-

scribing a face as “young male”).

1) Scope and benefits: Various researchers have attempted

to define the scope of soft biometrics. Jain et al. [109] defined

soft biometrics to be the set of characteristics that provide

some information for recognizing individuals, but that are not

capable of distinguishing between individuals, mainly due to

their lack of distinctiveness and permanence. Samangooei et al.

[223], as well as Reid and Nixon [208], further associated soft
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biometrics with labels which people use to describe each other:

an association that nicely bridges the gap between human and

machine descriptions of biometric data.

Combining the above with the ideas in Dantcheva et al. [42],

and keeping in mind that such soft traits can go beyond person

recognition, one could define soft biometrics as follows. Soft

biometric traits are physical, behavioral, or material acces-

sories, which are associated with an individual, and which can

be useful for recognizing an individual. These attributes are

typically gleaned from primary biometric data, are classifiable

in pre-defined human understandable categories, and can be

extracted in an automated manner.

 

Age: 25-45 

Gender: female  

Hair color: blond 

Hair style: long, hair 

down 

Body type: Hourglass 

shape 

Clothes: black T-shirt  

Accessories: airport 

cart 

Fig. 2. Importance of soft biometrics. Typical video surveillance scenario:
when faces are of low resolution, appear in different poses, and are either
occluded or not visible, other attributes such as age, gender, hair color and
style, height, body type, clothes and accessories can be used for identification
and re-identification. Image obtained from PETS 2007 [63].
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Fig. 3. Ancillary information, referred to as soft biometrics, can be gleaned
from the following biometric modalities: face, iris, fingerprint, gait, body,
hand, voice.

a) Benefits of soft biometrics: Soft biometrics are often

descriptive and have a semantic representation. In addition -

as noted by Jain et al. [110] - they can be inexpensive to

compute, discerned at a distance in a crowded environment,

and require less or no cooperation of the observed subjects.

To elaborate, we note the following benefits.

Human understandable interpretation: Soft biometric at-

tributes have a semantic interpretation, in the sense that that

they can provide a description that can be readily understood

by humans; for example the description “young, tall, female”.

This makes them particularly useful in applications such as

video surveillance, where they are directly compatible with

how humans perceive their surroundings [210], [67], [43],

[204], [47], [257], [45], [46]. In other words, when a human

attempts to verbally describe a person, obvious characteristics

regarding the person’s appearance such as gender, age, height

and clothes color are often used (e.g., in police reports).

This allows soft biometrics to be used in applications where

traditional biometrics may be insufficient, as is argued, for

example, by Klontz and Jain [125] in the case of the 2013

Boston bombings.

Robustness to low data quality: Some soft biometric at-

tributes can be deduced from low-quality biometric data (see

Figure 2. In this context, such attributes can be extracted,

when primary biometric data is not conclusive, due to poor

acquisition quality. For example, if the input iris image is

of poor quality, one could utilize the surrounding periocular

information to perform recognition, rather than relying on the

iris itself.

Consent-free acquisition: Soft biometrics can often be cap-

tured without the consent and cooperation of the observed

subject. For example, information about a person’s height or

gender can be deduced from a distance.

Privacy: Since soft biometric traits are not distinctive, they

only provide a partial description of a person (such as “female,

tall, young”). This limitation has positive privacy ramifications

when it comes to extracting and storing such soft biometric

data.

2) Taxonomy: With the aforementioned scope and benefits

in mind, it is worth identifying a taxonomy that can facilitate

organization and categorization of soft-biometric traits. This

taxonomy is based on utility, and it considers four groups of

attributes: demographic, anthropometric, medical, and mate-

rial and behavioral attributes. This categorization - and the

more refined sub-categorization based on the modalities of

face, iris, body, gait, fingerprint and hand (Figure 3) - will

also help us structure the exposition of the state-of-art in the

rest of this survey paper.

TABLE I
SOFT BIOMETRIC TAXONOMY WITH FOUR GROUPS: I) DEMOGRAPHIC, II)
ANTHROPOMETRIC AND GEOMETRIC, III) MEDICAL, IV) MATERIAL AND

BEHAVIORAL.

Demographic attributes age, gender, ethnicity

eye-, hair-, skin-color

Anthropometric body geometry

and geometric attributes and facial geometry

Medical attributes health condition, BMI/

body weight, wrinkles

Material and behavioral Hat, scarf, bag, clothes,

attributes lenses, glasses

The above taxonomy need not necessarily result in disjoint

groups and it is certainly not a unique taxonomy. For example,

taxonomies in Jain et al. [110] and Dantcheva et al. [42] (see

also [39]) have different definitions that categorize traits based

on their ability to distinguish between individuals as well as

To appear in IEEE Transactions on Information Forensics and Security (TIFS), 2015
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their variability over time.

C. Domains of application

Automated soft biometric extraction has a number of ap-

plications: in the area of security where algorithms can locate

a person-of-interest based on a specific set of soft biometric

attributes; in image-tagging and video indexing where photo

or video album management can be performed based, for

example, on age, gender, and clothing; in human-computer-

interaction where data and personalized avatars can be auto-

matically designed according to the user’s external appearance

(e.g. hair- and skin-color, age and gender); in forensics where

artists can amend sketches of the suspect or the victim based

on old pictures; and in surveillance where suspects can be

located based on semantic descriptions. Other applications in-

clude age-specific access control where, for example, children

can be prevented from watching certain movies, accessing

certain web sites, or entering bars or liquor-stores. There are

industrial systems1 that extract demographic information of

customers for customizing advertisements or for collecting

aggregate data about consuming habits (e.g., based on age,

gender, ethnicity). In addition, Electronic Customer Rela-

tionship Management (ECRM) can use soft biometrics-based

categorization for effectively managing customers by offering

customized products and services. For example, age or gender

specific advertisement can be presented for consumer goods

such as mobile phones, fashion, and food. In cosmetology, it

is of interest to estimate the rejuvenating effect of decorative

cosmetics and cosmetic surgery by computing the perceived

age of an individual from their face image.

In video retrieval systems [93], [252], [258], [190], soft

biometric traits can be used to locate specific individuals in

a video stream either by verbal descriptions (e.g., “individual

with a red shirt”) or by automatically extracting soft biometric

features from an input image and using these features to locate

a matching individual in the video stream.

Finally, in health monitoring, soft biometrics are envisioned

to play a major role in early diagnosis of illness, sickness

prevention and health maintenance. Such traits include body

weight / body mass index, skin abnormalities, and wrinkles.

We will expand on this possibly later on in the paper.

Below, we describe the various contexts in which soft

biometric traits can be used.

1) Uni-modal system: Often applications might require the

extraction of a single soft biometric trait (e.g. gender in a

gender-personalized advertising campaign), in a so called uni-

modal soft biometric system. Such a system generally contains

the “preprocessing”, “feature extraction” and “classification”

modules, with the main focus being on the choice of repre-

sentation (feature extraction).

2) Fusion with primary biometric traits: Here, the goal is to

improve the recognition accuracy of a biometric system. Such

an approach was proposed by Jain et al. [110], who considered

a hybrid system that combined fingerprint identification with

soft biometric attributes such as age, gender and height, to

improve the overall matching accuracy.

1http://www.quividi.com/

Let W = {w1, w2, ..., wn} be the set of n subjects enrolled

in the database, and let x be the feature vector corresponding

to the primary biometric system. The output of the primary

biometric system is of the form P (wi|x), i = 1, 2, ..., n, where

P (wi|x) is the probability that the input data belongs to subject

wi given the feature vector x. Let y = {y1, y2, ..., ym} be

the soft biometric feature vector. Then the updated probability

P (wi|x, y) that the subject in question is wi, can be calculated

using the Bayes rule to be

P (wi|x, y) =
p(y|wi)P (wi|x)∑n

j=1 p(y|wj)P (wj |x)
(1)

where, p(y|wi), i = 1, 2, ..., n represents the conditional prob-

ability of the random vector y given subject wi.

Other notable research on fusing soft biometrics and clas-

sical biometrics, include the works in [229], [112], [109], [1],

[289], [189].

3) Search space reduction: Soft biometrics can also be used

to expedite the search in large biometric databases by filtering

out subjects. A number of attributes such as age, gender, hair

and skin color have been proposed for efficient filtering of face

databases [129], [130], [103]. Furthermore, an analysis of the

filtering-gain versus filtering-reliability tradeoff in using soft

biometric traits to prune large databases was presented in [41].

D. Visual attributes

The computer vision community refers to describable visual

attributes as any visual and contextual information that is

helpful in representing an image (cf. Scheirer et al. [229]). In

this approach, semantically meaningful labels are employed

towards image retrieval and object categorization. In the

context of human recognition, this semantic information can

describe gender [228], ethnicity [229], accessories [21], cloth-

ing style [238], and facial-feature-shapes [228]. Related work

include fusion of attributes by Scheirer et al. [227], pruning

of large-scale datasets by Russakovsky and Fei-Fei [220], as

well as studies on similarities between faces or objects based

on relative attributes by Parikh and Grauman [187] and Zhou

et al. [297]. Other pertinent literature include [62], [131],

[52], [137], [156], [21]. Of specific interest are the “zero-

shot” learning approaches, where previously unseen objects

are described using attributes of objects encountered in the

training set (cf. Parikh and Grauman [187]).

E. Structure of paper

The survey provides a review of salient techniques for

extracting soft biometrics from modalities such as face, body,

fingerprint, iris, and voice. While an exhaustive survey of all

soft biometric traits is not possible due to the richness of

the field (for example, we do not expand on traits relating to

the ear, or to saccadic movements), we try to offer a holistic

view of most of these traits. In this way, this survey paper

is significantly different from other introductory overviews

(see [42], [210], [67], [213], [106] and Table II) that have

focused on specific soft biometric traits such as gender, age

or ethnicity.

To appear in IEEE Transactions on Information Forensics and Security (TIFS), 2015
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The structure of this survey is based on the aforementioned

taxonomy of soft biometrics. We discuss soft biometric traits

that are heavily used as demographic attributes (Section II),

as anthropometric (geometric) attributes (Section III), med-

ical attributes (Section IV), and as miscellaneous material

and behavioral attributes (Section V). Finally in Section VI

we discuss open research problems that are currently being

addressed in the field of soft biometrics.

TABLE II
EXISTING INTRODUCTORY OVERVIEWS ON GENDER AND AGE ESTIMATION

TECHNIQUES.

Modality Scientific work Year

Gender Ng et al. [177] 2012

Gender Khan et al. [120] 2011

Gender Bekios-Calfa et al. [18] 2011

Gender Ramanathan et al. [201] 2009

Gender Mäkinen and Raisamo [157] 2008

Gender Mäkinen and Raisamo [158] 2008

Age Guo [90] 2012

Age Fu et al. [68] 2010

Ethnicity Fu et al. [65] 2014

II. DEMOGRAPHIC ATTRIBUTES

The term demographics, in addition to referring to the

quantifiable statistics of a given population, refers to attributes

such as age, gender, ethnicity and race that are widely used

in common population statistics. Since the early publications

in [164], [243], research on this class of soft biometrics has

been embraced by the computer vision community.

A. Gender Estimation

The traditional definition of sex refers to the biological

characteristics that differentiate men and women, as opposed

to gender, which is related to the social and cultural dis-

tinctions between the sexes. However, very often, the terms

“sex” and “gender” have been used interchangeably in the

biometrics literature. Consequently, we do not make any

explicit distinction between the two terms in this article.

