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Floating-point arithmetic is considered an esotoric subject by many people. This is

rather surprising, because floating-point is ubiquitous in computer systems: Almost

every language has a floating-point datatype; computers from PCs to supercomputers

have floating-point accelerators; most compilers will be called upon to compile

floating-point algorithms from time to time; and virtually every operating system must

respond to floating-point exceptions such as overflow This paper presents a tutorial on

the aspects of floating-point that have a direct impact on designers of computer

systems. It begins with background on floating-point representation and rounding

error, continues with a discussion of the IEEE floating-point standard, and concludes

with examples of how computer system builders can better support floating point,
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INTRODUCTION

Builders of computer systems often need

information about floating-point arith-

metic. There are however, remarkably

few sources of detailed information about

it. One of the few books on the subject,

Floating-Point Computation by Pat Ster-

benz, is long out of print. This paper is a

tutorial on those aspects of floating-point

arithmetic ( floating-point hereafter) that

have a direct connection to systems

building. It consists of three loosely con-

nected parts. The first (Section 1) dis-

cusses the implications of using different

rounding strategies for the basic opera-

tions of addition, subtraction, multipli-

cation, and division. It also contains

background information on the two

methods of measuring rounding error,
ulps and relative error. The second part

discusses the IEEE floating-point stand-

ard, which is becoming rapidly accepted

by commercial hardware manufacturers.

Included in the IEEE standard is the

rounding method for basic operations;

therefore, the discussion of the standard

draws on the material in Section 1. The

third part discusses the connections be-

tween floating point and the design of

various aspects of computer systems.

Topics include instruction set design,
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optimizing compilers, and exception

handling.

All the statements made about float-

ing-point are provided with justifications,

but those explanations not central to the

main argument are in a section called

The Details and can be skipped if de-

sired. In particular, the proofs of many of

the theorems appear in this section. The

end of each m-oof is marked with the H

symbol; whe~ a proof is not included, the

❑ appears immediately following the

statement of the theorem.

1. ROUNDING ERROR

Squeezing infinitely many real numbers
into a finite number of bits requires an

approximate representation. Although
there are infinitely many integers, in

most programs the result of integer com-

putations can be stored in 32 bits. In

contrast, given any fixed number of bits,
most calculations with real numbers will
produce quantities that cannot be exactly

represented using that many bits. There-
fore, the result of a floating-point calcu-

lation must often be rounded in order to

fit back into its finite representation. The

resulting rounding error is the character-

istic feature of floating-point computa-

tion. Section 1.2 describes how it is

measured.

Since most floating-point calculations
have rounding error anyway, does it

matter if the basic arithmetic operations

introduce a bit more rounding error than

necessary? That question is a main theme

throughout Section 1. Section 1.3 dis-

cusses guard digits, a means of reducing

the error when subtracting two nearby

numbers. Guard digits were considered

sufficiently important by IBM that in

1968 it added a guard digit to the double

precision format in the System/360 ar-

chitecture (single precision already had a

guard digit) and retrofitted all existing

machines in the field. Two examples are

given to illustrate the utility of guard

digits.

The IEEE standard goes further than

just requiring the use of a guard digit. It

gives an algorithm for addition, subtrac-

tion, multiplication, division, and square

root and requires that implementations

produce the same result as that algo-

rithm. Thus, when a program is moved

from one machine to another, the results

of the basic operations will be the same

in every bit if both machines support the

IEEE standard. This greatly simplifies

the porting of programs. Other uses of

this precise specification are given in

Section 1.5.

2.1 Floating-Point Formats

Several different representations of real

numbers have been proposed, but by far

the most widely used is the floating-point
representation.’ Floating-point represen-
tations have a base O (which is always

assumed to be even) and a precision p. If

6 = 10 and p = 3, the number 0.1 is rep-
resented as 1.00 x 10-1. If P = 2 and

P = 24, the decimal number 0.1 cannot

lExamples of other representations are floatzng

slas;, aud szgned logan th m [Matula and Kornerup

1985; Swartzlander and Alexopoulos 1975]
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Figure 1. Normalized numbers when (3 = 2, p = 3, em,n = – 1, emax = 2.

be represented exactly but is approxi-

mately 1.10011001100110011001101 x

2-4. In general, a floating-point num-

ber will be represented as ~ d. dd “ . . d

x /3’, where d. dd . . . d is called the

significand2 and has p digits. More pre-

cisely, kdO. dld2 “.” dp_l x b’ repre-

sents the number

(+ do + dl~-l + ““. +dP_l&(P-l))&,

o<(il <~. (1)

The term floating-point number will
be used to mean a real number that can

be exactly represented in the format un-

der discussion. Two other parameters

associated with floating-point represen-
tations are the largest and smallest al-

lowable exponents, e~~X and e~,~. Since

there are (3P possible significands and

emax — e~i. + 1 possible exponents, a

floating-point number can be encoded in

L(1°g2 ‘ma. – ‘m,. + 1)] + [log2((3J’)] + 1

its, where the final + 1 is for the sign

bit. The precise encoding is not impor-

tant for now.

There are two reasons why a real num-

ber might not be exactly representable as

a floating-point number. The most com-
mon situation is illustrated by the deci-

mal number 0.1. Although it has a finite

decimal representation, in binary it has

an infinite repeating representation.

Thus, when D = 2, the number 0.1 lies

strictly between two floating-point num-

bers and is exactly representable by nei-

ther of them. A less common situation is

that a real number is out of range; that

is, its absolute value is larger than f? x

2This term was introduced by Forsythe and Moler

[196’71and has generally replaced the older term
mantissa.

o‘m= or smaller than 1.0 x ~em~. Most of

this paper discusses issues due to the

first reason. Numbers that are out of

range will, however, be discussed in Sec-

tions 2.2.2 and 2.2.4.

Floating-point representations are not

necessarily unique. For example, both

0.01 x 101 and 1.00 x 10-1 represent

0.1. If the leading digit is nonzero [ do # O

in eq. (1)], the representation is said to

be normalized. The floating-point num-

ber 1.00 x 10-1 is normalized, whereas

0.01 x 101 is not. When ~ = 2, p = 3,

e~i~ = – 1, and e~~X = 2, there are 16

normalized floating-point numbers, as

shown in Figure 1. The bold hash marks

correspond to numbers whose significant
is 1.00. Requiring that a floating-point

representation be normalized makes the

representation unique. Unfortunately,

this restriction makes it impossible to

represent zero! A natural way to repre -

sent O is with 1.0 x ~em~- 1, since this

preserves the fact that the numerical or-

dering of nonnegative real numbers cor-
responds to the lexicographical ordering

of their floating-point representations. 3

When the exponent is stored in a k bit
field, that means that only 2 k – 1 values

are available for use as exponents, since

one must be reserved to represent O.

Note that the x in a floating-point

number is part of the notation and differ-

ent from a floating-point multiply opera-

tion. The meaning of the x symbol

should be clear from the context. For

example, the expression (2.5 x 10-3, x

(4.0 X 102) involves only a single float-

ing-point multiplication.

3This assumes the usual arrangement where the

exponent is stored to the left of the significant
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1.2 Relative Error and Ulps x /3’/~’+1. That is,

Since rounding error is inherent in float-
:(Y’ s ;Ulp s ;6-’.ing-point computation, it is important to (2)

have a way to measure this error. Con-
2

sider the floating-point format with ~ = ~

10 and p = 3, which will be used
n particular, the relative error corre -

throughout this section. If the result of a
spending to 1/2 ulp can vary by a factor

floating-point computation is 3.12 x 10’2
of O. This factor is called the wobble.

Setting E = (~ /2)~-P to the largest of
and the answer when computed to infi- the bounds in (2), we can say that when a

nite precision is .0314, it is clear that real number is rounded to the closest
this is in error by 2 units in the last floating-point number, the relative error

place. Similarly, if the real number is always bounded by c, which is referred
.0314159 is represented as 3.14 x 10-2, to as machine epsilon

then it is in error by .159 units in the In the example above, the relative er-
last place. In general, if the floating-point ~or was .oo159i3, ~4159 = 0005. To avoid
number d. d . . . d x fle is used to repre- such small numbers, the relative error is
sent z, it is in error by Id. d . . . d–

( z//3’) I flp - 1 units in the last place.4 The
normally written as a factor times 6,

term ulps will be used as shorthand for
which in this case is c = (~/2)P-P =

5(10) -3 = .005. Thus, the relative error
“units in the last place. ” If the result of

a calculation is the floating-point num -
would be expressed as ((.00159/

ber nearest to the correct result, it still
3.14159) /.oo5)e = O.l E.

To illustrate the difference between
might be in error by as much as 1/2 ulp.

Another way to measure the difference
ulps and relative error, consider the real

between a floating-point number and the
number x = 12.35. It is approximated by

Z = 1.24 x 101. The error is 0.5 ulps; the
real number it is approximating is rela-

tive error, which is the difference be-
relative error is 0.8 e. Next consider the

computation 8x. The exact value is 8 x =
tween the two numbers divided by the 98.8, whereas, the computed value is 81

real number. For example, the relative = 9.92 x 101. The error is now 4.0 ulps,
error committed when approximating but the relative error is still 0.8 e. The

3.14159 by 3.14 x 10° is .00159 /3.14159

= .0005.
error measured in ulps is eight times

To compute the relative error that cor-
larger, even though the relative error is

the same. In general, when the base is (3,
responds to 1/2 ulp, observe that when a a fixed relative error expressed in ulps
real number is approximated by the can wobble by a factor of up to (3. Con-
closest possible floating-point number

P versely, as eq. (2) shows, a fixed error of

d dd ~. dd X ~e, the absolute error can be
1/2 ulps results in a relative error that

u can wobble by (3.

as large as ‘(Y x /3’ where & is The most natural way to measure

the digit ~/2. This error is ((~/2)&P) x rounding error is in ulps. For example,

/3’ Since numb... of the form d. dd --- rounding to the neared flo~ting.point

dd x /3e all have this same absolute error number corresponds to 1/2 ulp. When

but have values that range between ~’ analyzing the rounding error caused by

and O x fle, the relative error ranges be- various formulas, however, relative error

tween ((&/2 )~-’) x /3’//3’ and ((~/2)&J’) is a better measure. A good illustration

of this is the analysis immediately fol-
lowing the proof of Theorem 10. Since ~

can overestimate the effect of rounding

4Un1ess the number z is larger than ~em=+ 1 or
to the nearest floating-point number b;

smaller than (lem~. Numbers that are out of range
the wobble factor of (3, error estimates of

in this fashion will not be considered until further formulas will be tighter on machines with

notice. a small p.
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When only the order of magnitude of

rounding error is of interest, ulps and e

may be used interchangeably since they

differ by at most a factor of ~. For exam-

ple, when a floating-point number is in

error by n ulps, that means the number
of contaminated digits is logD n. If the

relative error in a computation is ne,

then

contaminated digits = log,n. (3)

1.3 Guard Digits

One method of computing the difference

between two floating-point numbers is to

compute the difference exactly, then

round it to the nearest floating-point

number. This is very expensive if the

operands differ greatly in size. Assuming
P = 3, 2,15 X 1012 – 1.25 X 10-5 would

be calculated as

x = 2.15 X 1012

y = .0000000000000000125 X 1012

X – y = 2.1499999999999999875 X 1012,

which rounds to 2.15 x 1012. Rather than

using all these digits, floating-point

hardware normally operates on a fixed

number of digits. Suppose the number of

digits kept is p and that when the

smaller operand is shifted right, digits

are simply discarded (as opposed to

rounding). Then, 2.15 x 1012 – 1.25 x

10-5 becomes

x = 2.15 X 1012

‘y = 0.00 x 1012

x–y =2.15x1012.