Gender estimation remains a challenging task, which is

inherently associated with different biometric modalities in-

cluding fingerprint, face, iris, voice, body shape, gait, signa-

ture, DNA, as well as clothing, hair, jewelry and even body

temperature (see [165]). The forensic literature [148] suggests

that the skull, specifically the chin and the jawbone, as well

as the pelvis, are the most significant indicators of the gender

of a person; in juveniles, these shape-based features have been

recorded to provide classification accuracy of 91%− 99%. It

has been argued (see for example the work by Loth and Is-

can [148]) that there is no single skeletal feature that definitely

reveals the evidence of sexual dimorphism, and that there is

in fact a cross-gender metric overlap of up to 85%, which

can be attributed to environmental influences and pathologic

conditions, such as diet and occupational stress. In spite of

this, forensic experts argue [128] that near 100% gender

determination accuracy can be attained by visual examination

of the entirety of the skeleton.

Humans are generally quite good at gender recognition, as

they have been programmed - from an evolutionary standpoint

- to classify gender from early on in their lives [185]. As

pointed out by Edelman et al. [54], humans perform face

image-based gender classification with an error rate of about

11%, which is commensurate to that of a neural network

algorithm performing the same task (at that point in time).

Despite this, automated gender recognition from biometric

data remains to be a challenge and is impacted by other soft

biometrics, for example, age and race; gender dimorphism is

accentuated only in adults, and varies across different races.

1) Gender from face: In gender recognition from face,

feature-based approaches extract and analyze a specific set of

discriminative facial features (patches) in order to identify the

gender of a person. This is a particularly challenging problem,

as is implied from the fact that female and male average facial

shapes are generally found to be very similar.

One of the primary challenges in face-based gender recog-

nition is the step of feature selection, where one must ju-

dicially select the type of considered features in order to

improve gender recognition rates. Towards understanding this

feature selection process, different types of strategies have

been attempted, such as the work in Sun et al. [245] that

employed genetic algorithms for eigen-feature selection. Other

approaches focus on specific facial features, such as the

approach by Zhang et al. [292] that focused on the eye brow

and the jaw region.

Another challenge comes in unconstrained settings where

the face image is affected by changes in illumination, pose,

etc. While in more constrained settings face-based gender

estimation has been reported to achieve classification rates of

up to 99.3% (see Table III), this performance significantly

decreases in more realistic and unconstrained settings.

The majority of gender classification methods contain two

steps succeeding face detection, namely feature extraction and

pattern classification.

Feature extraction: Notable efforts include the early work

by Moghaddam et al. [169] and the work by Baluja et al.

[15] who used raw pixel intensities as inputs to SVM and

Adaboost classifiers, in order to achieve a 96% success rate on

low resolution images. Interesting work can also be found in

Cao et al. [22] who investigated facial metrology for pertinent

gender traits, which resulted in error rates that were observed

to be between 3.8% and 5.7% lower than that of appearance-

based methods. Other feature extraction approaches are found

in the work of Saatci and Town in [221], who presented an

active appearance model (AAM) based geometric-approach for

extracting gender and expression (using a SVM classifier with

a radial basis kernel), as well as recent approaches that use

SIFT [254], LBP [281], [157], semi-supervised discriminant

analysis (SDA) [19] or combinations of different features [83],

[265].

Classification: A number of classification methods have

been used for gender estimation, and a useful comparative

guide of these classification methods can be found in Mäkinen

and Raisamo [157]. One interesting conclusion of their work

To appear in IEEE Transactions on Information Forensics and Security (TIFS), 2015
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was that image size did not greatly influence the classification

rates. This same work also revealed that manual alignment

affected the classification rates positively, and that the best

classification rates were achieved by SVM.

The area of gender estimation has also received numerous

other contributions such as those that go beyond using static

2D visible spectrum face-images. Related publications include

the work of Han et al. [97] that explored the use of 3D

face images and SVMs, achieving gender classification with

an average error rate of 17.44% on the GavabDB database

that contained multiple facial surface images of 45 males and

16 females. Chen and Ross [27] and Ross and Chen [219]

used near-infrared (NIR) and thermal face images for gender

classification. Their work demonstrated that the local binary

pattern histogram (LBPH)-descriptor and SVM classifier offer

the best accuracy results, which were reported to reach 93.59%
for NIR images; an accuracy of 90.66% was achieved for

thermal images using LBP+PCA+SVM. Satta et al. [226]

used - in addition to facial features (represented by LBPH-

Pyr (local) and LDA (global) features) - other contextual

features such as hair (captured by HSV histograms, fuzzy color

and texture histogram (FCTH), and edge histogram descriptor

(EHD)) in an AdaBoost framework to obtain an accuracy of

about 75%.

2) Gender from Fingerprint: Fingerprint-based gender clas-

sification has received attention in forensic anthropology as

a pruning tool that can reduce the fingerprint search space

by offering a likelihood that a specific fingerprint belongs

to a male or a female. This approach exploits the fact that

there appear to be differences in male and female fingerprints.

Such differences include the ridge-thickness to valley-thickness

ratio (RTVTR), the ridge count (the average ridge count is

slightly higher in males than in females), and the count of

white lines [182].

Gupta and Rao [91] used wavelet transformation and back

propagation artificial neural networks to achieve an overall

classification rate of 91.45% on a private database of 550

fingerprints (275 male, 275 female). Similar results were

obtained by Badawi et al. [12], who employed Fuzzy Cognitive

Maps (FCM) and neural networks to achieve a fingerprint-

based gender classification rate of 88% (see Figure 4). Ad-

ditionally Tom et al. [255] used 2D wavelet transform and

PCA to obtain 70% accuracy on a 547 subject-database,

while Gnanasivam and Muttan [77] fused fingerprint features

obtained by discrete wavelet transform (DWT) and singular

value decomposition (SVD) to achieve an overall classification

rate of 87.52%. Marasco et al. [160] used a combination of

image quality and texture features for gender determination

with overall classification rates of up to 88.7% on a dataset

of 494 subjects. However, their experimental protocol does

not indicate if subjects in the training and test sets were

mutually exclusive. Recently, Rattani et al. [205] explored

the use of classical texture descriptors - Local Binary Pattern

(LBP), Local Phase Quantization (LPQ), Binarized Statistical

Image Features (BSIF) and Local Ternary Pattern (LTP) - to

estimate gender from fingerprint images and tested them on

the WVU fingerprint dataset consisting of 237 users. In their

experiments, the subjects used in the training and test sets were

mutually exclusive thus resulting in a statistically unbiased

evaluation. Fusion of descriptors and different fingers provided

overall classification rates of up to 81.4%.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Fingerprint patterns obtained from female (first row) and male
(second row) subjects [34]. Fingerprint-based gender classification in forensic
anthropology considers ridge thickness to valley thickness ratio (RTVTR),
ridge count and count of white lines [182]. We note that variabilities due to
gender cannot be visually deduced from fingerprint images.

3) Gender from Iris: Thomas et al. [251] were the first to

predict gender from near-infrared iris images using automated

methods. They used a combination of texture features and

seven geometric features, including the horizontal, vertical,

and Euclidean distances between the pupil center and the

iris center, to perform gender classification. Classification was

performed by bagging 100 C4.5 decision trees, which resulted

in an accuracy of 75% on a dataset of 28,000 iris-images, and

an improved 80% accuracy when considering only Caucasian

subjects.

Furthermore, Lagree and Bowyer [135] continued this line

of research by exploring additional texture features (extracted

by texture filters such as “spot detectors” and “line detectors”),

and without any geometric features. The authors recorded

an accuracy of 62% on a 600-image dataset of 60 different

subjects. The reduced performance, compared to [251], is

attributed to the use of a sequential minimal optimization

(SMO) support vector classifier, as well as on the difference

in the size of the datasets (a 50-fold difference) that resulted

in a much smaller training set. Lagree and Bowyer [135]

considered both gender and race classification. An interesting

observation in their work was that gender classification from

iris is a more challenging task than race prediction, and race

prediction is harder on females than on males. A related work

can be found in [16] where Bansal et al. combined statistical

features and texture features using wavelets, and designed a

gender prediction model using SVM that achieved an accuracy

of 85.68%.

4) Gender from Body: Some biometric traits such as gait

require the collection of full body images. Body-based classifi-

cation of gender has received much attention since the human

body has a number of cues for distinguishing gender, as well

as the fact that body shape and gait have the potential to reveal

the human gender from a longer distance. These cues include
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TABLE III
OVERVIEW OF FACE-BASED GENDER CLASSIFICATION ALGORITHMS. ABBREVIATIONS USED: PRINCIPAL COMPONENT ANALYSIS (PCA), INDEPENDENT

COMPONENT ANALYSIS (ICA), SUPPORT VECTOR MACHINES (SVM), GAUSSIAN PROCESS CLASSIFIERS (GPC), ACTIVE APPEARANCE MODEL (AAM),
LOCAL BINARY PATTERN (LBP), ACTIVE SHAPE MODEL (ASM), DISCRETE COSINE TRANSFORM (DCT), SEMI-SUPERVISED DISCRIMINANT ANALYSIS

(SDA).

Work Features Classifier Datasets used Performance

for evaluation numbers

Golomb et al. (1990) [79] Raw pixels Neural network Private, 90 images 91.9%

Gutta et al. (1998) [92] Raw pixels Hybrid classifier FERET, 3006 images 96.0%

Sun et al. (2002) [245] PCA SVM Private, 400 images 91.1%

Moghaddam and Yang (2002) [169] Raw pixels SVM FERET, 1,776 images 96.6%

Jain and Huang (2004) [108] ICA LDA FERET, 500 images 99.3%

Khan et al. (2005) [119] PCA Neural network Private, 400 images 88.7%

Sun et al. (2006) [244] LBP Adaboost FERET, 2,000 images 95.75%

Kim et al. (2006) [122] Raw pixels GPC AR, 515 images 97.0%

Saatci and Town (2006) [221] AAM SVM Private, 90 images 94.8%

Yang and Ai (2007) [281] LBP Adaboost Private, 3,540 images 96.32%

Bekios-Calfa et al. (2007) [18] SVM UCN (nonpublic), 10,700 images 93.46%± 1.65%

PCA LDA FERET, 994 images 93.57%± 1.39%

LCA LDA PAL, 576 images 93.57%± 1.39%

Xia et al. (2008) [275] LBP, Gabor SVM CAS-PEAL, 10,784 images 93.74%

Mäkinen and Raisamo (2008) [157] LBP SVM FERET, 411 images 86.54%

Baluja and Rowley (2008) [15] Raw pixels Adaboost FERET, 2,409 images 93%

Gao and Ai (2009) [72] ASM Adaboost Private, 1,300 images 92.89%

Toews and Arbel (2009) [254] SIFT Bayesian FERET, 994 images 83.7%

Shan (2010) [234] LBP Adaboost LFW, 7,443 images 94.44%

Guo et al. (2009) [83] LBP, HOG, BIF SVM YGA, 8,000 images 89.28%

Wang et al. (2010) [265] SIFT, context Adaboost FERET, 2,409 images 95.0%

Nazhir et al. (2010) [176] DCT KNN SUMS, 400 images 99.3%

Ross and Chen (2011) [219] LBP SVM CBSR NIR, 3,200 images 93.59%

Cao et al. (2011) [22] Metrology SVM MUCT, 276 images 86.83%

Hu et al. (2011) [105] Filter banks SVM Flickr, 26,700 images 90.1%

Bekios-Calfa et al. (2011) [19] SDA PCA Multi-PIE, 337 images 88.04%

Shan (2012) [235] Boosted LBP SVM LFW, 7,443 94.81%

Ramón-Balmaseda (2012) [203] LBP SVM MORPH, LFW, Images of Groups, 17,814 75.10%

Jia and Cristianini (2015) [113] Multi-scale LBP C-Pegasos Private, 4 million images 96.86%

body sway, waist-hip ratio, and shoulder-hip ratio (see [164]);

for example, females have a distinct waist-to-hip ratio and

swing their hips more, whereas males have broader shoulders

and swing their shoulders more.