The answer is exactly the same as if the

difference had been computed exactly

then rounded. Take another example:

10.1 – 9.93. This becomes

x= 1.01 x 101

‘y = 0.99 x 101

X–yz .02 x 101.

The correct answer is .17, so the com-

puted difference is off by 30 ulps and is

Floating-Point Arithmetic g 9

wrong in every digit! How bad can the

error be?

Theorem 1

Using a floating-point format with pa-

rameters /3 and p and computing differ-

ences using p digits, the relative error of

the result can be as large as b – 1.

Proofi A relative error of 13– 1 in

the expression x – y occurs when x =

1.00””” Oandy=. pp. ””p, wherep=

@– 1. Here y has p digits (all equal to

Q). The exact difference is x – y = P‘p.

When computing the answer using only

p digits, however, the rightmost digit of

y gets shifted off, so the computed differ-

ence is P–p+l. Thus, the error is p-p –
@-P+l = ~-P(~ – 1), and the relative er-

ror is $-P((3 – l)/O-p = 6 – 1. H

When f? = 2, the absolute error can be

as large as the result, and when 13= 10,
it can be nine times larger. To put it

another way, when (3 = 2, (3) shows that

the number of contaminated digits is

log2(l/~) = logJ2 J’) = p. That is, all of

the p digits in the result are wrong!

Suppose one extra digit is added to

guard against this situation (a guard

digit). That is, the smaller number is

truncated to p + 1 digits, then the result

of the subtraction is rounded to p digits.

With a guard digit, the previous example

becomes

x = 1.010 x 101

y = 0.993 x 101

x–y= .017 x 101,

and the answer is exact. With a single

guard digit, the relative error of the re -

suit may be greater than ~, as

8.59:

x= 1.1OX 102

y = .085 X 102

z–y= 1.015 x 102

This rounds to 102, compared

in 110 –

with the

correct answer of 101.41, for a relative

error of .006, which is greater than

ACM Computing Surveys, Vol 23, No. 1, March 1991
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e = .005. In general, the relative error of

the result can be only slightly larger than

c. More precisely, we have Theorem 2.

Theorem 2

If x and y are floating-point numbers in a

format with 13 and p and if subtraction is

done with p + 1 digits (i. e., one guard

digit), then the relative rounding error in

the result is less than 2 ~.

This theorem will be proven in Section

4.1. Addition is included in the above

theorem since x and y can be positive

or negative.

1.4 Cancellation

Section 1.3 can be summarized by saying

that without a guard digit, the relative

error committed when subtracting two

nearby quantities can be very large. In

other words, the evaluation of any ex-

pression containing a subtraction (or an

addition of quantities with opposite signs)

could result in a relative error so large

that all the digits are meaningless (The-

orem 1). When subtracting nearby quan-

tities, the most significant digits in the

operands match and cancel each other.

There are two kinds of cancellation:

catastrophic and benign.

Catastrophic cancellation occurs when

the operands are subject to rounding er-

rors. For example, in the quadratic for-

mula, the expression bz – 4 ac occurs.
The quantities 62 and 4 ac are subject to

rounding errors since they are the re-

sults of floating-point multiplications.

Suppose they are rounded to the nearest
floating-point number and so are accu-

rate to within 1/2 ulp. When they are
subtracted, cancellation can cause many

of the accurate digits to disappear, leav-
ing behind mainly digits contaminated

by rounding error. Hence the difference

might have an error of many ulps. For

example, consider b = 3.34, a = 1.22,

and c = 2.28. The exact value of b2 --

4 ac is .0292. But b2 rounds to 11.2 and

4 ac rounds to 11.1, hence the final an-

swer is .1, which is an error by 70 ulps

even though 11.2 – 11.1 is exactly equal

to .1. The subtraction did not introduce

any error but rather exposed the error
introduced in the earlier multiplications.

Benign cancellation occurs when sub-

tracting exactly known quantities. If x

and y have no rounding error, then by

Theorem 2 if the subtraction is done with

a guard digit, the difference x – y has a

very small relative error (less than 2 e).

A formula that exhibits catastrophic

cancellation can sometimes be rear-

ranged to eliminate the problem. Again

consider the quadratic formula

–b+ ~b2–4ac

–b–~
r2 =

2a “
(4)

When b2 P ac, then b2 – 4 ac does not

involve a cancellation and ~ =

\ b 1. But the other addition (subtraction)

in one of the formulas will have a catas-

trophic cancellation. To avoid this, mul-

tiply the numerator and denominator of

r-l by – b – ~ (and similarly

for r2 ) to obtain

2C
rl =

–b–~’

2C
rz =

–b+~”
(5)

If b2 % ac and b >0, then computing rl

using formula (4) will involve a cancella-

tion. Therefore, use (5) for computing rl

and (4) for rz. On the other hand, if

b <0, use (4) for computing rl and (5)
for r2.

The expression X2 – y2 is another for-
mula that exhibits catastrophic cancella-
tion. It is more accurate to evaluate it as

( x – y)( x + y). 5 Unlike the quadratic

5Although the expression ( x – .Y)(x + y) does not

cause a catastrophic cancellation, it IS shghtly less

accurate than X2 – y2 If x > y or x < y In this

case, ( x – -Y)(x + y) has three rounding errors, but

X2 – y2 has only two since the rounding error com-

mitted when computing the smaller of x 2 and y 2

does not affect the final subtraction.
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formula, this improved form still has a

subtraction, but it is a benign cancella-

tion of quantities without rounding er-

ror, not a catastrophic one. By Theorem

2, the relative error in x – y is at most

2 e. The same is true of x + y. Multiply-

ing two quantities with a small relative

error results in a product with a small
relative error (see Section 4.1).

To avoid confusion between exact and

computed values, the following notation

is used. Whereas x – y denotes the exact

difference of x and y, x @y denotes the

computed difference (i. e., with rounding

error). Similarly @, @, and @ denote

computed addition, multiplication, and

division, respectively. All caps indicate

the computed value of a function, as in

LN( x) or SQRT( x). Lowercase functions

and traditional mathematical notation
denote their exact values as in ln( x)

and &.

Although (x @y) @ (x @ y) is an ex-

cellent approximation of x 2 – y2, the

floating-point numbers x and y might

themselves be approximations to some

true quantities 2 and j. For example, 2

and j might be exactly known decimal

numbers that cannot be expressed ex-

actly in binary. In this case, even though

x ~ y is a good approximation to x – y,
it can have a huge relative error com-

pared to the true expression 2 – $, and

so the advantage of ( x + y)( x – y) over

X2 – y2 is not as dramatic. Since comput -

ing ( x + y)( x – y) is about the same

amount of work as computing X2 – y2, it

is clearly the preferred form in this case.

In general, however, replacing a catas-

trophic cancellation by a benign one is

not worthwhile if the expense is large

because the input is often (but not al-

ways) an approximation. But eliminat -

ing a cancellation entirely (as in the

quadratic formula) is worthwhile even if

the data are not exact. Throughout this

paper, it will be assumed that the float-

ing-point inputs to an algorithm are ex -
.aGtand Qxat the results are computed as

accurately as possible.

The expression X2 – y2 is more accu-

rate when rewritten as (x – y)( x + y)

because a catastrophic cancellation is

replaced with a benign one. We next pre-

sent more interesting examples of formu-

las exhibiting catastrophic cancellation

that can be rewritten to exhibit only

benign cancellation.

The area of a triangle can be expressed

directly in terms of the lengths of its

sides a, b, and c as

A = ~s(s - a)(s - b)(s - c) ,

a+b+c
where s =

2
. (6)

Suppose the triangle is very flat; that is,

a = b + c. Then s = a, and the term

(s – a) in eq. (6) subtracts two nearby

numbers, one of which may have round-

ing error. For example, if a = 9.0, b = c

= 4.53, then the correct value of s is

9.03 and A is 2.34. Even though the

computed value of s (9.05) is in error by

only 2 ulps, the computed value of A is

3.04, an error of 60 ulps.
There is a way to rewrite formula (6)

so that it will return accurate results

even for flat triangles [Kahan 1986]. It is

A= [(la+ (b+c))(c - (a-b))

X(C+ (a– b))(a+ (b– c))] ’/’/4,

a? b?c. (7)

If a, b, and c do not satisfy a > b > c,

simply rename them before applying (7).
It is straightforward to check that the

right-hand sides of (6) and (7) are alge-

braically identical. Using the values of

a, b, and c above gives a computed area

of 2.35, which is 1 ulp in error and much
more accurate than the first formula.

Although formula (7) is much more

accurate than (6) for this example, it

would be nice to know how well (7) per-

forms in general.

Theorem 3

The rounding error incurred when using

(T) #o compuie the area of a t.icqqle ie at

most 11 e, provided subtraction is per-

formed with a guard digit, e <.005, and

square roots are computed to within 1/2

Ulp.

ACM Computing Surveys, Vol. 23, No. 1, March 1991



12 “ David Goldberg

The condition that c s .005 is met in

virtually every actual floating-point sys-

tem. For example, when 13= 2, p >8

ensures that e < .005, and when 6 = 10,
p z 3 is enough.

In statements like Theorem 3 that dis-

cuss the relative error of an expression,

it is understood that the expression is

computed using floating-point arith-

metic. In particular, the relative error is

actually of the expression

The troublesome expression (1 + i/n)’

can be rewritten as exp[ n ln(l + i / n)],

where now the problem is to compute

In(l + x) for small x. One approach is to
use the approximation ln(l + x) = x, in

which case the payment becomes

$37617.26, which is off by $3.21 and even
less accurate than the obvious formula.

But there is a way to compute ln(l + x)

accurately, as Theorem 4 shows

[Hewlett-Packard 1982], This formula

yields $37614.07, accurate to within 2

(sQRT(a @(b @c))@ (C @(a @b)) cents!Theorem 4 assumes that LN( x) ap-

F3(c @(a @b))@ (a @(b @c)))
proximate ln( x) to within 1/2 ulp. The

problem it solves is that when x is small,

@4. (8)
LN(l @ x) is not close to ln(l + x) be-

cause 1 @ x has lost the information in
the low order bits of x. That is, the com-

Because of the cumbersome nature of (8), puted value of ln(l + x) is not close to its

in the statement of theorems we will actual value when x < 1.

usually say the computed value of E

rather than writing out E with circle Theorem 4

notation.

Error bounds are usually too pes-

simistic. In the numerical example given

above, the computed value of (7) is 2.35,

compared with a true value of 2.34216

for a relative error of O.7c, which is much

less than 11 e. The main reason for com-

puting error bounds is not to get precise

bounds but rather to verify that the
formula does not contain numerical

problems.
A final example of an expression that

can be rewritten to use benign cancella-

tion is (1 + x)’, where x < 1. This ex-

pression arises in financial calculations.

Consider depositing $100 every day into

a bank account that earns an annual

interest rate of 6~o, compounded daily. If
n = 365 and i = ,06, the amount of

money accumulated at the end of one

year is 100[(1 + i/n)” – 11/(i/n) dol-
lars. If this is computed using ~ = 2 and

P = 24, the result is $37615.45 compared
to the exact answer of $37614.05, a

discrepancy of $1.40. The reason for
the problem is easy to see. The expres-

sion 1 + i/n involves adding 1 to

.0001643836, so the low order bits of i/n

are lost. This rounding error is amplified

when 1 + i / n is raised to the nth power.