At the same time, extracting gender from body is negatively

impacted by several influential factors which - in the case of

side profile images - include shoes, background and clothes.

In addition, while the gait cycle contains plenty of in-

formation, it also introduces a high feature dimensionality,

increasing computational complexity. To reduce dimension-

ality (a critical step for obtaining better gender estimation

accuracy [177]), often, the human silhouette is extracted and a

statistical feature - namely an average silhouette - is computed.

This is referred to as the gait energy image (GEI). The

GEI has been reported to be a good feature for gait and

gender recognition because it is robust to silhouette errors and

noise (see Figure 5 and also [286], [44]). To again simplify

analysis, the body is divided into different regions, such as

legs, waist, buttocks, back, chest and head, and these are

analyzed separately for gender cues. Results have shown that

the head and chest regions contribute significantly to gender

cues.

From a computer vision point of view, human gait analysis

can be appearance-based or it can be model-based, where

characteristics such as height, step-frequency, or angle between

two thighs are extracted. Given that extracting such individual

characteristics can be a challenging task, most gait recognition

algorithms are appearance-based. Table IV gives an overview

of body-based gender classification algorithms with the best

reported performance being 97.2% by Shan et al. [236], who

fused GEI and facial features. The GEI-based SVM algorithm

obtained a classification rate of 93%.

5) Gender from Hand: Extracting gender information from

the hand dates back to forensics and archaeological efforts that

deduced gender from skeletons with damaged skeletal regions

that are traditionally good indicators of gender, viz., the pelvis,

skull-region, and larger long bones (for single populations).

In the biometrics context, hand-based gender classification is

useful as hand images are typically acquired under controlled

position, orientation and illumination, resulting in lesser vari-
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TABLE IV
GENDER CLASSIFICATION BASED ON BODY FEATURES. ABBREVIATIONS USED: GAIT ENERGY IMAGE (GEI)(EQUIVALENT TO AVERAGE SILHOUETTE),

WEIGHTED AVERAGE SILHOUETTE COMPONENTS (WASS), CORRECT CLASSIFICATION RATE (CCR), CANONICAL CORRELATION ANALYSIS (CCA),
HISTOGRAM OF ORIENTED GRADIENTS (HOG), MALE (M), FEMALE (F).

Work Feature extraction Classification Datasets CCR

Cao et al. [23] (2008) HOG Adaboost, and Random forest algorithms MIT pedestrian database (600M, 288F) 75%

Chen et al. [29] (2009) 8 WASS Euclidean distance to WASS-templates IRIP Gait (32M, 28F) 93.3%

Li et al. [144] (2008) 7 WASS Euclidean distance to WASS-templates CASIA Gait DB (31M, 31F) 93.28%

Yu et al. [286] (2009) GEI SVM CASIA Gait DB (31M, 31F) 95.97%

Yoo et al. [283] (2005) figure sequential SVM Human ID (84M, 16F) 96.7%

Shan et al. [236] (2008) CCA-feature fusion of GEI SVM (RBF) CASIA Gait DB (31M, 31F) 97.2%

and face images

(a) (b) (c)

(d) (e) (f)

Fig. 5. Gender from body: A human silhouette is extracted by subtracting the
background and, subsequently, an average silhouette is computed, constituting
the gait energy image, GEI. The image depicts male ((a)-(c)) and female ((d)-
(f)) GEIs [44]. Specifically head and chest regions were observed to provide
pertinent gender cues.

ability than, for example, facial images which are known to

be affected by many factors such as facial expression changes.

In terms of suitability of analyzing hands for gender classi-

fication, it has been noted that hand breadth measurements as

well as the index to ring finger ratio offer a strong insight

on the gender of a person, but at the same time, these

can vary between populations and are further influenced by

genetics, environment and social conditions. Good studies on

this can be found in Kanchan and Krishan [116] and Scheuer

and Elkington [231]. Falsetti [58] and Lazenby [140] used

measurements of metacarpals of the human hand and obtained

gender classification rates of up to 92%. Another approach

to determine the gender by Krishan et al. [127], employed

the dimensions of hand and feet. Their study employed a

test database containing 123 men and 123 women aged 17-20

years old from North India. By analyzing hand length, hand

breadth, foot length and foot breadth to classify gender, the

study concluded that left foot breadth provided the highest

accuracy, which was recorded to be 86.9%.

Interestingly, while most studies on the specific topic are of

anthropological and psychological nature, Amayeh et al. [8]

adopted a computer-vision approach, in their effort to find

gender specific traits in the shape of a hand. They segmented

the hand into 6 parts (hand palm and fingers) (see Figure 6),

and each part was represented by Zernike moments [121] and

Fourier descriptors. Different fusion methods (feature-level,

score-level and decision-level) were used to combine these

descriptors, and in a very small database of 40 subjects, the

method achieved an accuracy of 99%.

Fig. 6. Hand-based gender classification [8]. A female hand (left), a male
hand (middle), and a segmented hand (right).

6) Gender from Speech: In the effort to classify gender, it

is only natural to employ speech, since there are substantial

perceived differences between typical male and female voices.

Towards achieving audio based-automated gender recognition

(AGR), speech signals can provide reliable traces, especially

in cases of adults, while less reliable traces can be found in

infants and elderly individuals (Madry et al. [155]). Audio-

based gender traces can be of voice source-character (such as

pitch frequency), or can be of vocal tract-character (such as the

first four formants with their respective frequency, amplitude

and bandwidth [11]). For voice-based approaches, the gender

classification problem remains open. This is because, while

the 170-275Hz female frequency range is disjoint and nicely

differentiable from the male equivalent of 112-146Hz ([273]),

in real world conditions consisting of background noise,

low recording quality and variabilities in the physical and

emotional state of a subject, human voices can be obfuscated,

turning audio-based AGR into a significant challenge [197]. In

clean speech data, Childers and Wu [31] analyzed ten vowels

to predict the gender. Using a database of 52 talkers (27 male

and 25 female), the method was recorded to have 100% gender

classification accuracy. Sorokin and Makarov [239] found that

features such as the instant of maximum glottis area, the

maximum derivative of the area, the slope of the spectrum of

the glottal airflow volume velocity pulse, the amplitude ratios

of harmonics of this spectrum, and the frequency pitch, can

result in an accuracy of 94.7% for male voice recognition and

95.9% for female voice recognition. A comparative study of
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AGR approaches can be found in the work of Walawalkar et

al. [264], where different classifiers such as nearest neighbor

classifier and SVMs were evaluated.

7) Hybrid approaches: In addition to the aforementioned

purely-image or purely-audio based gender classification ap-

proaches, recent work has sought to further the gains of such

approaches by combining them with video sources, resulting

in audio-visual cues that offer a more comprehensive gender

analysis, as well as higher resilience to degradation of any of

these sources. Interesting work that employed this approach

can be found in Pronobis and Magimai-Doss [196] which

explored different audio and visual features, and proceeded

to fuse both modalities at the classifier level. Experiments

conducted on the BANCA corpus, verified the usefulness

of this hybrid approach by showing that the integration of

audio-visual cues indeed yielded higher resilience and bet-

ter performance in noisy conditions. El Shafey et al. [55]

employed Total Variability (i-vectors) and Inter-Session Vari-

ability (ISV) modeling techniques for audio-visual gender

estimation, achieving accuracy rates of up to 98% on the

MOBIO dataset2 containing 100 male and 52 female subjects.

Similar to the aforementioned audio-visual approaches,

other hybrid approaches seek to combine different biometric

modalities in order to increase gender classification perfor-

mance. Notable related work includes the work of Shan et

al. [237] which combines gait and facial features. Specifically,

this work employed Adaboost and SVMs to classify human

GEIs along with facial features that were related by canonical

correlation analysis (CCA) on the CASIA Gait Database

(Dataset B) [285] consisting of 124 subjects (93 male, 31

female), and achieved an overall classification rate of up to

99.0%± 1.3% for males and 92.0%± 4.6% for females.

8) Databases: One distinct advantage of gender classifi-

cation is that classical databases such as FERET3, MORPH-

II, CAS-PEAL and LFW already contain gender annotated

information, while other face-based databases can be easily

annotated with gender information by visual examination,

as opposed to, for example, age information. Additionally,

it is often the case that baseline-performances for gender

classification are provided for databases such as FERET.

In Table V we list different databases that have been

used to evaluate gender classification algorithms and can thus

serve as test-beds for developing novel gender-classification

algorithms.

B. Age estimation

The ability to estimate age is considered to be an important

trait among humans, for evolutionary reasons. Specifically

humans learn early on to reliably estimate age of their peers

based on holistic face features (e.g. outline of the face, face

shape, skin texture), local face features (e.g. areas of the

eyes, nose and forehead), as well as related configuration (e.g.

symmetry) [212], [172]. From this category of facial features,

age can be quantified from features such as the craniofacial

index (see Ramanathan and Chellappa [200]), wrinkles, skin

2https://www.idiap.ch/dataset/mobio
3http://www.nist.gov/itl/iad/ig/colorferet.cfm

quality [17], facial hair and chin line (Alberta et al. [5]). Age

can also be estimated using other body features such as hands,

gait, clavicle (collarbone), the pubic bone, and the teeth [174].

A main challenge in estimating age - whether this estimation

is performed by humans (human-estimated visually perceived

appearance age) or by machines (algorithmically estimated

age) - comes from the fact that the aforementioned features

are a function of many unknowns, including genetics, health

condition, living style, working environment, and sociality

(Alley [7], Rhodes [212]), all of which vary across people,

thus impacting age progression differently from person to

person. This variability motivates research in algorithmic age

estimation, which - as suggested by a recent study by Han et

al. [95] - can often outperform humans at the same task.

Fig. 7. The human face over a span of time: images obtained from FG-NET.
The images (from left to right) represent a subject in FG-NET at the ages of
18, 30, 35, 48, 52 and 61 years old. Facial features that have changed with
age include the facial shape, the chin line, and skin quality.

Below, we will describe different methods of automated age

estimation, focusing on the challenging module of age image

representation. As in the case of gender classification, the task

of automated age estimation can be separated into two modular

subtasks; the aforementioned part of age image representation

during which features are extracted and which will receive

most of our focus here, and the modular part of automated

classification or regression where the extracted features lead to

either a classification decision (corresponding to say a binary

decision on whether a person is ‘young’ or ‘old’), or where

the extracted features are used in a regression framework to

output a more refined decision (corresponding to, for example,

an estimate of a person’s age). Table VI offers an overview of

recent age estimation works and their reported performance.

It is here worth mentioning the study by Fu et al. [68] that

focuses on automated analysis of age progression, discussing

automated age synthesis and also age estimation techniques.

1) Age from Face:

a) Geometric based approaches: Anthropometric (geo-

metric based) approaches are mainly based on the cranio-facial

development theory (see Alley [7]), where - in this case - the

growth of the human head is modeled based on a number

of anthropometric measurements over a span of time, from

infancy to adulthood (see for example the case exhibited in

Farkas [60] corresponding to 57 landmarks or fiducial points).