If ln(l – x) is computed using the for-

mula

ln(l + x)

Ix forl~x=l

——

1
xln(l + x)

(1 +X)-1
forl G3x#l

the relative error is at most 5 c when O <

x < 3/4, provided subtraction is per-

formed with a guard digit, e <0.1, and

in is computed to within 1/2 ulp.

This formula will work for any value of

x but is only interesting for x + 1, which

is where catastrophic cancellation occurs

in the naive formula ln(l + x) Although
the formula may seem mysterious, there
is a simple explanation for why it works.

Write ln(l + x) as x[ln(l + x)/xl =
XV(x). The left-hand factor can be com-

puted exactly, but the right-hand factor

P(x) = ln(l + x)/x will suffer a large
rounding error when adding 1 to x. How-

ever, v is almost constant, since ln(l +

x) = x. So changing x slightly will not

introduce much error. In other words, if

z= x, computing XK( 2) will be a good
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approximation to xp( x) = ln(l + x). Is

there a value for 5 for which 2 and

5 + 1 can be computed accurately? There

is; namely, 2 = (1 @ x) e 1, because
then 1 + 2 is exactly equal to 1 @ x.

The results of this section can be sum-

marized by saying that a guard digit

guarantees accuracy when nearby pre-

cisely known quantities are subtracted

(benign cancellation). Sometimes a for-

mula that gives inaccurate results can be

rewritten to have much higher numeri -

cal accuracy by using benign cancella-

tion; however, the procedure only works

if subtraction is performed using a guard

digit. The price of a guard digit is not

high because is merely requires making

the adder 1 bit wider. For a 54 bit double

precision adder, the additional cost is less

than 2%. For this price, you gain the

ability to run many algorithms such as
formula (6) for computing the area of a

triangle and the expression in Theorem 4

for computing ln(l + ~). Although most

modern computers have a guard digit,

there are a few (such as Crays) that

do not.

1.5 Exactly Rounded Operations

When floating-point operations are done

with a guard digit, they are not as accu-

rate as if they were computed exactly

then rounded to the nearest floating-point

number. Operations performed in this

manner will be called exactly rounded.

The example immediately preceding

Theorem 2 shows that a single guard

digit will not always give exactly rounded

results. Section 1.4 gave several exam-

ples of algorithms that require a guard

digit in order to work properly. This sec-

tion gives examples of algorithms that

require exact rounding.

So far, the definition of rounding has

not been given. Rounding is straightfor-

ward, with the exception of how to round

halfway cases; for example, should 12.5
mnnd to 12 OP12? Ofie whool of thought

divides the 10 digits in half, letting

{0, 1,2,3,4} round down and {5,6,’7,8,9}

round up; thus 12.5 would round to 13.

This is how rounding works on Digital

Equipment Corporation’s VAXG comput -

ers. Another school of thought says that

since numbers ending in 5 are halfway

between two possible roundings, they

should round down half the time and

round up the other half. One way of ob -

taining this 50’%0behavior is to require

that the rounded result have its least

significant digit be even. Thus 12.5
rounds to 12 rather than 13 because 2 is

even. Which of these methods is best,

round up or round to even? Reiser and

Knuth [1975] offer the following reason

for preferring round to even.

Theorem 5

Let x and y be floating-point numbers,

and define X. = x, xl=(xOey)O

y,...,=(x(ley)@y)If@If@ and
e are exactly rounded using round to

even, then either x. = x for all n or x. = xl

foralln >1. ❑

To clarify this result, consider ~ = 10,
p = 3 and let x = 1.00, y = –.555.

When rounding up, the sequence be-

comes X. 9 Y = 1.56, Xl = 1.56 9 .555

= 1.01, xl e y ~ LO1 Q .555 = 1.57,

and each successive value of x. in-

creases by .01. Under round to even, x.

is always 1.00. This example suggests

that when using the round up rule, com-

putations can gradually drift upward,

whereas when using round to even the

theorem says this cannot happen.

Throughout the rest of this paper, round

to even will be used.

One application of exact rounding oc-

curs in multiple precision arithmetic.

There are two basic approaches to higher
precision. One approach represents float -
ing-point numbers using a very large sig-

nificant, which is stored in an array of

words, and codes the routines for manip-
ulating these numbers in assembly lan-

guage. The second approach represents

higher precision floating-point numbers

as an array of ordinary floating-point

‘VAX is a trademark of Digital Equipment

Corporation.
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numbers, where adding the elements of

the array in infinite precision recovers

the high precision floating-point number.

It is this second approach that will be

discussed here. The advantage of using

an array of floating-point numbers is that

it can be coded portably in a high-level

language, but it requires exactly rounded

arithmetic.

The key to multiplication in this sys-

tem is representing a product xy as a

sum, where each summand has the same

precision as x and y. This can be done

by splitting x and y. Writing x = x~ + xl

and y = y~ + yl, the exact product is xy

= xhyh + xhyl + Xlyh + Xlyl. If X and y
have p bit significands, the summands

will also have p bit significands, pro-

vided XI, xh, yh? Y1 carI be represented
using [ p/2] bits. When p is even, it is

easy to find a splitting. The number

Xo. xl ““” xp_l can be written as the sum

of Xo. xl ““” xp/2–l and O.O.. .OXP,Z
. . . XP ~. When p is odd, this simple

splitting method will not work. An extra

bit can, however, be gained by using neg-

ative numbers. For example, if ~ = 2,

P = 5, and x = .10111, x can be split as
x~ = .11 and xl = – .00001. There is

more than one way to split a number. A

splitting method that is easy to compute

is due to Dekker [1971], but it requires

more than a single guard digit.

Theorem 6

Let p be the floating-point precision, with

the restriction that p is even when D >2,

ulps. Using Theorem 6 to write b = 3.5

– .024, a = 3.5 – .037, and c = 3.5 –

.021, b2 becomes 3.52 – 2 x 3.5 x .024

+ .0242. Each summand is exact, so b2

= 12.25 – .168 + .000576, where the

sum is left unevaluated at this point.

Similarly,

ac = 3.52 – (3.5 x .037 + 3.5 x .021)

+ .037 x .021

= 12.25 – .2030 + .000777.

Finally, subtracting these two series term

by term gives an estimate for b2 – ac of

O @ .0350 e .04685 = .03480, which is

identical to the exactly rounded result.

To show that Theorem 6 really requires

exact rounding, consider p = 3, P = 2,

and x = 7. Then m = 5, mx = 35, and

m @ x = 32. If subtraction is performed

with a single guard digit, then ( m @ x)

e x = 28. Therefore, x~ = 4 and xl = 3,

~~e xl not representable with \ p/2] =

As a final example of exact rounding,

consider dividing m by 10. The result is

a floating-point number that will in gen-

eral not be equal to m /10. When P = 2,

however, multiplying m @10 by 10 will

miraculously restore m, provided exact

rounding is being used. Actually, a more

general fact (due to Kahan) is true. The

proof is ingenious, but readers not inter-

ested in such details can skip ahead to
Section 2.

and assume that fl;ating-point operations

are exactly rounded. Then if k = ~p /2~ is

half the precision (rounded up) and m =

fik + 1, x can je split as x = Xh + xl,
where xh=(m Q9x)e (m@ Xe x), xl
—— x e Xh, and each x, is representable

using ~p/2] bits of precision.

To see how this theorem works in an
example, let P = 10, p = 4, b = 3.476,

a = 3.463, and c = 3.479. Then b2 – ac

rounded to the nearest floating-point
number is .03480, while b @ b = 12.08,

a @ c = 12.05, and so the computed value

of b2 – ac is .03. This is an error of 480

Theorem 7

When O = 2, if m and n are integers with

~m ~ < 2p-1 and n has the special form

n=2z+2J then (m On)@n=m,

provided fi?~ating-point operations are

exactly rounded.

Proof Scaling by a power of 2 is
harmless, since it changes only the expo-

nent not the significant. If q = m /n,

then scale n so that 2P-1 s n < 2P and

scale m so that 1/2 < q < 1. Thus, 2P–2

< m < 2P. Since m has p significant

bits, it has at most 1 bit to the right of

the binary point. Changing the sign of m

is harmless, so assume q > 0.
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If ij = m @ n, to prove the theorem

requires showing that

That is because m has at most 1 bit right

of the binary point, so nij will round to

m. TO deal with the halfway case when
I T@– m I = 1/4, note that since the ini-

tial unscaled m had I m I < 2‘- 1, its

low-order bit was O, so the low-order bit

of the scaled m is also O. Thus, halfway

cases will round to m.

Suppose q = .qlqz “.. , and & g =
. . . qP1. To estimate I nq – m 1,

ifs? compute I ~ – q I = I N/2p+1 –
m/nl, where N is an odd integer.

Since n=2’+2J and 2P-l <n <2p,

it must be that n = 2P–1 + 2k for some
~ < p – 2, and thus

(2~-’-k + ~) N- ~p+l-km
——

n~p+l–k

The numerator is an integer, and since

N is odd, it is in fact an odd integer.

Thus, I ~ – q ] > l/(n2P+l-k). Assume

q < @ (the case q > Q is similar). Then
nij < m, and

Im-n@l= m-nij=n(q-@)

= n(q – (~ – 2-P-1))

(

1
< n 2–P–1 —

n2 p
+1–k

)

= (2 P-1 +2’)2-’-’ +2-P-’+’=:.

This establishes (9) and proves the theo-

rem. ❑

The theorem holds true for any base 6,

as long as 2 z + 2 J is replaced by (3L+ DJ.
As 6 gets larger. however, there are

fewer and fewer denominators of the

form ~’ + p’.

We are now in a position to answer the
question, Does it matter if the basic

arithmetic operations introduce a little

more rounding error than necessary? The

answer is that it does matter, because

accurate basic operations enable us to

prove that formulas are “correct” in the

sense they have a small relative error.

Section 1.4 discussed several algorithms

that require guard digits to produce cor-

rect results in this sense. If the input to

those formulas are numbers representing

imprecise measurements, however, the

bounds of Theorems 3 and 4 become less

interesting. The reason is that the be-

nign cancellation x – y can become

catastrophic if x and y are only approxi-

mations to some measured quantity. But

accurate operations are useful even in

the face of inexact data, because they

enable us to establish exact relationships

like those discussed in Theorems 6 and 7.
These are useful even if every floating-

point variable is only an approximation

to some actual value.

2. IEEE STANDARD

There are two different IEEE standards

for floating-point computation. IEEE 754

is a binary standard that requires P = 2,
p = 24 for single precision and p = 53

for double precision [IEEE 19871. It also

specifies the precise layout of bits in a

single and double precision. IEEE 854

allows either L?= 2 or P = 10 and unlike
754, does not specify how floating-point

numbers are encoded into bits [Cody et

al. 19841. It does not require a particular

value for p, but instead it specifies con-

straints on the allowable values of p for

single and double precision. The term

IEEE Standard will be used when dis-

cussing properties common to both
standards.

This section provides a tour of the IEEE

standard. Each subsection discusses one

aspect of the standard and why it was

included. It is not the purpose of this

paper to argue that the IEEE standard is

the best possible floating-point standard
but rather to accept the standard as given

and provide an introduction to its use.

For full details consult the standards

[Cody et al. 1984; Cody 1988; IEEE 19871.
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2.1 Formats and Operations

2. 1.1 Base

It is clear why IEEE 854 allows ~ = 10.

Base 10 is how humans exchange and

think about numbers. Using (3 = 10 is

especially appropriate for calculators,

where the result of each operation is dis-

played by the calculator in decimal.