Often, what provides more meaningful conclusions on age are

ratios between different anthropometric measurements. This

ratio-based approach was employed by Ramanathan and Chel-

lapa [200] who used 8 such distance-measure ratios to model

age progression. Their model was tested on a database partly

adopted from FG-NET4, and was shown to provide 8-15%

improvement in face recognition performance, on ages up to

4www.fgnet.rsunit.com
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TABLE V
EXAMPLES OF DATABASES THAT HAVE BEEN USED FOR EVALUATING AUTOMATED FACE AND BODY GENDER ESTIMATION METHODS.

Name Number of Subjects Acquisition

Georgia Tech Databasea 50 15 facial images per subject, different pose and lighting conditions

GavabDBb 61 427 facial images of 3D meshes, 9 3D-images provided per subject

MORPHc[214] I and II 515 + 4000 multiple face shots per subject

LFW: Labeled Faces in the Wildd 1680 13,233 images acquired under large variability in pose, expression and illumination

MIT AI Gait Datae 24 indoor acquisition of 194 gait-sequences

CASIA Gait Dataset: (Dataset B) [285] 124 multiple sequences of outdoor walking subjects, extracted silhouettes available

CMU Mobo Database [81] 25 subjects walking on treadmill (slow, fast, inclined and carrying a ball)

Gait Challenge Databasef 122 1870 sequences spanning 5 covariates
a http://www.anefian.com/research/face reco.htm
b http://www.gavab.etsii.urjc.es/recursos en.html#GavabDB
c http://faceaginggroup.com/
d http://vis-www.cs.umass.edu/lfw/
e http://www.ai.mit.edu/projects/gait/
f http://marathon.csee.usf.edu/GaitBaseline/

18 years. In terms of drawbacks, anthropometric-based models

tend to be better for only differentiating between infants

and adults. Furthermore, the corresponding measurements and

their associated ratios can only be reliably determined from

frontal or 3D images. An early 3D approach by Xia et

al. [274], which was tested on the FRGCv2 dataset with 466

scans, was shown to achieve a mean absolute error (MAE) of

3.29 years for 4 age classes.

b) Approaches based on appearance models: Another

image representation approach relates to appearance models,

and considers texture and shape features (and thus indirectly

anthropometry and wrinkles), for the purpose of determining

the human age. Early approaches were presented by Kwon and

Lobo [132], [133], analyzing wrinkles in facial regions such

as the forehead and in the periocular region. This analysis

determined the classification of young and senior adults. A

recent related study by Guo et al. [88] obtained best reported

results (MAEs = 2.6 years, tested on the YGA database). These

results were obtained by simultaneously considering age and

gender automatic estimation, biologically-inspired features and

manifold learning techniques.

Approaches based on active appearance models (AAMs)

(see [33]) form a special class under the aforementioned

appearance-based models. Interesting work can be found

in [139] (Lanitis et al.) which extended the AAMs by propos-

ing an aging function to describe the variation in age. In this

aging function, the input is a vector containing 50 raw model

parameters learned from the AAMs. The proposed function

defines the relationship between the age of the individuals and

the parametric description of the face images. Based on age-

simulation (using a ’Weighed Person Specific Age Simulation’

method), the age in all images was normalized to eliminate the

effects of aging. This approach led to an improvement of face

recognition performance from 63% to 71% and from 51% to

66%, on two different datasets. Other interesting AAM-based

approaches have been employed by Guo et al. [84] and by

Lakshmiprabha [136].

c) Approaches based on aging pattern subspaces: Aging

pattern subspaces are formed from a sequence of images

per person representing the chronological progress of aging,

i.e., representing an aging pattern. Specifically, each point

in the subspace corresponds to one aging pattern. The age

of an unseen face image is determined by the projection in

the subspace that can best reconstruct the face image. The

position of the face in the subspace indicates the age of the

associated face. In this approach, which was introduced by

Geng et al. [74], [75], this sequence of images forms what is

specifically known as the AGing pattErn Subspace (AGES),

which is then properly represented - for each person, at each

given age - by AAMs (missing ages are synthesized using an

EM-like iteration algorithm). In the testing phase, an image

of a face is matched to the faces of the subspace (i.e., of

AGES), and the degree of the matching is then translated into

an estimate of the age. This approach was tested [74], [75]

on the FG-NET face database, resulting in a reported MAE of

6.77 years. While promising, this approach has the drawback

that it requires multiple images per subject in order to learn

age progression. Additionally, wrinkles are - in general - not

sufficiently represented by AAMs, and are thus downplayed

in the process of estimation. A related approach can be found

in the recent work by Guo et al. [88], [89] which draws

from the feed-forward path theory of the cortex for visual

processing. In this approach, after sequentially filtering an

image with a Gabor filter and a standard deviation based

filter, the obtained features are subjected to PCA resulting in a

lower-dimensional bio-inspired-features (BIF). Recently, deep-

learning aging pattern approaches were presented by Wang et

al. [267] and Tian and Chen [253].

d) Approaches based on age manifolds: First presented

by Fu et al. [71], the main idea behind this approach is that

functions that estimate age can be of reduced dimensionality,

i.e., will take as input only a reduced number of character-

istic parameters. Such functions are used in conjunction with

manifold learning algorithms which reveal these characteristic

parameters and find a low-dimensional representation of the

data (cf. Seung and Lee [232]). The resulting manifold can be

linear (Yan et al. [280]) or non-linear (Tenenbaum et al. [250]).

Furthermore Guo et al. [84] explored learning manifolds based

on projections that preserve orthogonal locality. This approach

was reported to provide an MAE of 5.3 years on FG-NET, if

the size of the training data is large enough. The related linear

manifold embedding method is referred to as orthogonal lo-

cality preserving projections (OLPP). Enhanced age estimation

performance was recorded by Li et al. [143] who performed

age-manifold learning under locality preserving requirements

as well as under ordinal requirements.
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e) Automated age classification or regression: As pre-

viously mentioned, following the feature extraction in the

age-image-representation part, one can proceed with age esti-

mation in the form of automated classification or automated

regression. A useful exposition of classification and regression

approaches can be found in Guo et al. [85] which places

emphasis on techniques based on support vector regression

(SVR) and support vector machines (SVM). In brief, the

authors conclude that comparable results can be obtained using

both approaches. Furthermore, the work of Guo [82] discusses

the application of SVMs in learning an estimator or recognizer

for the purpose of age extraction. Finally, it is worth noting

that classification and regression approaches can indeed be

combined to form hybrid approaches (cf. Guo et al. [86]).

2) Age from Body: In the context of age estimation, Lu

and Tan [150] recently analyzed gait. In this setting - where,

as the authors state, gait appearances vary between males

and females even within the same age group - the approach

was based on learning a multilabel-guided subspace to better

characterize and correlate the age and gender information of

a person for estimating human age. The authors extract Gabor

features including both Gabor magnitude and Gabor phase

information of a gait sequence, and perform multiple feature

fusion to enhance the age estimation performance. The related

experimental results present an MAE of 3.02 years on the USF

database [225] consisting of 1870 gait sequences from 122

subjects (85 male and 37 female subjects of age between 19

and 59 years old).

3) Age from Hand: One characteristic work in this setting is

that by Shamir [233] which presented a new approach of auto-

matic age classification based on the features that appear on the

back of the human hand. Estimating age from the hand, enjoys

- as opposed to age estimation from the face - the advantage of

being privacy preserving, and the advantage of being invariant

to facial makeup and plastic surgery. Experimental results in

the same work show that the method can differentiate between

older and younger individuals with an accuracy of 88%. The

hand photos were taken from Baltimore Longitudinal Study of

Aging5 (BLSA). The dataset includes 106 subjects, and 212

images (two from each subject).

4) Databases: An increasing number of databases feature

biometric data related to different ages. We report some of

these in Table VII.

C. Ethnicity and race classification

The traditional definition of race is related to biological

factors and often refers to a person’s physical appearance

corresponding to traits such as skin color, eye color, hair color,

bone/jaw structure, face and body shape, and other traits ,

while the traditional definition of ethnicity is more related

to sociological factors and it relates primarily to cultural

identifiers such as nationality, culture, ancestry, language as

well as beliefs. The terminology overlaps and is often used

interchangeably in the biometric literature, and hence we will

also adopt the same loose convention here.

5http://www.blsa.nih.gov/

a) Limitations and challenges in race classification:

Before addressing some of the progress in automated race

classification, it is worth touching upon some points which

suggest that ethnicity- or race-categorization is a rather chal-

lenging problem. The first important point - as indicated in

the book of Mordini and Tzovaras [170] - is that intra-class

variation can often be significantly larger than the inter-class

variation between races. Similarly, recent findings by geneti-

cists (cf. [161], [9]) show that there is often no clear relation

between races on one hand and the frequency of particular

genetic variants on the other. In the same vein, Rosenberg et

al. [218] reported that within-population differences among in-

dividuals account for 93%-95% of genetic variations, whereas

major ethnic groups differentiate only by 3%-5%. At the same

time, however, the work in [218] identified six main genetic

clusters, five of which corresponded to major geographic

regions, and sub-clusters that often corresponded to individual

populations.

Related to the challenging nature of race-categorization is

the “other race effect”, where humans charged with a face

recognition task are observed to perform significantly better

when having to recognize the face of a person from their own

race (cf. O’Toole et al. [184]). Interestingly, such an effect has

also been witnessed in automated face recognition [192][184].

Specifically, this “other race effect” was observed in an inter-

national face recognition competition where a fusion of algo-

rithms from Western countries performed better in recognizing

Caucasian faces, while a fusion of algorithms from East Asian

countries performed better in recognizing East Asian faces.

1) Race from Face: Before presenting some research high-

lights on this topic, we note that as with gender and age

estimation, race estimation typically comprises of a feature

representation module, where the features are extracted, and

a subsequent classification module, where the extracted fea-

tures are categorized into a discrete number of race classes.

As before, approaches for classification include geometric

based approaches [60], holistic/appearance-based approaches

(involving color, texture and shape-based algorithms), as well

as approaches based on local feature descriptors. While it

is generally agreed that humans perform race classification

by employing a feature based approach [271], many of the

promising computer vision solutions that we will see later on

employ approaches based on holistic and local features.

We describe some of these approaches below. Table VIII

summarizes these approaches. The interested reader can also

explore a recent survey by Fu et al. [65] which provides a

comprehensive study on human and automated analysis of race

classification.

a) Approaches based on chromaticity: Chromaticity, or

skin tone, has long been employed as the primary feature for

race classification; see for example Xie et al. [278], Roomi et

al. [217], and Tariq et al. [249]. The latter work used human

silhouette images, and achieved classification rates of 80.37%

for ‘East and Southeast Asian’ subjects, 78.67% for ‘White

Caucasian’ subjects, 58.21% for ‘Black’ subjects, and 33.33%

for ‘South Asian’ subjects. We note here that chromaticity-

based race classification has the limitation of being strongly

sensitive to illumination changes.
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TABLE VI
AGE ESTIMATION TECHNOLOGIES BASED ON CLASSIFICATION. ABBREVIATIONS USED: ACTIVE APPEARANCE MODEL (AAM), APPEARANCE MODEL

(APM), AGE MANIFOLD (AMF), BIO INSPIRED FEATURES (BIF), DISTANCE METRIC LEARNING (DML), CUMULATIVE ATTRIBUTES (CA),
CONVOLUTIONAL NEURAL NETWORK (CNN), DEEP LEARNED AGING PATTERN (DLA), GRAPH-BASED COMPOSITIONAL AND DYNAMIC MODEL (GB),

ORDINAL DISCRIMINATIVE AGING (PLO), MALE (M), FEMALE (F).