There are several reasons w~y IEEE

854 requires that if the base is not 10, it

must be 2. Section 1.2 mentioned one

reason: The results of error analyses are
much tighter when ~ is 2 because a

rounding error of 1/2 ulp wobbles by a

factor of fl when computed as a relative

error, and error analyses are almost al-

ways simpler when based on relative er-

ror. A related reason has to do with the

effective precision for large bases. Con-

sider fi = 16, p = 1 compared to ~ = 2,

p = 4. Both systems have 4 bits of signif-
icant. Consider the computation of 15/8.

When ~ = 2, 15 is represented as 1.111
x 23 and 15/8 as 1.111 x 2°, So 15/8 is

exact. When p = 16, however, 15 is rep-

resented as F x 160, where F is the hex-

adecimal digit for 15. But 15/8 is repre-

sented as 1 x 160, which has only 1 bit

correct. In general, base 16 can lose up to

3 bits, so a precision of p can have an

effective precision as low as 4p – 3

rather than 4p.

Since large values of (3 have these

problems, why did IBM choose 6 = 16 for
its system/370? Only IBM knows for sure,

but there are two possible reasons. The
first is increased exponent range. Single

precision on the system/370 has ~ = 16,

p = 6. Hence the significant requires 24

bits. Since this must fit into 32 bits, this
leaves 7 bits for the exponent and 1 for

the sign bit. Thus, the magnitude of rep-

resentable numbers ranges from about

16-2’ to about 1626 = 228. To get a simi-
lar exponent range when D = 2 would
require 9 bits of exponent, leaving only
22 bits for the significant. It was just

pointed out, however, that when D = 16,

the effective precision can be as low as

4p – 3 = 21 bits. Even worse, when B =
2 it is possible to gain an extra bit of

precision (as explained later in this sec-

tion), so the ~ = 2 machine has 23 bits of

precision to compare with a range of

21-24 bits for the ~ = 16 machine.
Another possible explanation for

choosing ~ = 16 bits has to do with shift-

ing. When adding two floating-point

numbers, if their exponents are different,

one of the significands will have to be

shifted to make the radix points line up,

slowing down the operation. In the /3 =

16, p = 1 system, all the numbers be-

tween 1 and 15 have the same exponent,

so no shifting is required when adding

any of the
()

15 = 105 possible pairs of

distinct numb~rs from this set. In the

b = 2, P = 4 system, however, these
numbers have exponents ranging from O

to 3, and shifting is required for 70 of the

105 pairs.

In most modern hardware, the perform-

ance gained by avoiding a shift for a

subset of operands is negligible, so the

small wobble of (3 = 2 makes it the

preferable base. Another advantage of
using ~ = 2 is that there is a way to gain

an extra bit of significance .V Since float-
ing-point numbers are always normal-

ized, the most significant bit of the

significant is always 1, and there is no

reason to waste a bit of storage repre-

senting it. Formats that use this trick

are said to have a hidden bit. It was

pointed out in Section 1.1 that this re-
quires a special convention for O. The
method given there was that an expo-

nent of e~,~ – 1 and a significant of all

zeros represent not 1.0 x 2 ‘mln–1 but

rather O.

IEEE 754 single precision is encoded

in 32 bits using 1 bit for the sign, 8 bits
for the exponent, and 23 bits for the sig-

nificant. It uses a
so the significant

even though it is
23 bits.

hidden bit, howeve~,
is 24 bits (p = 24),

encoded using only

‘This appears to have first been published by Gold-

berg [1967], although Knuth [1981 page 211] at-

tributes this Idea to Konrad Zuse
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2. 1.2 Precision

The IEEE standard defines four different

precision: single, double, single ex-

tended, and double extended. In 754, sin-

gle and double precision correspond

roughly to what most floating-point

hardware provides. Single precision oc-

cupies a single 32 bit word, double preci-

sion two consecutive 32 bit words.
Extended precision is a format that offers

just a little extra precision and exponent

range (Table 1). The IEEE standard only

specifies a lower bound on how many

extra bits extended precision provides.

The minimum allowable double-extended

format is sometimes referred to as 80-bit

format, even though the table shows it

using 79 bits. The reason is that hard-

ware implementations of extended preci-

sion normally do not use a hidden bit and

so would use 80 rather than 79 bits.8

The standard puts the most emphasis

on extended precision, making no recom-

mendation concerning double precision

but strongly recommending that

Implementations should support the extended

format corresponding to the widest basic format

supported,

One motivation for extended precision
comes from calculators, which will often

display 10 digits but use 13 digits inter-

nally. By displaying only 10 of the 13

digits, the calculator appears to the user

~ } a black box that computes exponen-

tial, cosines, and so on, to 10 digits of

accuracy. For the calculator to compute

functions like exp, log, and cos to within

10 digits with reasonable efficiency, how-

ever, it needs a few extra digits with

which to work. It is not hard to find a
simple rational expression that approxi-

mates log with an error of 500 units in

the last place. Thus, computing with 13
digits gives an answer correct to 10 dig-

its. By keeping these extra 3 digits hid-

*According to Kahan, extended precision has 64

bits of significant because that was the widest

precision across which carry propagation could be

done on the Intel 8087 without increasing the cycle

time [Kahan 19881.

den, the calculator presents a simple

model to the operator.

Extended precision in the IEEE stand-

ard serves a similar function. It enables

libraries to compute quantities to within

about 1/2 ulp in single (or double) preci-

sion efficiently, giving the user of those

libraries a simple model, namely, that

each primitive operation, be it a simple
multiply or an invocation of log, returns

a value accurate to within about 1/2 ulp.

When using extended precision, however,

it is important to make sure that its use

is transparent to the user. For example,

on a calculator, if the internal represen-

tation of a displayed value is not rounded

to the same precision as the display, the

result of further operations will depend

on the hidden digits and appear unpre-

dictable to the user.

To illustrate extended precision fur-

ther, consider the problem of converting

between IEEE 754 single precision and

decimal. Ideally, single precision num-

bers will be printed with enough digits so

that when the decimal number is read

back in, the single precision number can

be recovered. It turns out that 9 decimal

digits are enough to recover a single pre-

cision binary number (see Section 4.2).

When converting a decimal number back

to its unique binary representation, a

rounding error as small as 1 ulp is fatal

because it will give the wrong answer.

Here is a situation where extended preci-

sion is vital for an efficient algorithm.

When single extended is available, a

straightforward method exists for con-

verting a decimal number to a single

precision binary one. First, read in the 9

decimal digits as an integer N, ignoring

the decimal point. From Table 1, p >32,

and since 109 < 232 = 4.3 x 109, N can

be represented exactly in single ex-

tended. Next, find the appropriate power

10P necessary to scale N. This will be a

combination of the exponent of the deci-

mal number, and the position of the

(up until now) ignored decimal point.
Compute 10 I ‘l. If \ P I s 13, this is also

represented exactly, because 1013 =

213513 and 513<232. Finally, multiply

(or divide if P < 0) N and 10’ P‘. If this

ACM Computmg Surveys, Vol. 23, No. 1, March 1991



18 - David Goldberg

Table 1. IEEE 754 Format Parameters

Format

Parameter Single Single Extended Double Double Extended

P 24 > 32 53 > 64

emax + 127 z + 1023 + 1023 > + 16383

emln – 126 < – 1022 – 1022 < – 163$32

Exponent width in bits 8 > 11 11 2 15

Format width in bits 32 2 43 64 2 79

last operation is done exactly, the closest

binary number is recovered. Section 4.2

shows how to do the last multiply (or

divide) exactly. Thus, for I P I s 13, the

use of the single-extended format enables

9 digit decimal numbers to be converted

to the closest binary number (i. e., ex-

actly rounded). If I P I > 13, single-
extended is not enough for the above

algorithm to compute the exactly rounded

binary equivalent always, but Coonen

[1984] shows that it is enough to guaran-

tee that the conversion of binary to deci-

mal and back will recover the original

binary number.
If double precision is supported, the

algorithm above would run in double

precision rather than single-extended,

but to convert double precision to a 17

digit decimal number and back would

require the double-extended format.

2.1.3 Exponent

Since the exponent can be positive or
negative, some method must be chosen to

represent its sign. Two common methods

of representing signed numbers are

sign/magnitude and two’s complement.

Sign/magnitude is the system used for

the sign of the significant in the IEEE
formats: 1 bit is used to hold the sign; the
rest of the bits represent the magnitude

of the number. The two’s complement
representation is often used in integer

arithmetic. In this scheme, a number
is represented by the smallest nonneg-
ative number that is congruent to it

modulo 2 ~.

The IEEE binary standard does not
use either of these methods to represent
the exponent but instead uses a- biased

representation. In the case of single pre-

cision, where the exponent is stored in 8

bits, the bias is 127 (for double precisiog

it is 1023). What this means is that if k

is the value of the exponent bits inter-

preted as an unsigned integer, then the

exponent of the floating-point number is

~ – 127. This is often called the biased

exponent to di~tinguish from the unbi-

ased exponent k. An advantage of’ biased

representation is that nonnegative flout-
ing-point numbers can be treated as

integers for comparison purposes.

Referring to Table 1, single precision

has e~~, = 127 and e~,~ = – 126. The

reason for having I e~l~ I < e~,X is so that

the reciprocal of the smallest number

(1/2 ‘mm)will not overflow. Although it is

true that the reciprocal of the largest

number will underflow, underflow is usu-

ally less serious than overflow. Section

2.1.1 explained that e~,~ – 1 is used for

representing O, and Section 2.2 will in-

troduce a use for e~,X + 1. In IEEE sin-
gle precision, this means that the biased

exponents range between e~,~ – 1 =
– 127 and e~.X + 1 = 128 whereas the

unbiased exponents range between O

and 255, which are exactly the nonneg-

ative numbers that can be represented

using 8 bits.

2. 1.4 Operations

The IEEE standard requires that the re-

sult of addition, subtraction, multiplica-
tion, and division be exactly rounded.
That is, the result must be computed

exactly then rounded to the nearest float-

ing-point number (using round to even).
Section 1.3 pointed out that computing

the exact difference or sum of two float-
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ing-point numbers can be very expensive

when their exponents are substantially

different. That section introduced guard

digits, which provide a practical way of

computing differences while guarantee-
ing that the relative error is small. Com-

puting with a single guard digit,

however, will not always give the same

answer as computing the exact result

then rounding. By introducing a second

guard digit and a third sticky bit, differ-

ences can be computed at only a little

more cost than with a single guard digit,

but the result is the same as if the differ-

ence were computed exactly then rounded

[Goldberg 19901. Thus, the standard can
be implemented efficiently.

One reason for completely specifying

the results of arithmetic operations is to

improve the portability of software. When

a .Program IS moved between two ma-
chmes and both support IEEE arith-
metic, if any intermediate result differs,

it must be because of software bugs not

differences in arithmetic. Another ad-

vantage of precise specification is that it

makes it easier to reason about floating

point. Proofs about floating point are

hard enough without having to deal with

multiple cases arising from multiple

kinds of arithmetic. Just as integer pro-

grams can be proven to be correct, so can

floating-point programs, although what

is proven in that case is that the round-

ing error of the result satisfies certain

bounds. Theorem 4 is an example of such

a proof. These proofs are made much eas-

ier when the operations being reasoned

about are precisely specified. Once an

algorithm is proven to be correct for IEEE

arithmetic, it will work correctly on any
machine supporting the IEEE standard.

Brown [1981] has proposed axioms for

floating point that include most of the
existing floating-point hardware. Proofs

in this system cannot, however, verify

the algorithms of Sections 1.4 and 1.5,

which require features not present on all
hardware. Furthermore, Brown’s axioms
are more complex than simply defining

operations to be performed exactly then
rounded. Thus, proving theorems from

Brown’s axioms is usually more difficult

than proving them assuming operations

are exactly rounded.