Work Features Datasets used Number of Accuracy Classification /

for evaluation subjects Regression

Guo et al. (2008) [84] AAM FG-NET 82 88% C

AMF (OLPP) YGA 800 (M) 800 (F) 83% (M), 82%(F) C

Kwon and Lobo (1999) [133] facial ratios, Private 47 100% C

wrinkle index

Kanno et al. (2001) [117] APM Private 110(M) 80% C

Lanitis et al. (2004) [138] AAM Private 40 MAE=3.82− 5.58 R

Zhou et al. (2005) [296] APM FG-NET 82 MAE = 5.81 R

Ueki et al. (2006) [256] APM (raw image) WIT-DB 3000(M), 2500(F) 50%(M), 43%(F) C

Takimoto et al. (2006) [248] APM HOIP 113(M), 139(F) 57.3%, 54.7% C

Takimoto et al. (2007) [247] ANN HOIP 113(M), 139(F) 3.0(M), 4.4(F) R

Geng et al. (2007) [74] AGES MORPH 515 ≈ 70% C

Fu and Huang (2008) [69] AMF (OLPP) YGA 800(M), 800(F) MAE = 8.0(M), 7.8(F) R

Zhuang et al. (2008) [298] APM (patches) YGA 800(M), 800(F) MAE = 5.4(M), 6.33(F) R

Guo et al. (2008) [85] quadr. regression YGA 4000(M), 4000(F) MAE = 6.0(M), 5.5(F) R

Ni et al. (2009) [178] APM (patches) Web data, FG-NET 78711 images MAE = 7.42 R

Guo et al. (2009) [88] APM(BIF)+AMF YGA 800(M), 800(F) 89.7% C

Guo et al. (2009) [89] APM (BIF) YGA 800(M), 800(F) 88% (M), 85%(F) C

Xiao et al. (2009) [276] DML FG-NET 82 84% C

Yan et al. (2009) [279] SSE FG-NET 82 MAE=5.21 R

Ni et al. (2009) [178] RMIR Web data, MORPH 77,021+55,608 MAE=8.6 R

Suo et al. (2010) [246] GB FG-NET 82 82.7% C

Lakshmiprabha et al. (2011) [136] AAM FG-NET 82 77% C

Li et al. (2012) [143] PLO FG-NET 82 88% C

Chen et al. (2013) [28] CA - AAM FG-NET 82 MAE=4.67 R

MORPH 515 MAE=5.88 R

Wang et al. (2015) [267] CNN - DLA MORPH 515 MAE=4.77 R

FG-NET 82 MAE=4.26 R

TABLE VII
EXAMPLES OF DATABASES THAT HAVE BEEN USED FOR EVALUATING AUTOMATED AGE ESTIMATION METHODS.

Name Number of Subjects Acquisition

FG-NETg 82 1002 color and gray scale images with variation in pose, illumination and expression. Age:
0–69 years.

MORPH I and II [214]h 515 + 4,000 Database annotated for age, gender, ethnicity, height, weight and ancestry. Album 1: 1,724
images corresponding to 515 subjects, captured between 1962 and 1998. Album 2: more
than 20,000 images from more than 4,000 subjects. Age: 27–68 years.

WIT-DB [256] 5,500 Japanese subjects 2,500 females and 3,000 males (12,008 + 14,214 images respectively). Age: 3–85 years.

HOIPi 300 306,600 images (half males and half females). Age: annotated in 10 age categories from
15 to 64 with a range of five years per category, all with neutral expressions.

YGA [70] [71] 1,600 Asian subjects 8,000 high-resolution outdoor color images (half males and half females). Age: 0–93 years.
The images include variations of illumination, facial expression and makeup.

3D Morphable Database [230] 200 adult + 238 teenager 3D scans (half males and half females)
g http://www.fgnet.rsunit.com/
h http://faceaginggroup.com/
i http://hoip.jp/

b) Approaches based on global features: Global feature

representation, or holistic representation, has been found to

preserve configural face information (interrelations between

facial regions), which is helpful towards race classification.

Classical methods include the work of O’Toole et al. based on

PCA of raw pixel intensities [175], [192], achieving accuracies

of about 80% for distinguishing between Japanese and Cau-

casian subjects. The work by Lu and Jain [152] employed an

LDA-based algorithm to classify 263 subjects into 2 categories

(Asian and Non Asian) obtaining a success rate of about 96%.

c) Approaches based on local feature descriptor repre-

sentation: These include methods proposed by Lin et al. [147],

Klare and Jain [124], Heo and Savvides [102], and Hosoi et

al. [104]. The latter employed Gabor Wavelet Transformation

and retina sampling, along with a SVM classifier. On a
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database containing 771 Asian, 774 European and 446 African

subjects, an accuracy of about 94% was obtained. Zang and

Yi [281] examined 11680 Asian and 1016 non-Asian subjects,

and employed LBP in an AdaBoost classification to separately

determine their ethnicity, gender, and age. For ethnicity classi-

fication, the resulting EER was 2.98%. Another approach was

presented by Fu et al. [66] who used topographic independent

component analysis (TICA) to form a hierarchical multi-level

cortex-like mechanism, which achieved a classification rate of

82.5%.

Finally, one can also encounter early hybrid approaches that

aim to combine local and global features. One such hybrid

approach was presented by Ding et al. [50] that boosted local

texture and global shape features, resulting in accuracies of up

to 98.3%.

2) Race from Iris: Recent research has explored the pos-

sibility of deducing race from iris images (see Figure 8). For

example, Qiu et al. [198] showed that geometric characteristics

of the iris exhibit significant differences across races. This

has been further confirmed in [199], [135], [294]. Building on

this property, Qiu et al. [198] developed a model to predict

ethnicity from iris texture. Their work considered a binary

classification problem (Asian vs. non Asian), and employed

the CASIA database with 2400 images for the Asian subjects,

while for the non Asian subjects it employed the UPOL

database6 with 384 images of 64 subjects and the UBIRIS

database [195] with 1198 images of 240 subjects. Using

AdaBoost, the work recorded an accuracy of 85.95%. The

images in the UPOL and UBIRIS databases were acquired

using visible light, while the images in CASIA were acquired

in near-infrared illumination. The authors conducted an exper-

iment to establish whether illumination affects the proposed

method for ethnicity classification. The experiment consisted

of selecting irises of Asian subjects from UPOL, UBIRIS and

CASIA, and attempting to classify images into those captured

under visible light versus those captured in the presence of

near-infrared illumination. The related results showed a near-

random classification (of illumination), suggesting that the pre-

sented ethnicity classification is due to inherent characteristics

of iris texture, rather than illumination. An extension of this

work by the same authors [199] computed texture features

using 40 Gabor filters formed by eight orientations and five

scales. The work used 200 images of Asian subjects from

the CASIA database, and 200 images from the BioSecure7

database for the non-Asian subjects. The test dataset contained

2,400 additional images of 60 subjects (30 from the CASIA

and 30 from the BioSecure database). A K-means algorithm

was then used to form 64 clusters representing textons that

are commonly occurring fundamental texture elements. An

image was then analyzed in terms of 64-texton histograms,

where each pixel was classified into one of 64 textons, so

that an image is represented by a 64-element feature vector.

With the above in place, an SVM classifier was then applied,

achieving a correct classification rate of up to 88.3%. Lagree

and Bowyer [135] focused on analyzing different features

6http://phoenix.inf.upol.cz/iris/
7http://biosecure.it-sudparis.eu/AB/

and texture filters. Using SMO support vector algorithms

with Weka’s default parameter settings8, the work reported

an accuracy of 90.58% (the employed dataset consisted of 60

subjects and 600 images).

(a) (b)

Fig. 8. Iris images corresponding to different ethnic groups, (a) a subject
with Caucasian ethnicity, (b) a subject with Asian ethnicity [135].

3) Databases: In terms of classical databases - such as

the FERET database - the advantage of having annotated

ethnicity/race information is diminished by the fact that this

information is often statistically unbalanced, simply because

such databases were not created with race-classification in

mind. This often forced researchers in multi-race classifi-

cation to combine different databases to ensure a racially

balanced and diverse information set. As a consequence of

this, one faces the problem of employing different datasets

that were created under different acquisition conditions. As a

result, recent efforts have been made to create racially diverse

databases. We list some of these in Table IX.

D. Relation between age, gender and race

It is often the case that a single facial feature can carry

information about different soft biometric traits. That is why

traits such as age, gender and ethnicity are often treated

and categorized simultaneously (cf. [147], [87], [159], [94])

- an approach that is in line with the perceived correlation

of these soft biometric traits. In addition to the correlation,

exploring this intertwined nature of traits can carry substan-

tial advantages; for example, from a genetic point of view,

understanding the interaction of race with aging allows for

conclusions on race-based differences in longevity and aging-

associated diseases, as well as the possible role of genetic

factors in such differences [73].

This perceived correlation between these traits has moti-

vated additional work such as that in [59], which investigated if

ethnicity-based gender classification can improve the accuracy

of three gender estimation algorithms, namely pixel-based,

HOG and LBP. The work concluded that joint treatment is

not beneficial and that gender and ethnicity can be estimated

separately, due to the fact that features used to estimate gender

are shared by all ethnic groups and features used for ethnicity

classification are present in both female and male faces.

III. ANTHROPOMETRIC ATTRIBUTES

We next focus on soft biometric traits that have been his-

torically used to quantify the geometry and shape of the face,

body and skeleton (i.e., of classical anthropometric measures).

8http://www.cs.waikato.ac.nz/ml/weka
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TABLE VIII
ETHNICITY CLASSIFICATION. ABBREVIATIONS USED: DECISION TREES (DT), MULTI-SCALE MULTI-RATIO LBP (MM-LBP), KERNEL

CLASS-DEPENDENT FEATURE ANALYSIS (KCFA), ORIENTED GRADIENT MAPS (OGMS), GATE ENERGY IMAGE (GEI), SUPPORT VECTOR MACHINES

(SVM), CATEGORIES (CAT).

Work Features Classifier Datasets used Nr. of images / Cat. Performance

for evaluation subjects

Gutta et al. (98) [92] RBF networks inductive DT FERET 1009 subj. 4 92.0%

Viola et al. (02) [262] Haar-features Adaboost Private 4132 images 2 Total error > 20.8%

Hosoi et al. (04) [104] Gabor Wavelets, SVM Private 1991 images 3 94%

retina sampling

Lu and Jain (04) [152] LDA ensembles at LDA-based classifier Private 263 subj. 2 96.3%

multiple scales

Lu et al. (06) [151] Sampled range and SVM Private 1240 images, 2 Average error

intensity images 376 subj. rates 2%

Yang and Ai (07) [281] LBP, Chi square AdaBoost Private and 12696 images 2 97%

distance FERET

Tariq et al. (09) [249] Shape context and KNN generated from 3D 441 images 4 33.33% - 80.37%

shape distance face models

(silhouetted face profiles)

Zhang and Wang (09) [293] 2D and 3D MM-LBP Adaboost FRGC v2.0 180 subj. 2 99.5%

Zhang et al. (12) [291] Uniform LBP SVM Private 36 subj. 2 93%

face and gait

Xie et al. (12) [278] KCFA + color KNN, SVM Private and 104,000 images 3 95%-98%

based features MBGC

Zhang et al. (12)[290] GEI: gait / SVM / Adaboost Private 22 subj. 2 > 95%

Gabor: face

Ding et al. (13) [50] OGMs in 3D images Adaboost FRGC v2.0 466 subj. 2 98%

TABLE IX
EXAMPLES OF DATABASES THAT HAVE BEEN USED FOR EVALUATING AUTOMATED RACE OR ETHNICITY CLASSIFICATION METHODS.

Name Number of Subjects Number of Classes Ethnicity Distribution

FRGC 2.0j 4007 5 Validation set: 22% Asian, 68% White, 10% Other

Color FERETk 2,946 4 1,902 Caucasian, 352 Asian, 464 Oriental, 228 African [92]

Cohn-Kaadel 210 3 170 Euro-American, 27 Afro-American, 13 others [153]

JACFEEm 56 2 28 Caucasian, 28 Japanesen

EGA [215] 469 5 53 African-Americans, 111 Asians, 162 Caucasians, 75 Indian, 68 Latinoo

MORPH-II [214]p 78,207 3 15,996 White, 58,326 Black, 3,885 Other [96]

PCSO [96] 100,012 3 69,116 White, 26,457 Black, 4,439 Other [96]

LFWq 4,211 3 3,501 White, 352 Black, 358 Other [96]
j, k http://www.nist.gov/itl/iad/ig/colorferet.cfm
l http://vasc.ri.cmu.edu/idb/html/face/
m http://www.kasrl.og/jaffe.html
n http://www.humintell.com/jacfee/
o http://biplab.unisa.it/index.php?option=com content&view=article&id=68:ega-database&catid=61&Itemid=115
p http://faceaginggroup.com/
q http://vis-www.cs.umass.edu/lfw/

These traits have become pivotal in the context of geometry

extraction - i.e., the localization of facial landmarks related to

eyes, mouth, nose, chin, etc. - which is a key step in a number

of applications ranging from human identification to gender,

ethnicity, and age estimation to emotion and expression recog-

nition [288].

While a number of geometric estimation methods have been

developed, these methods have to account for several different

factors. Firstly, some of the geometric measurements can be

correlated (Farkas [60]); thus, the model used for assessing

correlation can impact the accuracy of estimation. Secondly,

the estimation methods have to account for variations in sensor

and calibration; this is necessary to ensure that the estimated

3D affine measurements are consistent across different sys-

tems [35][295]. Thirdly, if there are multiple cameras focusing

on the same scene, then it may be necessary to judiciously

combine the complementary information provided by these

cameras during the estimation process.

“Forensic anthropometry” [126] studies somatometry (mea-

surements of the body) [206], [191], [99], cephalometry (mea-

surements of the head) [107], craniometry (measurements of

the skull) [49] and osteometry (measurements of the bones of

the skeleton) [242], and is used for person identification in the

case of unknown human remains [10].
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A. Anthropometric features from face

A number of efforts have been directed to suitably capture

and represent different geometric anthropometric measures of

the face. As mentioned earlier, the main reason that such

facial geometric anthropometric measures are of importance,

has to do with the fact that localization of facial landmarks

(related to eyes, mouth, nose, chin), is often a key step

towards precise geometry-extraction, which is in turn crucial

for human identification and a class of other recognition

systems [288] that generally employ these traits as trackers.

In this context, algorithms such as AAM, active shape model

(ASM), and deformable shape model have been used (cf. Ding

and Martinez [51]) to obtain such facial landmarks.

Further motivation comes from the fact that - as noted by

Nixon in [179] - a judicious combination of these facial fea-

tures can result in a relatively high degree of distinctiveness for

person recognition. In addition, face-based geometric human

metrology is an important tool in forensic anthropology [116].

Another line of interesting work is the design of algo-

rithms that robustly recognize people in the presence of

occluded and disguised faces. In this setting, Ramanathan

and Wechsler [202] combine appearance based approaches

(PCA + LDA), and anthropometric / geometric measurements

(19 manually extracted geometric measurements of the head

and shoulders) via decision-level fusion (neural networks) and

feature-level fusion (AdaBoost), to design an algorithm that is

robust to occluded and disguised faces. Related work can also

be found in Ghalleb et al. [76] where facial measurements -

ultimately used for human recognition - are extracted based

on geometry in the detected face (SMQT and split up SNOW

classifier). This resulted in a soft biometric system, which was

fused with different classical biometric systems, to achieve an

improved matching accuracy.

B. Anthropometric features from the body

Among the many geometric traits, body height is the most

prominent. In extracting this measure, different challenges

remain, including that of the human pose which can serve

as a primary biasing factor. Therefore, BenAbdelkader and

Davis [20] resorted to averaging different body measurements

over different poses in order to reduce the pose bias. Other

methods that result in robust height estimation can be found

in the work by Madden and Piccardi [154] where a person’s

height was estimated from surveillance video, thus allowing

for session-based biometric matching using two disjoint cam-

era views.

Body height can often be estimated together with other

geometric measures. For example, the aforementioned work

by BenAbdelkader and Davis [20] considered shoulder breadth

(bideltoid breadth) in addition to body height, and the two

measures were jointly averaged for the purpose of improving

multi-target tracking across multiple cameras. In a similar

spirit, but in the setting of person identification, Johnson and

Bobick [115] extracted four static parameters (body height,

torso length, leg length, and step length), achieving a typical

error of about 30cm for anthropometric measure estimation.

Furthermore, BenAbdelkader et al. [32] used height and stride

(extracted from gait videos) for person recognition, achieving

true recognition rates of 47% for fronto-parallel sequences of

41 people, and 65% for non-fronto-parallel sequences of 17

people.

Recently, body shape has been estimated in millimeter wave

images (acquired at 94 GHz) [80]. Contour coordinates and

dynamic time warping were used resulting in an EER of 1.33%

on a dataset of 50 individuals (BIOGIGA [171]).

a) 3D techniques in geometric anthropometric measure-

ments: Recently, 3D techniques have been used to obtain

geometric anthropometric measurements. Some of these works

include the study by Carnicky and Chorvat [24] that focused

on the acquisition of 3D measurements with structured light

illumination, and the work by Allen et al. [6] that developed

a method for fitting high-resolution template meshes to 250

detailed human body range scans from the 3D CAESAR

database9 with sparse 3D markers to model the variation of

different bodies.

Additionally, in the work of Adjeroh et al. [2] spanning face

and body metrology, the 1D-measurements in the 3D CAE-

SAR database were used to show a high degree of correlation

between certain face and body measurements. Utilizing the

correlation structure between measurements, the researchers

showed that gender could be estimated with a success rate

of 100% (this corresponded to 44 measurements), and body

weight could be estimated with a success rate of 92.5%.

Based on the idea that some anthropometric measurements

are highly correlated and that missing values can thus be

predicted, an iterated closest point (ICP) registration-model

and Laplacian mesh was presented by Hasler et al. [98], where

a detailed 3D human body shape in the presence of clothes

was modeled based on a space of human shapes, learned

from a large database of registered body scans. Similarly,

by using the visual hull, a method for estimating detailed

3D body shape under clothes was presented by Balan and

Black [14]. This work used the HumanEva10 dataset. Further-

more, Criminisi et al. [35] computed 3D affine measurements

from single perspective views, where affine scene structure

could be determined from the image, without knowledge of

the camera’s internal calibration (e.g. focal length), nor of

the explicit human pose. Interesting work can also be found

in Godil and Ressler [78] who performed similarity-based

retrieval in the 3D CAESAR anthropometric database (3D

scans), where the technique was based on body and head shape

representation. Finally geometric/anthropometric features have

also been exploited to enhance gait recognition accuracy (cf.

Moustakas et al. [173]).

C. Databases

While some datasets include the annotation of pertinent

facial landmarks such as eyes, nose and mouth, these are

mainly used for image alignment. Often, more detailed land-

mark annotation in common datasets is performed manually,

in order to capture the necessary measurement ratios, which

are often more valuable than the measurements themselves.

9http://www.hec.afrl.af.mil/cardlab/CAESAR/index.html
10http://vision.cs.brown.edu/humaneva/
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Notable exceptions include the two paid-for datasets11 of

the Civilian American and European Surface Anthropometry

Resource Project (CAESAR).

CAESAR 3D Anthropometric Database (North American

Edition) includes 40 anthropometric / geometric measurements

per person, from a North American population sample of

2,400 male and female subjects, aged 18-65. It also includes

demographic information and 3D model scans. There are

several poses of each person.

CAESAR 3D Anthropometric Database (European Edition)

was recorded in the same project as the North American

Edition and also features 40 anthropometric / geometric

measurements from a European population sample of 2,000

European male and female subjects, aged 18-65. Demographic

information as well as 3D scans are provided under several

poses.

IV. MEDICAL ATTRIBUTES

A. Image-based automated self diagnostic methods

is a novel and promising approach of enhancing classical

medical care. Such methods, when applied properly, can

provide a broad range of medical benefits, including early

detection and prevention of illnesses, as well as efficient

treatments when possible. Such methods are needed now more

than ever, due to the ever increasing burden on traditional

medical care systems. With this need in place, we are al-

ready seeing different medical sectors employ computer vision

schemes, such as in the crucial area of monitoring the health of

elderly people to improve their safety, autonomy and quality

of life [216], [186], [266]. Such promising applications, and

many others, have introduced the need for algorithms and

systems that can reliably monitor the state of different human

traits, which in turn accentuates the importance of being able

to properly characterize soft biometric traits such as body

weight, body mass index (BMI = body weight

(body height)2 ), or even skin

color and quality.

B. Health and weight

Again in the context of health, body weight and BMI have

received increased attention in recent years. This boost in

attention is related to health concerns that have been expressed

in several countries. For example, it has been stated that more

than two-thirds of adults in the United States are now over-

weight or obese [282], and obesity - which is now recognized

as a disease by the American Medical Association12 - accounts

for nearly one out of every 10 American deaths. Specifically,

an increased body weight and thus BMI13, is often associated

with many health problems such as diabetes, heart disease,

certain cancers, strokes, osteoarthritis and gallstones, all of

which cost the United States 223 billion per year14. This has

motivated the use of automated techniques for estimating body

11http://store.sae.org/caesar/#3dna
12www.ama-assn.org/go/obesity
13The use of BMI as a sole measure of obesity has been challenged in the

medical literature.
14http://www.health.harvard.edu/newsletters/harvard mens health watch/

2012/February

weight and BMI - that are derived from body weight and body

height - which further has the advantage of being contactless,

low-cost, unobtrusive, and unconstrained15.

Recently, BMI was estimated from face images by Wen

and Guo [270]. In their work, the face was detected, nor-

malized, and an active shape model was fitted, based on

which, geometry and ratio features were extracted (cheekbone

to jaw width, width to upper facial height ratio, perimeter

to area ratio, eye size, lower face to face height ratio, face

width to lower face height ratio and mean of eyebrow height),

normalized and finally subjected to support vector regression.

When training and testing using the MORPH-II database -

which contains 55,000 images, with variations in age and

ethnicity - the method obtained MAEs ranging from 2 kg/m2

(‘normal weight’) to 9.5 kg/m2 (‘obese’), where the higher

errors generally related to medically atypical cases such as

‘under weight’ and ‘obese’ subjects. Prior to that, Velardo and

Dugelay [260] had devised a method to estimate weight from

manually measured body-anthropometric data, by constructing

a weight prediction metric using multiple regression analysis.

When training and testing using the NHANES dataset16 -

which contains data of 28,000 subjects - the results showed

that weight could be estimated in 93% of the test data with

an error of less than 10%. Velardo et al. [261] presented a

practical study with a weight estimation error of 4% on a self

recorded Kinect RGBD dataset of 15 subjects, where body

anthropometric measurements were extracted automatically.