There is not complete agreement on

what operations a floating-point stand-

ard should cover. In addition to the basic

operations +, –, x, and /, the IEEE

standard also specifies that square root,

remainder, and conversion between inte-

ger and floating point be correctly

rounded. It also requires that conversion

between internal formats and decimal be

correctly rounded (except for very large

numbers). Kulisch and Miranker [19861

have proposed adding inner product to

the list of operations that are precisely
specified. They note that when inner

products are computed in IEEE arith-

metic, the final answer can be quite

wrong. For example, sums are a special

case of inner products, and the sum ((2 x
10-30 + 1030) – 10--30) – 1030 is exactly

30 but on a machine withequal to 10-
IEEE arithme~ic the computed result
will be – 10 –30. It is possible to compute

inner products to within 1 ulp with less

hardware than it takes to imple-

ment a fast multiplier [Kirchner and

Kulisch 19871.9

All the operations mentioned in the

standard, except conversion between dec-

imal and binary, are required to be

exactly rounded. The reason is that effi-

cient algorithms for exactly rounding all

the operations, except conversion, are

known. For conversion, the best known

efficient algorithms produce results that

are slightly worse than exactly rounded

ones [Coonen 19841.

The IEEE standard does not require

transcendental functions to be exactly

rounded because of the table maker’s

dilemma. To illustrate, suppose you are
making a table of the exponential func-

tion to four places. Then exp(l.626) =
5.0835. Should this be rounded to 5.083

or 5.084? If exp(l .626) is computed more

carefully, it becomes 5.08350, then

‘Some arguments against including inner product

as one of the basic operations are presented by

Kahan and LeBlanc [19851.
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5.083500, then 5.0835000. Since exp is

transcendental, this could go on arbitrar-

ily long before distinguishing whether

exp(l.626) is 5.083500 “ “ “ Oddd or

5.0834999 “ “ “ 9 ddd. Thus, it is not prac-

tical to specify that the precision of tran-

scendental functions be the same as if

the functions were computed to infinite

precision then rounded. Another ap-

proach would be to specify transcenden-

tal functions algorithmically. But there

does not appear to be a single algorithm

that works well across all hardware ar-

chitectures. Rational approximation,

CORDIC,1° and large tables are three

different techniques used for computing

transcendental on contemporary ma-

chines. Each is appropriate for a differ-

ent class of hardware, and at present no

single algorithm works acceptably over

the wide range of current hardware.

2.2 Special Quantities

On some floating-point hardware every

bit pattern represents a valid floating-
point number. The IBM System/370 is

an example of this. On the other hand,

the VAX reserves some bit patterns to

represent special numbers called re-

served operands. This idea goes back to

the CDC 6600, which had bit patterns for

the special quantities INDEFINITE and

INFINITY.

The IEEE standard continues in this

tradition and has NaNs (Not a Number,
pronounced to rhyme with plan) and in-

finities. Without special quantities, there

is no good way to handle exceptional sit-

uations like taking the square root of a

negative number other than aborting

computation. Under IBM System/370
FORTRAN, the default action in re-

sponse to computing the square root of a

negative number like – 4 results in the

printing of an error message. Since every

10CORDIC is an acronym for Coordinate Rotation

Digital Computer and is a method of computing

transcendental funct~ons that uses mostly shifts

and adds (i. e., very few multiplications and divi-

sions) [Walther 1971], It is the method used on both

the Intel 8087 and the Motorola 68881.

Table 2. IEEE 754 Special Values

Exponent Fraction Represents

~=~
nun –1 f=o *O

e = ‘ml. -1 f#o O fx 2’mLn

e~,n 5 e 5 emax 1 fx2’

e=emay+l f:o
e=g ~ay + 1 f#o N%;

bit pattern represents a valid num-

ber, the return value of square root

must be some floating-point number.

In the case of System/370 FORTRAN,

~ = 2 is returned. In IEEE arith-
metic, an NaN is returned in this

situation.

The IEEE standard specifies the fol-

lowing special values (see Table 2): f O,

denormalized numbers, + co and NaNs

(there is more than one NaN, as ex-

plained in the next section). These

special values are all encoded with

exponents of either e~.X + 1 or e~,~ – 1

(it was already pointed out that O has an

exponent of e~,. – 1).

2.2.1 NaNs

Traditionally, the computation of 0/0 or

4 – 1 has been treated as an unrecover-

able error that causes a computation to

halt. There are, however, examples for

which it makes sense for a computation
to continue in such a situation. Consider

a subroutine that finds the zeros of a
function f, say zero(f). Traditionally,

zero finders require the user to input an
interval [a, b] on which the function is

defined and over which the zero finder

will search. That is, the subroutine is

called as zero(f, a, b). A more useful zero
finder would not require the user to in-
put this extra information. This more

general zero finder is especially appropri-

ate for calculators, where it is natural to

key in a function and awkward to then

have to specify the domain. It is easy,

however, to see why most zero finders

require a domain. The zero finder does

its work by probing the function f at

various values. If it probed for a value

outside the domain of f, the code for f
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Table 3. Operations that Produce an NaN

Operation NaN Produced by

+ W+(–w)

x Oxw

I 0/0, cO/03

REM x REM O, m REM y

fi(when x < O)
\

might well compute 0/0 or ~, and

the computation would halt, unnecessar-

ily aborting the zero finding process.

This problem can be avoided by intro-

ducing a special value called NaN and

specifying that the computation of ex-

pressions like 0/0 and ~ produce

NaN rather than halting. (A list of some

of the situations that can cause a NaN is

given in Table 3.) Then, when zero(f)

probes outside the domain of f, the code

for f will return NaN and the zero finder

can continue. That is, zero(f) is not

“punished” for making an incorrect

guess. With this example in mind, it is

easy to see what the result of combining

a NaN with an ordinary floating-point

number should be. Suppose the final

statement off is return( – b + sqrt(d))/

(2* a). If d <0, then f should return a

NaN. Since d <0, sqrt(d) is an NaN,

and – b + sqrt(d) will be a NaN if the

sum of an NaN and any other number

is a NaN. Similarly, if one operand

of a division operation is an NaN,

the quotient should be a NaN. In

general, whenever a NaN participates

in a floating-point operation, the

result is another NaN.

Another approach to writing a zero

solver that does not require the user to
input a domain is to use signals. The

zero finder could install a signal handler

for floating-point exceptions. Then if f

were evaluated outside its domain and

raised an exception, control would be re-

turned to the zero solver. The problem

with this approach is that every lan-
guage has a different method of handling
signals (if it has a method at all), and so

it has no hope of portability.

In IEEE 754, NaNs are represented as

floating-point numbers with the expo-

nent e~~X + 1 and nonzero significands.

Implementations are free to put system-

dependent information into the signifi-

cant. Thus, there is not a unique NaN

but rather a whole family of NaNs. When

an NaN and an ordinary floating-point

number are combined, the result should

be the same as the NaN operand. Thus,
if the result of a long computation is an

NaN, the system-dependent information
in the significant will be the information

generated when the first NaN in the

computation was generated. Actually,

there is a caveat to the last statement. If

both operands are NaNs, the result will

be one of those NaNs but it might not be
the NaN that was generated first.

2.2.2 Infinity

Just as NaNs provide a way to continue

a computation when expressions like 0/0

or ~ are encountered, infinities pro-

vide a way to continue when an overflow

occurs. This is much safer than simply

returning to the largest representable

number. As an example, consider com-

puting ~~, when b = 10, p = 3,

and e~~X = 98. If x = 3 x 1070 and

y = 4 X 1070, th en X2 will overflow and

be replaced by 9.99 x 1098. Similarly yz

and X2 + yz will each overflow in turn

and be replaced by 9.99 x 1098. So the

final result will be (9.99 x 1098)112 =

3.16 x 1049, which is drastically wrong.

The correct answer is 5 x 1070. In IEEE

arithmetic, the result of X2 is CO,as is

yz, X2 + yz, and -. SO the final
result is m, which is safer than

returning an ordinary floating-point

number that is nowhere near the correct

answer.”

The division of O by O results in an

NaN. A nonzero number divided by O,

however, returns infinity: 1/0 = ~,

– 1/0 = – co. The reason for the distinc-

tion is this: If f(x) -0 and g(x) + O as

llFine point: Although the default in IEEE arith-

metic is to round overflowed numbers to ~, it is

possible to change the default (see Section 2.3.2).
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x approaches some limit, then f( x)/g( x)

could have any value. For example,

when f’(x) = sin x and g(x) = x, then

~(x)/g(x) ~ 1 as x + O. But when ~(x)

=l– COSX, f(x)/g(x) ~ O. When

thinking of 0/0 as the limiting situation

of a quotient of two very small numbers,

0/0 could represent anything. Thus, in

the IEEE standard, 0/0 results in an
NaN. But when c >0 and f(x) ~ c, g(x)

~ O, then ~(x)/g(*) ~ * m for any ana-

lytic functions f and g. If g(x) <0 for

small x, then f(x)/g(x) ~ – m; other-

wise the limit is + m. So the IEEE stan-

dard defines c/0 = & m as long as c # O.

The sign of co depends on the signs of c

and O in the usual way, so – 10/0 = – co

and –10/–0= +m. You can distin-

guish between getting m because of over-

flow and getting m because of division by

O by checking the status flags (which will

be discussed in detail in Section 2.3.3).

The overflow flag will be set in the first

case, the division by O flag in the second.

The rule for determining the result of

an operation that has infinity as an

operand is simple: Replace infinity with

a finite number x and take the limit as

x + m. Thus, 3/m = O, because
Iim ~+~3/x = O. Similarly 4 – co = – aI

and G = w. When the limit does not

exist, the result is an NaN, so m/co will

be an NaN (Table 3 has additional exam-

ples). This agrees with the reasoning used

to conclude that 0/0 should be an NaN.
When a subexpression evaluates to a

NaN, the value of the entire expression
is also a NaN. In the case of & w, how-

ever, the value of the expression might

be an ordinary floating-point number be-

cause of rules like I/m = O. Here is a

practical example that makes use of the
rules for infinity arithmetic. Consider

computing the function x/( X2 + 1). This

is a bad formula, because not only will it

overflow when x is larger than

fib’”” iz but infinity arithmetic will

give the &rong answer because it will

yield O rather than a number near 1/x.
However, x/( X2 + 1) can be rewritten as

1/( x + x- l). This improved expression

will not overflow prematurely and be-
cause of infinity arithmetic will have the

correct value when x = O: 1/(0 + 0-1) =

1/(0 + CO)= l/CO = O. Without infinity

arithmetic, the expression 1/( x + x-1)

requires a test for x = O, which not only

adds extra instructions but may also dis-

rupt a pipeline. This example illustrates

a general fact; namely, that infinity

arithmetic often avoids the need for spe -

cial case checking; however, formulas

need to be carefully inspected to make

sure they do not have spurious behavior

at infinity [as x/(X2 + 1) did].

2.2.3 Slgnea Zero

Zero is represented by the exponent

emm – 1 and a zero significant. Since the

sign bit can take on two different values,

there are two zeros, + O and – O. If a

distinction were made when comparing

-t O and – O, simple tests like if (x = O)

would have unpredictable behavior, de-

pending on the sign of x. Thus, the IEEE

standard defines comparison so that

+0= –O rather than –O< +0. Al-

though it would be possible always to
ignore the sign of zero, the IEEE stan-

dard does not do so. When a multiplica-

tion or division involves a signed zero,

the usual sign rules apply in computing

the sign of the answer. Thus, 3(+ O) = -t O

and +0/– 3 = – O. If zero did not have a

sign, the relation 1/(1 /x) = x would fail

to hold when x = *m. The reason is
that 1/– ~ and 1/+ ~ both result in O,

and 1/0 results in + ~, the sign informa-

tion having been lost. One way to restore

the identity 1/(1 /x) = x is to have

only one kind of’ infinity; however,

that would result in the disastrous

consequence of losing the sign of an

overflowed quantity.
Another example of the use of signed

zero concerns underflow and functions

that have a discontinuity at zero such as
log. In IEEE arithmetic, it is natural to

define log O = – w and log x to be an

NaN whe”n x <0. Suppose” x represents

a small negative number that has under-
flowed to zero. Thanks to signed zero, x

will be negative so log can return an

NaN. If there were no signed zero,

however, the log function could not
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distinguish an underflowed negative

number from O and would therefore have

to return – m. Another example of a

function with a discontinuity at zero is

the signum function, which returns the

sign of a number.

Probably the most interesting use of

signed zero occurs in complex arithmetic.

As an example, consider the equation

~ = ~/&. This is certainly true
when z = O. If z = —1. the obvious com-

putation gives ~~ = ~ = i and

I/n= I/i = –i. Thus, ~#

1/W ! The problem can be traced to the

fact that square root is multivalued, and

there is no way to select the values so

they are continuous in the entire com-

plex plane. Square root is continuous,

however, if a branch cut consisting of all

negative real numbers is excluded from

consideration. This leaves the problem of

what to do for the negative real numbers,

which are of the form – x + iO, where
x > 0. Signed zero provides a perfect way

to resolve this problem. Numbers of the

form – x + i( + O) have a square root of

i&, and numbers of the form – x +

i( – O) on the other side of the branch cut

have a square root with the other sign

(– i ~). In fact, the natural formulas for

computing ~ will give these results.

Let us return to ~ = l/fi. If z =

–1= –l+iO, then

1/2 = 1/(-1 + iO)

1(-1 -iO)
——

(-1+ iO)(-1-iO)

= (-1 - iO)/(( -1)2 - 02)

= –l+i(–0),

so ~= – 1+ i(–0) = –i, while

I/&= l/i = –i, Thus, IEEE arith-

metic preserves this identity for all z.

Some more sophisticated examples are

given by Kahan [1987]. Although distin-
guishing between + O and – O has advan-
tages, it can occasionally be confusing.
For example, signed zero destroys the

relation x = y * I/x = l/y, which is

false when x = +0 and y = –O. The

IEEE committee decided, however, that

the advantages of using signed zero out-

weighed the disadvantages.

2.2.4 Denormalized Numbers

Consider normalized floating-point num-

bers with O = 10, p = 3, and e~,. = –98.

The numbers % = 6.87 x 10-97 and y =

6.81 x 10-97 appear to be perfectly ordi-
nary floating-point numbers, which are

more than a factor of 10 larger than the

smallest floating-point number 1.00 x

10-98. They have a strange property,

however: x 0 y = O even though x # y!

The reason is that x – y = .06 x 10-97
—— 6.0 x 10- ‘g is too small to be repre-

sented as a normalized number and so
must be flushed to zero.

How important is it to preserve the

property

X=yex–y=o? (lo)

It is very easy to imagine writing the

code fragment if (x # y) then z = 1/

(x – y) and later having a program fail
due to a spurious division by zero. Track-
ing down bugs like this is frustrating

and time consuming. On a more philo-

sophical level, computer science text -

books often point out that even though it

is currently impractical to prove large

programs correct, designing programs

with the idea of proving them often re -

suits in better code. For example, intro-

ducing invariants is useful, even if they

are not going to be used as part of a

proof. Floating-point code is just like any

other code: It helps to have provable facts

on which to depend. For example, when

analyzing formula (7), it will be helpful
toknowthat x/2<y <2x*x Oy=x
— y (see Theorem 11). Similarly, know-

ing that (10) is true makes writing reli-

able floating-point code easier, If it is

only true for most numbers, it cannot be

used to prove anything.

The IEEE standard uses denormal-
ized12 numbers, which guarantee (10), as

12They are called subnormal in 854, denormal in

754.
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Figure 2. Flush to zero compared with gradual underflow.

well as other useful relations. They are

the most controversial part of the stan-

dard and probably accounted for the long

delay in getting 754 approved. Most

high-performance hardware that claims

to be IEEE compatible does not support

denormalized numbers directly but

rather traps when consuming or produc-

ing denormals, and leaves it to software

to simulate the IEEE standard. 13 The

idea behind denormalized numbers goes

back to Goldberg [19671 and is simple.

When the exponent is e~,., the signifi-

cant does not have to be normalized. For

example, when 13= 10, p = 3, and e~,.
—— – 98, 1.00 x 10-98 is no longer the

smallest floating-point number, because
0.98 x 10 -‘8 is also a floating-point

number.

There is a small snag when P = 2 and

a hidden bit is being used, since a num-

ber with an exponent of e~,. will always

have a significant greater than or equal

to 1.0 because of the implicit leading bit.

The solution is similar to that used to

represent O and is summarized in Table

2. The exponent e~,. – 1 is used to rep-

resent denormals. More formally, if the

bits in the significant field are bl,

b bz~...~ p–1 and the value of the expo-

nent is e, then when e > e~,~ – 1, the

number being represented is 1. bl bz . “ .

b ~ x 2’, whereas when e = e~,~ – 1,
t~e number being represented is 0.61 bz

. . . b ~_l x 2’+1. The + 1 in the exponent

is needed because denormals have an ex-

ponent of e~l., not e~,~ – 1.

13This M the cause of one of the most troublesome

aspects of the #,andard. Programs that frequently

underilow often run noticeably slower on hardware

that uses software traps.

Recall the example O = 10, p = 3, e~,.
—— –98, x = 6.87 x 10-97, and y = 6.81
x 10-97 presented at the beginning of

this section. With denormals, x – y does

not flush to zero but is instead repre -

sented by the denormalized number

.6 X 10-98. This behavior is called

gradual underflow. It is easy to verify

that (10) always holds when using

gradual underflow.

Figure 2 illustrates denormalized

numbers. The top number line in the

figure shows normalized floating-point

numbers. Notice the gap between O and

the smallest normalized number 1.0 x

~em~. If the result of a floating-point cal-

culation falls into this gulf, it is flushed

to zero. The bottom number line shows

what happens when denormals are added

to the set of floating-point numbers. The

“gulf’ is filled in; when the result of a

calculation is less than 1.0 x ~’m~, it is

represented by the nearest denormal.

When denormalized numbers are added

to the number line, the spacing between
adjacent floating-point numbers varies in

a regular way: Adjacent spacings are ei-

ther the same length or differ by a factor

of f3. Without denormals, the spacing

abruptly changes from B‘P+ lflem~ to ~em~,

which is a factor of PP– 1, rather than the

orderly change by a factor of ~, Because
of this, many algorithms that can have
large relative error for normalized num-
bers close to the underflow threshold are

well behaved in this range when gradual
underflow is used.

Without gradual underflow, the simple
expression x + y can have a very large

relative error for normalized inputs, as

was seen above for x = 6.87 x 10–97 and

y = 6.81 x 10-97. L arge relative errors

can happen even without cancellation, as
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the following example shows [Demmel

1984]. Consider dividing two complex

numbers, a + ib and c + id. The obvious

formula

a+ib ac + bd be – ad
— + i

c+id–c2+d2 C2 -F d2

suffers from the problem that if either

component of the denominator c + id is

larger than fib ‘m= /2, the formula will

overflow even though the final result may

be well within range. A better method of

computing the quotients is to use Smith’s
formula:

a + b(d/c) b - a(d/c)

c+d(d/c) ‘Zc+d(d/c)

a+ib ifldl<lcl—

c+id–
<

b + a(c/d) –a+ b(c/d)

d + c(c/d) + i d + c(c/d)

Applying Smith’s formula to

g .10-98 + i10-98

4 “ 10-98 + i(2 “ 10-98)

gives the correct answer of 0.5 with grad-

ual underflow. It yields O.4 with flush to

zero, an error of 100 ulps. It is typical for

denormalized numbers to guarantee er-
ror bounds for arguments all the way

down to 1.0 x fiem~.

2.3 Exceptions, Flags, and Trap Handlers

When an exceptional condition like divi-

sion by zero or overflow occurs in IEEE

arithmetic, the default is to deliver a

result and continue. Typical of the de-

fault results are NaN for 0/0 and ~

and m for 1/0 and overflow. The preced-
ing sections gave examples where pro-

ceeding from an exception with these

default values was the reasonable thing
to do. When any exception occurs, a sta-
tus flag is also set. Implementations of

the IEEE standard are required to pro-

vide users with a way to read and write

the status flags. The flags are “sticky” in

that once set, they remain set until ex-

plicitly cleared. Testing the flags is the

only way to distinguish 1/0, which is a

genuine infinity from an overflow.

Sometimes continuing execution in the

face of exception conditions is not appro-

priate. Section 2.2.2 gave the example of

x/(x2 + 1). When x > ~(3e-xf2, the

denominator is infinite, resulting in a

final answer of O, which is totally wrong.

Although for this formula the problem

can be solved by rewriting it as 1/

(x + x-l), rewriting may not always
solve the problem. The IEEE standard

strongly recommends that implementa-

tions allow trap handlers to be installed.

Then when an exception occurs, the trap

handler is called instead of setting the

flag. The value returned by the trap

handler will be used as the result of

the operation. It is the responsibility

of the trap handler to either clear or set

the status flag; otherwise, the value of

the flag is allowed to be undefined.

The IEEE standard divides exceptions

into five classes: overflow, underflow, di-

vision by zero, invalid operation, and in-

exact. There is a separate status flag for

each class of exception. The meaning of

the first three exceptions is self-evident.

Invalid operation covers the situations

listed in Table 3. The default result of an

operation that causes an invalid excep-

tion is to return an NaN, but the con-

verse is not true. When one of the

operands to an operation is an NaN, the
result is an NaN, but an invalid excep -

tion is not raised unless the operation

also satisfies one of the conditions in

Table 3.

The inexact exception is raised when
the result of a floating-point operation is

not exact. In the p = 10, p = 3 system,

3.5 @ 4.2 = 14.7 is exact, but 3.5 @ 4.3

= 15.0 is not exact (since 3.5 “ 4.3 =

15.05) and raises an inexact exception.

Section 4.2 discusses an algorithm that

uses the inexact exception. A summary
of the behavior of all five exceptions is

given in Table 4.

There is an implementation issue con-

nected with the fact that the inexact ex-

ception is raised so often. If floating-point
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Table4. Exceptions mlEEE 754a

Exception Result When Traps Disabled Argument to Trap Handler

Overflow fm or *xmaY Round(x2-”)

Underflow O, + 2em~ ordenormal Round(x2”)

Divide by zero Operands
Invalid ~amN Operands
Inexact round(x) round(x)

‘.x Is the exact result of the operation, a = 192 for single precision, 1536 for

double, and xm,, = 1.11...11 x23m*.

hardware does not have flags of’ its own

but instead interrupts the operating sys-

tem to signal a floating-point exception,

the cost of inexact exceptions could be

prohibitive. This cost can be avoided by

having the status flags maintained by

software. The first time an exception is

raised, set the software flag for the ap -
propriate class and tell the floating-point

hardware to mask off that class of excep-

tions. Then all further exceptions will

run without interrupting the operating

system. When a user resets that status

flag, the hardware mask is reenabled.