This work proceeded also to evaluate - based on the same

measurements - the subjects’ height and gender, using real-

time reduced-complexity 3D model fitting. A related work

for weight estimation by Labati et al. [134] studied frame

sequences representing walking subjects, where different walk-

ing directions and lighting conditions were used to challenge

the algorithms. Features such as body height, body volume

(estimated by ellipses passing through the silhouettes), body

shape and walking direction were extracted to train a neural

network towards body weight estimation. The mean errors

ranged from −2.38 kg to 0.02 kg on a small proprietary dataset

of 20 subjects.

(a) Parvovirus (b) Rosacea (c) Contact Dermati-
tis

Fig. 9. Examples of skin diseases. The human skin often exhibits symptoms
of internal and external diseases.

C. Health and skin lesions

In addition to geometric body characteristics, another class

of soft biometrics that relates to medical conditions is the

15Extracting BMI or body weight also offers other advantages, e.g., in
forensics, as these measures can be sensed at a distance

16http://www.cdc.gov/nchs/nhanes.htm
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human skin (see Figure 9). The main motivation here is

clear; early detection of malignant skin lesions is very critical

towards initiating early and effective cure methods. For cases

like skin cancer - which is the most common cancer type,

with 3.5 million cases of basal and squamous cell skin

cancer diagnosed in the United States each year17 - early

detection can allow for a suitable cure and even prevent death.

While such automated systems cannot fully replace medical

professionals, it is often noted that visual examination by

an expert can be difficult (deeper subsurface inspection is

required), while biopsies can be invasive and time consuming.

As a result there have been substantial efforts to develop novel

noninvasive optical imaging techniques as a way to detect

and analyze skin lesions [222], [100], with recent advances

involving smart hand-held devices [36], [263]. In addition to

skin cancer, image-based methods can apply to other common

skin diseases like chronic inflammatory psoriasis [149], [57],

pressure ulcers [141] and hyper-pigmentation evolution [194].

b) Health and wrinkles: In addition to skin lesions,

wrinkles can also reveal stress states that relate to the medical

condition of an individual. Naturally wrinkles also carry dis-

criminative clues, as was analyzed by Batool et al. [17], where

a set of facial wrinkles extracted from images were treated as

curve patterns towards finding similarity between subjects. In

their work, different metrics based on Hausdorff distance and

curve-to-curve correspondences were presented in an effort

to quantify this similarity, and bipartite graph matching was

employed for finding correspondences between curves from

two patterns. The resulting recognition rates exceeded 65% at

rank 1 and 90% at rank 4, suggesting that a set of wrinkle

patterns may be unique to an individual.

D. Databases

There is currently a limited number of publicly available

biometric datasets with annotated health-information. This is

partly due to the sensitive nature of medical data which raises

several ethical and privacy concerns especially when the sub-

ject identity is divulged. Hence, studies on related topics often

involve private medical datasets, accessible only by associates.

The MORPH-II and the CAESAR datasets are exceptions,

providing images which include weight information.

V. MATERIAL, BEHAVIORAL, AND OTHER SOFT

BIOMETRIC ATTRIBUTES

We next consider objects that may be associated with a

person (e.g. accessories such as hats and scarves), traits that

have a strong behavioral utility, as well as other soft biometric

traits that have received substantial attention lately. Some

of these attributes - related to eye lenses, eye glasses, hats,

scarfs, clothes, etc. - may not be immediately associated with

biometrics in the classical sense; nonetheless they remain of

high interest in identification and security applications, often

due to their conspicuous nature. Some of these objects and

attributes may naturally be associated with different utilities

at once. Take for example the color of the clothes. This

17http://www.cancer.org/cancer/skincancer/index

attribute, while heavily related to subject occlusion, can also

assist in human recognition, as shown in the work by Denman

et al. [46] who presented a video surveillance and tracking

system that is based on the color of clothes, where specifically

color histograms of the head, torso and legs were processed

in order to re-identify individuals. The same attribute was

used also by D’Angelo and Dugelay in [37] for analyzing the

color of clothes in a sports-soccer scenario, with the aim of

preventing fights between fans of opposing teams (shirt color

can be a strong indicator of the team which a subject supports).

A. Material characteristics

Unlike most other attributes, this class consists of char-

acteristics that can in fact hinder the recognition process.

These include face occluding characteristics, such as scarfs,

caps, hats and eye glasses. Such occluding accessories have

received attention primarily for their ability to hinder person

recognition or even human detection, from both machine and

human perspectives. The consideration of such attributes -

in the context of face recognition, occlusion and occlusion

detection - can be found in papers by Yoon and Kee [284]

and Wen et al. [269]. In their work, occlusion detection is

performed for specific facial features such as the mouth region,

while some other works such as that by Lin and Liu [146],

observe the face holistically, classifying it as occluded or not,

by employing PCA and SVM. Below we review some of these

material characteristics.

Scarfs are of particular importance because they are some-

times used by individuals in a crime spree. Min et al. [166]

presented a scarf detection algorithm based on PCA and SVM,

and reported a detection rate of about 99%, on the ARFD

database ([163]) which features 300 scarf-occluded and 300

not-occluded faces. This work was later used by Min et

al. [168] towards face recognition, where Gabor wavelets,

PCA and SVM were employed for occluded faces, while non-

occluded facial parts were computed by block-based LBP. This

work used the AR face database18, and reported a recognition

rate of 94.83% for non-occluded faces, and 92.08% for oc-

cluded faces.

In contrast to scarfs, which are mainly used to cover the

lower part of the face, headgear can occlude the upper part of

the face. Du et al. [53] studied the occlusion of hard hats in

construction sites, and studied face detection using the Viola

Jones algorithm, also analyzing the motion and color in the

upper face region in a dataset of 5 video sequences. Similarly,

cap detection was performed by Min and Dugelay [167]

who utilized dynamic time warping (DTW) and agglomerative

hierarchical clustering, to achieve an accuracy of 87.5% on a

private dataset of 10 recorded subjects with and without caps

in 40 videos.

Similarly, eye glasses and contact lenses can also have an

occluding effect - albeit lesser than that of the previous two

characteristics - and can interfere with the performance of iris

and periocular-based recognition systems. In this context, the

impact of contact lenses on iris recognition was examined by

18http://www-sipl.technion.ac.il/new/DataBases/Aleix\%20Face\
%20Database.htm
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Baker et al. [13]. Their experiments suggested that even non-

cosmetic prescription contact lenses can impact the matching

accuracy of iris recognition. Subsequent research by Erdogan

and Ross [56] established the possibility of automatically

detecting such lenses in iris images. Glass detection in face

images was studied by Jiang et al. in [114], [277], [272], with

best results obtained using thermal images [101].

Makeup can also be viewed as an occluding characteristic,

and has the potential to substantially alter the appearance of

a face. Furthermore, makeup and cosmetics can be used to

successfully alter or camouflage wrinkles, birth moles, scars

and tattoos. The impact of makeup on face recognition has

been studied by Dantcheva et al. [38], while Chen et al. [25]

performed makeup detection, achieving a detection accuracy

of approximately 91%.

B. Behavioral soft biometric traits

Behavioral attributes are a relatively new class of soft

biometric traits that can assist in detecting different human

behaviors. For example, the accent of a person can be gleaned

from human speech which can also convey ancillary infor-

mation such as the gender of the speaker. The associated

gender estimation and accent recognition can be fused with

classical speech or speaker recognition methods in order to

improve recognition performance. In this context, Deshpande

et al. [48] showed promising results, where, focusing on

American and Indian accents in the English language, they

analyzed the second and third formant frequencies of specific

accent markers and classified those based on Gaussian mixture

models.

Some other behavioral traits that can be automatically

gleaned from video and images include facial expressions

which also carry supplementary biometric information. Inter-

esting work can be found in related survey papers [288], [162],

[224]. In the specific context of soft biometrics, Kashyap et

al. [118] studied video segments of individuals encoded by

a facial action coding system (FACS) for facial expression

quantification. Related experiments studied the intensity of a

number of facial units (each facial unit represents movement of

a specific facial muscle), and confirmed the suitability of facial

asymmetry, as well as of action unit combinations, towards

person identification.

C. Scars, marks, tattoos

Scars, marks and tattoos are increasingly employed to-

wards person recognition in forensics and law enforcement

(cf. Spaun [240]). Such traits can be particularly useful in

describing wanted or missing people, or even unidentified

bodies, and the traits are often bundled together due to

the high degree of distinctiveness they can jointly provide.

Scars and marks are mainly defined by the location in which

they occur, while tatoos carry information in their position,

color, content (such as human forms, animals, flags, plants,

words, and other objects), as well as the way in which they

are ‘imprinted’ (chemical, branded, cut) into the skin (see

ANSI/NIST standard report19). Despite the rich information

19http://www.nist.gov/itl/ansi/upload/sp500-245-a16.pdf

that is embedded in tatoos and marks, there is substantial

ambiguity associated with their classification. To overcome

this ambiguity, Lee et al [142] proposed a content-based image

retrieval system that uses SIFT features, reporting rank-20

retrieval accuracies of 98.6% on high resolution images (Web-

DB), and 77.2% accuracy on an operational database (MI-

DB). Furthermore, Jain and Park [112] [188] used AAM to

locate and segment primary facial features (e.g., eyes, nose,

and mouth) and employed Laplacian-of-Gaussian (LoG) and

morphological operators in order to detect facial marks. Their

algorithm was tested on a subset of the FERET database

consisting of 426 images of 213 subjects, and showed a

marginal improvement in rank-1 identification accuracy over

the commercial FaceVACS face recognition system. A similar

evaluation was conducted on the Mugshot-dataset having

1,225 images of 671 subjects, achieving an improvement in

accuracy from 91.88% to 93.14%. Along the same lines, Lin

and Tang [145] used SIFT-based extraction and fusion of

skin irregularities - such as facial marks - to improve face

matching performance by about 5% on the XM2VTS and

HRDB database.

Fig. 10. Examples of different tattoos [142].

Additionally, Pierrard and Vetter [193], in the setting of face

identification, proposed a method to extract moles using nor-

malized cross correlation (NCC) matching and a morphable

model. Experiments were conducted on the FERET database,

and the authors claimed that their method was pose- and

lighting- invariant (albeit computationally expensive) due to

the underlying 3D morphable model. Srinivas et al. [241]

used facial marks to differentiate between identical twins,

while Nurhudatiana et al. [181] studied relatively permanent

pigmented or vascular skin marks (RPPVSM) found on the

backs of 269 male subjects, and employed this soft biometric

trait in forensics.

1) Databases: XM2VTS database20. This is a multi-modal

face database, corresponding to 295 subjects, where for each

subject there are four recordings taken over a period of four

months, and where each recording contains a speaking head

shot and a rotating head shot. Sets of data taken from this

database are available, including high quality color images,

32 KHz 16-bit sound files, video sequences and a 3d Model.

XM2VTS has been used for skin irregularity detection (e.g.

facial marks). Mugshot [268] database. This database contains

20http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
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face images of 1500 subjects. Each subject has two images: a

frontal view and a profile view. The photographs are provided

from archives of the FBI. The Mugshot dataset has been

used in facial marks studies. Web-DB database 21. The Web-

downloaded Tattoo Image Database contains 4,323 tattoo im-

ages downloaded from the Web. Each image is of size 90×90.

MI-DB database. The Michigan State Police Tattoo Database

contains tattoo images from suspects and convicts, recorded

over a period of ten years, by the Michigan police department.

Tattoos are photographed when a suspect / convict is booked,

and assigned a keyword as defined in the ANSI/NIST standard

and then stored in the database along with other demographic

information. There are 69,507 operational tattoo images, each

of size 640× 480.