2.3.1 Trap Handlers

One obvious use for trap handlers is for

backward compatibility. Old codes that

expect to be aborted when exceptions oc-

cur can install a trap handler that aborts

the process. This is especially useful for
codes with a loop like do S until (x > =

100). Since comparing a NaN to a num-

berwith <,<, >,~, or= (but not

#) always returns false, this code will go

into an infinite loop if x ever becomes

an NaN.

There is a more interesting use for

trap handlers that comes up when com-

puting products such as H ~=~x, that could

potentially overflow. One solution is to
use logarithms and compute exp(X log x,)
instead. The problems with this ap-

proach are that it is less accurate and

costs more than the simple expression
IIx,, even if there is no overflow. There is

another solution using trap handlers

called over / underfZo w counting that

avoids both of these problems [Sterbenz
1974].

The idea is as follows: There is a global

counter initialized to zero. Whenever the

partial product p~ = H ~=~xi overflows for

some k, the trap handler increments the

counter by 1 and returns the overflowed

quantity with the exponent wrapped

around. In IEEE 754 single precision,

emax = 127, so if p~ = 1.45 x 2130, it will

overflow and cause the trap handler to be

called, which will wrap the exponent back
into range, changing ph to 1.45 x 2-62

(see below). Similarly, if p~ underflows,

the counter would be decremented and

the negative exponent would get wrapped

around into a positive one. When all the

multiplications are done, if the counter is

zero, the final product is p.. If the

counter is positive, the product is over-

flowed; if the counter is negative, it un-

derflowed. If none of the partial products

is out of range, the trap handler is never

called and the computation incurs no ex-

tra cost. Even if there are over/under-

flows, the calculation is more accurate

than if it had been computed with loga-

rithms, because each pk was computed

from p~ _ ~ using a full-precision multi-

ply. Barnett [1987] discusses a formula

where the full accuracy of over/under-
flow counting turned up an error in ear-

lier tables of that formula.

IEEE 754 specifies that when an over-

flow or underflow trap handler is called,
it is passed the wrapped-around result as

an argument. The definition of wrapped

around for overflow is that the result is

computed as if to infinite precision, then

divided by 2”, then rounded to the rele-

vant precision. For underflow, the result

is multiplied by 2a. The exponent a is
192 for single precision and 1536 for dou-

ble precision. This is why 1.45 x 2130 was
transformed into 1.45 x 2-62 in the ex-

ample above.
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2.3.2 Rounding Modes

In the IEEE standard, rounding occurs

whenever an operation has a result that

is not exact, since (with the exception of

binary decimal conversion) each opera-

tion is computed exactly then rounded.

By default, rounding means round to-

ward nearest. The standard requires that

three other rounding modes be provided;
namely, round toward O, round toward
+ m, and round toward – co. When used

with the convert to integer operation,

round toward – m causes the convert to

become the floor function, whereas, round

toward + m is ceiling. The rounding mode

affects overflow because when round to-

ward O or round toward – m is in effect,

an overflow of positive magnitude causes

the default result to be the largest repre-
sentable number, not + m. Similarly,

overflows of negative magnitude will

produce the largest negative number

when round toward + m or round toward
O is in effect.

One application of rounding modes oc-
curs in interval arithmetic (another is

mentioned in Section 4.2). When using

interval arithmetic, the sum of two num-

bers x and y is an interval [Z, 21, where

g is x @ y rounded toward – co and 2 is

x @ y rounded toward + m. The exact

result of the addition is contained within

the interval [Z, 21. Without rounding
modes, interval arithmetic is usually im-

plemented by computing z = (x @ Y)

(1 – c) and Z = (x @ y)(l + e), where ~

is machine epsilon. This results in over-

estimates for the size of the intervals.

Since the result of an operation in inter-

val arithmetic is an interval, in general

the input to an operation will also be an
interval. If two intervals [g, 11 and [y, y]

are added, the result is [g, .21,where-g is

g @ y with the rounding mode set to

roun~ toward – ~, and Z is Z @ 2 with

the rounding mode set toward + ~.

When a floating-point calculation is

performed using interval arithmetic, the
final answer is an interval that contains

the exact result of the calculation. This
is not very helpful if the interval turns

out to be large (as it often does), since the

correct answer could be anywhere in that

interval. Interval arithmetic makes more

sense when used in conjunction with a

multiple precision floating-point pack-

age. The calculation is first performed

with some precision p. If interval arith-

metic suggests that the final answer may

be inaccurate, the computation is redone
with higher and higher precision until

the final interval is a reasonable size.

2.3.3 Flags

The IEEE standard has a number of flags

and modes. As discussed above, there is

one status flag for each of the five excep-

tions: underflow, overflow, division by

zero, invalid operation, and inexact.

There are four rounding modes: round

toward nearest, round toward + w, round

toward O, and round toward – m. It is

strongly recommended that there be an

enable mode bit for each of the five ex-

ceptions. This section gives some exam-

ples of how these modes and flags can be

put to good use. A more sophisticated

example is discussed in Section 4.2.
Consider writing a subroutine to com-

pute x‘, where n is an integer. When

n > 0, a simple routine like

PositivePower(x,n) {
while (n is even) {

X=X*X

n = n/2

}
U.x

while (true) {
n = n/2

if (n = = O)return u
X=X*X

if(nisodcl)u=u*x

will compute x n.

If n <0, the most accurate way to

compute x” is not to call Positive-

Power(l /x, – n) but rather 1/Posi-
tivePower(x, – n), because the first

expression multiplies n quantities, each
of which has a rounding error from the
division (i.e., 1/x). In the second expres-

sion these are exact (i.e., x) and the final

division commits just one additional
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rounding error. Unfortunately, there is a

slight snag in this strategy. If Positive-

Power(x, – n) underflows, then either

the underflow tra~ handler will be called
1

or the underflow status flag will be set.

This is incorrect, because if x-n under-

flow, then x‘ will either overflow or be

in range. 14 But since the IEEE standard

gives the user access to all the flags, the

subroutine can easilv correct for this.

It turns off the overflow and underflow

trap enable bits and saves the overflow

and underflow status bits. It then com-

tmtes 1 /PositivePower(x. – n). If nei-

~her th~ overflow nor underflow status

bit is set, it restores them together with

the trap enable bits. If one of the status

bits is set, it restores the flags and redoes
the calculation using PositivePower

(1/x, – n), which causes the correct ex-
ceptions to occur.

Another example of the use of flags

occurs when computing arccos via the

formula

rl–x
arccos x = 2 arctan —

1+X”

If arctan(co) evaluates to m/2, then arc-

COS(– 1) will correctly evaluate to

2 arctan(co) = r because of infinity arith-

metic. There is a small snag, however,

because the computation of (1 – x)/

(1 i- x) will cause the divide by zero ex-

ception flag to be set, even though arc-

COS(– 1) is not exceptional. The solution

to this problem is straightforward. Sim-

ply save the value of the divide by zero

flag before computing arccos, then re-

store its old value after the computation.

3. SYSTEMS ASPECTS

The design of almost every aspect of a

computer system requires knowledge
about floating point. Computer architec-

141t can be in range because if z <1, n <0, and

x –” is just a tiny bit smaller than the underflow

threshold 2em,n, then x“ = 2 ‘em~ < 2em= and so

may not overflow, since in all IEEE precision,

– emln < em...

tures usually have floating-point instruc-

tions, compilers must generate those

floating-point instructions, and the oper-

ating system must decide what to do

when exception conditions are raised for

those floating-point instructions. Com-

puter system designers rarely get guid-

ance from numerical analysis texts,
which are typically aimed at users and

writers of software not at computer

designers.

As an example of how plausible design

decisions can lead to unexpected behav-

ior, consider the following BASIC
program:

q = 3.0/7.0
if q = 3.0/7.0 then print “Equal”:

else print “Not Equal”

When compiled and run using Borland’s
Turbo Basic15 on an IBM PC, the pro-

gram prints Not Equal! This example

will be analyzed in Section 3.2.1.
Incidentally, some people think that

the solution to such anomalies is never to

compare floating-point numbers for

equality but instead to consider them

equal if they are within some error bound

E. This is hardly a cure all, because it

raises as many questions as it answers.

What should the value of E be? If x <0

and y > 0 are within E, should they re-

ally be considered equal, even though
they have different signs? Furthermore,

the relation defined by this rule, a - b &

I a - b I < E, is not an equivalence rela-

tion because a - b and b - c do not

imply that a - c.

3.1 Instruction Sets

It is common for an algorithm to require
a short burc.t of higher precision in order
to produce accurate results. One example

occurs in the quadratic formula [ – b

t ~/2a. As discussed in Sec-

tion 4.1, when b2 = 4 ac, rounding error

can contaminate up to half the digits in
the roots computed with the quadratic

15Turbo Basic is a registered trademark of Borland

International, Inc.
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formula. By performing the subcalcula-

tion of b2 – 4 ac in double precision, half

the double precision bits of the root are

lost, which means that all the single pre-

cision bits are preserved.

The computation of b2 – 4 ac in double
precision when each of the quantities a,

b, and c are in single precision is easy if

there is a multiplication instruction that

takes two single precision numbers and

produces a double precision result. To

produce the exactly rounded product of

two p-digit numbers, a multiplier needs

to generate the entire 2p bits of product,

although it may throw bits away as it

proceeds. Thus, hardware to compute a

double-precision product from single-pre-

cision operands will normally be only a

little more expensive than a single-preci-

sion multiplier and much less expensive

than a double-precision multiplier. De-

spite this, modern instruction sets tend

to provide only instructions that produce

a result of the same precision as the

operands. 16

If an instruction that combines two

single-precision operands to produce a

double-precision product were only useful

for the quadratic formula, it would not be

worth adding to an instruction set. This

instruction has many other uses, how-

ever. Consider the problem of solving a

system of linear equations:

which can be written in matrix form as

Ax = b, where

IsThis is probably because designers like “orthogo-

nal” instruction sets, where the precision of a

floating-point instruction are independent of the

actual operation. Making a special case for multi-

plication destroys this orthogonality,

Suppose a solution x(l) is computed by

some method, perhaps Gaussian elimina-

tion. There is a simple way to improve

the accuracy of the result called iteratiue

improvement. First compute

Then solve the system

(13)

Note that if x(l) is an exact solution,

then & is the zero vector, as is y.

In general, the computation of & and y

will incur rounding error, so Ay = & =
Ax(l) – b = A(x(lJ – x), where x is the

(unknown) true solution. Then y =
x(l) – x, so an improved estimate for the

solution is

X(2) = .Jl) _
Y. (14)

The three steps (12), (13), and (14) can be

repeated, replacing x(l) with X(2), and
X(2) with X(3). This argument that x(’ +1)

is more accurate than X(L) is only infor-

mal. For more information, see Golub

and Van Loan [1989].

When performing iterative improve-

ment, $ is a vector whose elements are

the difference of nearby inexact floating-

point numbers and so can suffer from

catastrophic cancellation. Thus, iterative

improvement is not very useful unless

~ = Ax(l) – b is computed in double pre-

cision. Once again, this is a case of com-
puting the product of two single-precision

numbers ( A and X(l)), where the full

double-precision result is needed.

To summarize, instructions that multi-

ply two floating-point numbers and re-
turn a product with twice the precision of

the operands make a useful addition to a

floating-point instruction set. Some of the

implications of this for compilers are dis-

cussed in the next section.

3.2 Languages and Compilers

The interaction of compilers and floating

point is discussed in Farnum [19881, and
much of the discussion in this section is

taken from that paper.
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3.2.1 Ambiguity

Ideally, a language definition should de-

fine the semantics of the language pre-

cisely enough to prove statements about

programs. Whereas this is usually true

for the integer part of a language, lan -

guage definitions often have a large gray

area when it comes to floating point

(modula-3 is an exception [Nelson 19911).
Perhaps this is due to the fact that many

language designers believe that nothing

can be preven about floating point, since

it entails rounding error. If so, the previ-

ous sections have demonstrated the fal-

lacy in this reasoning. This section

discusses some common mav areas in

language definitions and “gi~es sugges-
tions about how to deal with them.