VI. OPEN RESEARCH PROBLEMS

There are a number of open research problems in this

expanding field.

a) Correlation between soft biometric traits: The issue of

correlation is not well studied in the soft biometric literature.

While Adjeroh et al. [2] investigated the correlation between

geometric attributes of the human body, such a study has not

been undertaken for other traits. Understanding the correlation

structure between these traits will allow for the design of

effective fusion schemes for combining them.

b) Defining the number of categories for a soft biometric

trait: A main issue also relates to finding an efficient and

robust way to create the corresponding categories for a

particular trait. While for some traits, this categorization is

straight forward, for other traits the division into categories

can be complex and not immediately clear. For example gender

recognition is easily viewed as a binary classification problem

(male vs. female), while other traits such as age or race can

be continuous and ambiguous in nature. The challenge is the

fact that this classification must (at least partly) adhere to the

semantic interpretation of traits (recall human compliance), as

well as must account for the significant differences between

actual traits and the human perceived version of these same

traits.

In addition to the aforementioned challenges relating to the

perceptual idiosyncracies of humans, there are also challenges

relating to the limitations of algorithmic and hardware re-

sources. In short, a soft biometric system and its classification

must take into consideration the resources of the system.

For instance, from an image processing point of view, trait

categorization can be limited by the employed estimation

algorithms as well as the quality of the input images. As a

result, while a certain camera-and-algorithm system may be

able to robustly differentiate between many categories, another

may come short of that, hence introducing the need for careful

consideration of resources on the degree of refinement of

categories.

c) Automatic quality assessment of extracted soft bio-

metric traits: On a similar note, another challenge is to

reliably extract these traits. For instance, from an image-

processing point of view, the challenge of reliable feature

21http://www.tattoodesign.com/gallery/

extraction is often related to ambient factors such as lighting.

Illumination variation is a significant problem which, in many

cases - especially in surveillance videos - can result in massive

variations in color. At the same time, soft biometrics offer

substantial flexibility as far as acquisition is concerned. For

example, traits such as hair color, skin color, height, weight,

gait and different facial measurements, can be sensed (and

estimated) from both frontal as well as side views of a subject.

So the challenge is to balance the flexibility in acquisition

afforded by soft biometric traits (e.g., under different pose

and expression changes) with variations due to sensing (e.g.,

illumination) by optimizing the number of categories that can

be used for a particular soft biometric trait (e.g., number of

discrete colors for clothing). Automatic assessment of data

quality may be necessary for this reason.

d) Subjective perception by humans: One wide open

challenge is to design soft biometric matching systems that

account for human variability in describing different traits. The

human compliance attributed to soft biometrics, while useful

in many ways, also introduces problems relating to the broad

variability in syntax and language when it comes to describing

different soft biometric traits (e.g., hair can be described

as “red”, “auburn” to “brown” - see [30] for an interesting

experiment on this). Furthermore, humans can be inaccurate

when describing measurements [287], where descriptions can

depend on the person’s own attributes and their own perception

of population averages and variation [209]. Early literature to

overcome this include methods that apply reference examples,

or that apply comparative / pairwise ranking (cf. [209]). For

example, determining whether a person is taller than someone

else is easier and more accurate than an absolute estimation

of the person’s height.

e) Fusion of soft biometrics with primary traits: Another

topic is the incorporation of soft biometric traits into primary

biometric systems. One could imagine a soft biometric system

that quickly classifies and filters a database, and where this

pruning is followed by a more robust but slower classical

biometric search. In this setting, the challenge is to design and

fuse the component systems in a way that satisfies the specific

speed and reliability requirements of the overall system.

f) Statistical modeling and mathematical analysis of soft

biometric systems: It is necessary to provide a mathematical

analysis of the limits and capabilities of soft biometric sys-

tems. This need is accentuated by the fact that such systems

are bound to get bigger and more complex (by considering

numerous biometric and soft biometric traits), as well as

more demanding. Systems may be required to process an

abundance of information pertaining to large populations (e.g.,

over 1.2 Billion subjects in the UIDAI biometrics project22).

Analysis of complex soft biometric systems is necessary; while

simulations and empirical studies can often provide some

insight into the limits of such systems, empirical approaches

may not be able to accurately characterize the performance of

large-scale systems with increased complexity.

One related problem that has remained largely unexplored

is that of estimating the reliability of person recognition using

22http://uidai.gov.in/
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soft biometrics. Such analysis would have to consider the effect

of the population statistics, as well as have access to mathe-

matical models for the sensing and algorithmic capabilities of

the system. This can help in automatically establishing the

number of categories that are necessary for a soft biometric

trait in order to guarantee a certain degree of performance.

Further, it may be instructive to derive theoretical bounds

on the discriminative and classification capabilities of a soft

biometric system. Very preliminary work on this can be found

in [40].

Along the same lines, it would be worthwhile to predict the

expected improvement in matching accuracy and reduction in

computational complexity when utilizing soft biometric traits

as filters on large databases. Such analysis would be beneficial

in applications such as time-constrained human identification

in video surveillance systems. The analysis should take into

account the implicit errors in soft biometric classification,

since these errors would affect the overall identification per-

formance. A very early analysis can be found in the work by

Dantcheva et al. [41].

g) Spoofing of soft biometrics: The potential of using

soft biometrics in several sensitive commercial and security

applications, has to be balanced with understanding and mini-

mizing the vulnerability of such traits to obfuscation (where an

individual camouflages their soft biometric traits) and spoofing

(where an individual attempts to look like another person

in terms of their soft biometric traits). This is particularly

important because the very nature of soft biometrics allows for

easier spoofing than classical biometric traits; indeed one can

easily imagine how gender, age and ethnicity can be disguised

simply by styling and cosmetics. Similarly, eye color can be

spoofed with color lenses, hair can be dyed, and skin color

- and the overall facial appearance - can be modified by

makeup. In this regard, the use of cosmetic products towards

soft biometric spoofing would be a realistic threat. Early work

on this can be found in [26], where the impact of makeup

on gender- and age- estimation algorithms has been studied.

Specifically the authors in this work discuss gender spoofing

(see Figure 11) where male subjects attempt to look like

females and vice versa, as well as discuss age alteration

where female subjects attempt to look younger or older than

they actually are. Experimental results with several gender-

and age-estimation algorithms, suggested that gender and age

estimation systems can be impacted by the application of facial

makeup. Additional proof of the impact of makeup on age

has been reported in [61], thus further accentuating the open

challenge of designing algorithms that are less susceptible to

spoofing and obfuscation techniques.

h) Ethical issues: In addition to the mainly algorithmic

challenges mentioned above, there exist other challenges in

the area of soft biometrics, including ethical challenges related

to the use of skin color, ethnicity and gender in recognition

systems (see [170]). Ethical issues might also rise as a result of

the fact that soft biometrics can be covertly extracted from data

collected for other purposes. At the same time, soft biometrics

do a better job at preserving privacy, given that the stored

signatures are often less descriptive than, say, a high resolution

image of an iris. The challenge is to properly traverse this thin

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11. Example images for gender spoofing [26]: female-to-male subset:
female subjects apply makeup to look like males (a)→(e), (b)→(f); male-
to-female subset: male subjects apply makeup to look like females (c)→(g),
(d)→(h). The images in the upper row are before the application of makeup
and the ones below are the corresponding images after makeup.

line between privacy enhancement and privacy infringement.

i) Privacy implications: In the context of biometrics,

privacy refers to the assurance that the biometric data col-

lected from an individual is not used to deduce any type of

information about the individual [123], i.e., it should be used

only for matching purposes. However, as discussed in this

article, biometric data offer additional information about an

individual which can be automatically deduced. This can be

viewed as privacy leakage since an entity can learn additional

information about a person (or population) from the stored

data, without receiving authorization from the person for such

a disclosure. Therefore, it is necessary to ensure that biometric

data stored in a system are used only for the intended purpose

and not for purposes that may result in a ‘function creep’.

This has heightened the need to develop differential privacy

constructs, where the biometric data can only reveal certain

attributes (e.g., gender) while other attributes (e.g., ethnicity)

are suppressed. The term “de-identification” has often been

used in this context.

De-identification has become an essential keyword, since

a large amount of video surveillance systems have been

employed in public spaces. Such surveillance unintentionally

invades the privacy of individuals captured in videos. To

circumvent such a privacy invasion, subjects in the video

can be de-identified. De-identification refers to the obfusca-

tion of the identity of an individual without obscuring the

performed action, see [3]. For maintaining the purpose of

video surveillance, limited information related to subject and

action has to be kept. Gender, ethnicity, body height, color of

clothes and color of hair may adequately serve as remaining

evidence. In [259] the authors present a privacy preserving

video surveillance system, where subjects are de-identified and

the remaining information includes the subject height, weight

and color of clothes. Specifically, this approach uses body

height, weight and clothes color to track a person inside a

building under surveillance, and to display the position of this

person on a monitor, in the form of a square placed within the

map of the building. The square displayed in the monitor is

properly colored; the upper part of the square has the color of

the clothing of the upper body of the subject, while the lower
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part of the square is colored to match that of the clothes on

the lower part of the body.

On the other hand, de-identification of soft biometrics, while

retaining the facial identity [183] can be useful for extending

different levels of privacy to a face image in a central database.

Identity Alice Alice Alice Alice 

Gender Female 
(confident) 

Female 
(less confident) 

Male 
(less confident) 

Male 
(confident) 

Transformed images Input image 

Fig. 12. Perturbing gender information in face images by Othman and Ross
[183]. The soft biometric attribute of a face (e.g., gender) is suppressed, while
preserving the ability of the face matcher to recognize the individual. This
ensures that the stored biometric data is not used for purposes beyond what
was expressed during the time of data collection.

j) Standardization: ANSI/NIST-ITL 1-2011 (Data For-

mat for the Interchange of Fingerprint Facial, & Other Bio-

metric Information - Part 1) suggests “additional descriptive

information” such as eye patch, clear glasses, dark glasses,

head covering, scarf, moustache, beard, eye color, hair color.

Further, the standard “American National Standard for In-

formation Systems- Data Format for the Interchange of Fin-

gerprint, Facial, & Scar Mark & Tattoo (SMT) Information”

widely covers the use and classification of scars, marks and

tattoos. Further standardization will be essential to balance

privacy and utility.

VII. CONCLUSIONS

A review of the biometric literature suggests that research in

soft biometrics is on the rise. This expansion is due to the large

number of applications that can benefit from the extraction of

soft biometric traits. Examples of such applications include

security, surveillance, retrieval, and health care. In this article,

we reviewed some of the methods that have been developed

for extracting soft biometric attributes from image, video and

audio data. We also introduced a taxonomy to organize the

various soft biometric traits that have been presented in the

biometric literature. Further, we discussed the benefits and

limitations of different soft biometric approaches. Finally,

we discussed some of the open research problems in soft

biometrics research.

We believe that the main advantage of soft biometric

traits lies in their ability to describe people from a human

perspective. Therefore, it bridges the gap between machine

and human descriptions of a person. We also believe that the

performance of soft biometric systems needs to be considered

carefully, as it can be affected significantly by several factors

such as sensing and feature extraction. By carefully inves-

tigating the accuracy, reliability and distribution of different

soft biometric traits, it is possible to judiciously use them in

large-scale biometric systems. However, it is necessary to be

cognizant of the privacy implications of using soft biometric

traits. By balancing privacy with performance, it is likely that

soft biometric traits will have a critical role to play in next

generation identification systems.
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