Remarkably enough, some languages
do not clearly specify that if x is a float-

ing-point variable (with say a value of

3.0/10.0), then every occurrence of (say)

10.0 * x must have the same value. For

example Ada,~7 which is based on

Brown’s model, seems to imply that

floating-point arithmetic only has to sat-

isfy Brown’s axioms, and thus expres

sions can have one of many possible

values. Thinking about floating point in
this fuzzy way stands in sharp contrast

to the IEEE model, where the result of

each floating-point operation is precisely

defined. In the IEEE model, we can prove

that (3.0/10.0) * 3.0 evaluates to 3 (Theo-

rem 7), In Brown’s model, we cannot.

Another ambiguity in most language

definitions concerns what happens on

overflow, underflow, and other excep-

tions. The IEEE standard precisely spec-

ifies the behavior of exceptions, so

languages that use the standard as a
model can avoid any ambiguity on this

Boint..
Another gray area concerns the inter-

pretation of parentheses. Due to roundoff

errors, the associative laws of algebra do

not necessarily hold for floating-point

17Ada is a registered trademark of the U S. Govern-

ment Ada joint program office

numbers. For example, the expression

(x + y) + z has a totally different answer
than x + (y + z) when x = 1030,
y = –1030 and z = 1 (it is 1 in the for-
mer case, ‘O in the latter). The impor-

tance of preserving parentheses cannot

be overemphasized. The algorithms pre-

sented in Theorems 3, 4, and 6 all depend

on it. For example, in Theorem 6, the
formula x. = mx – ( mx – x) would re -

duce to x~”= x if it were not for paren-

theses, thereby destroying the entire

algorithm. A language definition that

does not require parentheses to be

honored is useless for floating-point

calculations.

Subexpression evaluation is impre-

cisely defined in many languages. Sup-

pose ds is double precision, but x and y

are single precision. Then in the expres-

sion ds + x *y, is the product performed

in single or double precision? Here is

another examde: In x + m h where m.
and n are integers, is the division an

integer operatio; or a floating-point one?

There are two ways to deal with this

problem, neither of which is completely

satisfactory. The first is to require that

all variables in an expression have the
same type. This is the simplest solution

but has some drawbacks. First, lan-

guages like Pascal that have subrange

types allow mixing subrange variables

with integer variables, so it is somewhat

bizarre to prohibit mixing single- and

double-precision variables. Another prob-
lem concerns constants. In the expres-

sion 0.1 *x, most languages interpret 0.1

to be a single-precision constant. Now

suppose the programmer decides to

change the declaration of all the

floating-point variables from single to
double precision. If 0.1 is still treated as

a single-precision constant, there will be

a compile time error. The programmer

will have to hunt down and change every

floating-point constant.

The second approach is to allow mixed

expressions, in which case rules for

subexpression evaluation must be pro-
vided. There are a number of guiding

examples. The original definition of C
required that every floating-point expres -
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sion be computed in double precision

[Kernighan and Ritchie 19781. This leads

to anomalies like the example immedi-

ately proceeding Section 3.1. The expres-

sion 3.0/7.0 is computed in double
precision, but if q is a single-precision

variable, the quotient is rounded to sin-

gle precision for storage. Since 3/7 is a

repeating binary fraction, its computed

value in double precision is different from

its stored value in single precision. Thus,

the comparison q = 3/7 fails. This sug-

gests that computing every expression in

the highest precision available is not a

good rule.

Another guiding example is inner

products. If the inner product has thou-

sands of terms, the rounding error in the

sum can become substantial. One way to

reduce this rounding error is to accumu-

late the sums in double precision (this

will be discussed in more detail in Sec-

tion 3.2. 3). If d is a double-precision

variable, and X[ 1 and y[ 1are single preci-

sion arrays, the inner product loop will
look like d = d + x[i] * y[i]. If the multi-

plication is done in single precision, much

of the advantage of double-precision ac-

cumulation is lost because the product is

truncated to single precision just before

being added to a double-precision

variable.
A rule that covers the previous two

examples is to compute an expression in

the highest precision of any variable that

occurs in that expression. Then q =
3.0/7.0 will be computed entirely in sin-

gle precisionlg and will have the Boolean

value true, whereas d = d + x[il * y[il

will be computed in double precision,

gaining the full advantage of double-pre-

cision accumulation. This rule is too sim-

plistic, however, to cover all cases

cleanly. If dx and dy are double-preci-

sion variables, the expression y = x +

single(dx – dy) contains a double-preci-

sion variable, but performing the sum in

double precision would be pointless be-

18This assumes the common convention that 3.0 is

a single-precision constant, whereas 3.ODO is a dou-

ble-precision constant.

cause both operands are single precision,

as is the result.

A more sophisticated subexpression

evaluation rule is as follows. First, as-

sign each operation a tentative precision,

which is the maximum of the precision of
its operands. This assignment has to be

carried out from the leaves to the root of

the expression tree. Then, perform a sec-

ond pass from the root to the leaves. In

this pass, assign to each operation the

maximum of the tentative precision and

the precision expected by the parent. In

the case of q = 3.0/7.0, every leaf is sin-

gle precision, so all the operations are

done in single precision. In the case of

d = d + x[il * y[il, the tentative precision

of the multiply operation is single preci-

sion, but in the second pass it gets pro-

moted to double precision because its

parent operation expects a double-preci-
sion operand. And in y = x + single

(dx – dy), the addition is done in single
precision. Farnum [1988] presents evi-

dence that this algorithm is not difficult

to implement.

The disadvantage of this rule is that

the evaluation of a subexpression de-

pends on the expression in which it is

embedded. This can have some annoying

consequences. For example, suppose you

are debugging a program and want to
know the value of a subexpression. You

cannot simply type the subexpression to
the debugger and ask it to be evaluated

because the value of the subexpression in

the program depends on the expression

in which it is embedded. A final com-

ment on subexpression is that since con-

verting decimal constants to binary is an

operation, the evaluation rule also af-

fects the interpretation of decimal con-

stants. This is especially important for

constants like 0.1, which are not exactly

representable in binary.

Another potential gray area occurs

when a language includes exponentia -

tion as one of its built-in operations. Un-
like the basic arithmetic operations, the

value of exponentiation is not always ob-

vious [Kahan and Coonen 19821. If * *
is the exponentiation operator, then

( – 3) * * 3 certainly has the value – 27.
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However, (–3.0)**3.O is problematical.

If the * * operator checks for integer pow-

ers, it would compute (–3.0)**3.O as

– 3.03 = –27. On the other hand, if the
Y k x is used to define * *formula x Y = e-

for real arguments, then depending on

the log function, the result could be a

NaN (using the natural definition of

log(x) = NaN when x < O). If the FOR-

TRAN CLOG function is used, however,
the answer will be – 27 because the ANSI

FORTRAN standard defines CLOG

( – 3.0) to be i~ log 3 [ANSI 1978]. The
programming language Ada avoids this

problem by only defining exponentia-

tion for integer powers, while ANSI

FORTRAN prohibits raising a negative

number to a real power.

In fact, the FORTRAN standard says

that

Any arithmetic operation whose result M not

mathematically defined is prohibited . .

Unfortunately, with the introduction
of + COby the IEEE standard, the mean-

ing of not mathematically defined is no

longer totally clear cut. One definition

might be to use the method of Section

2.2.2. For example, to determine the

value of ab, consider nonconstant ana-

lytic functions f and g with the property

that f(x)+ a and g(x)+ b as x~O. If

f’( X)g(’) always approaches the same

limit, this should be the value of ab. This

definition would set 2m = m, which seems
quite reasonable. In the case of 1.Om,

when f(x) = 1 and g(x) = I/x the limit

approaches 1, but when f(x) = 1 – x and

g(x) = l/x the limit is e. So l.0~ should

be an NaN. In the case of 0°, f(x)g(’) =

eg(x)log ~t’). Since f and g are analytical

and take on the value of O at O, f(x) =

alxl+az x2+ .“” and g(x) = blxl +

bzxz+ . . .. Thus.

:~g(x)log f(x)

—— limxlog(x(al + CZzx+ .“. ))
x-o

So ~(x)g(’) + e“ = 1 for all f and g,

which means 00 = 1.19 Using this defini-

tion would unambiguously define the ex-

ponential function for all arguments and

in particular would define ( – 3.0) * * 3.0
to be –27.

3.2.2 IEEE Standard

Section 2 discussed many of the features

of the IEEE standard. The IEEE stan-

dard, however, says nothing about how

these features are to be accessed from a

programming language. Thus, there is

usually a mismatch between floating-

point hardware that supports the stan-

dard and programming languages like C,

Pascal, or FORTRAN. Some of the IEEE

capabilities can be accessed through a

library of subroutine calls. For example,

the IEEE standard requires that square

root be exactly rounded, and the square

root function is often implemented di -

rectly in hardware. This functionality is

easily accessed via a library square root

routine. Other aspects of the standard,

however, are not so easily implemented

as subroutines. For example, most com-

puter languages specify at most two
floating-point types, whereas, the IEEE

standard has four different precision (al-

though the recommended configurations

are single plus single extended or single,

double, and double extended). Infinity

provides another example. Constants to

represent + co could be supplied by a

subroutine. But that might make them

unusable in places that require constant

expressions, such as the initializer of a

constant variable.

A more subtle situation is manipulat -

ing the state associated with a computa-

tion, where the state consists of the
rounding modes, trap enable bits, trap
handlers, and exception flags. One ap-

proach is to provide subroutines for read-
ing and writing the state. In addition, a

lgThe conclusion that 00 = 1 depends on the re-

striction f be nonconstant. If this restriction is

removed, then letting ~ be the identically O func-

tion gives O as a possible value for lim ~- ~f( x)gt’~,

and so 00 would have to be defined to be a NaN.

ACM Computmg Surveys, Vol. 23, No 1, March 1991



Floating-Point Arithmetic “ 33

single call that can atomically set a new

value and return the old value is often

useful. As the examples in Section 2.3.3

showed, a common pattern of modifying

IEEE state is to change it only within

the scope of a block or subroutine. Thus,

the burden is on the programmer to find

each exit from the block and make sure
the state is restored. Language support

for setting the state precisely in the scope

of a block would be very useful here.

Modula-3 is one language that imple-

ments this idea for trap handlers

[Nelson 19911.
A number of minor points need to be

considered when implementing the IEEE

standard in a language. Since x – x =

+0 for all X,zo (+0) – (+0) = +0. How-

ever, – ( + O) = – O, thus – x should not
be defined as O – x. The introduction of
NaNs can be confusing because an NaN

is never equal to any other number (in-

cluding another NaN), so x = x is no

longer always true. In fact, the expres-

sion x # x is the simplest way to test for

a NaN if the IEEE recommended func-

tion Isnan is not provided. Furthermore,

NaNs are unordered with respect to all
other numbers, so x s y cannot be de-

fined as not z > y. Since the intro-

duction of NaNs causes floating-point

numbers to become partially ordered, a

compare function that returns one of

<,=, > , or unordered can make it

easier for the programmer to deal with

comparisons.

Although the IEEE standard defines

the basic floating-point operations to re -

turn a NaN if any operand is a NaN, this
might not always be the best definition

for compound operations. For example,

when computing the appropriate scale

factor to use in plotting a graph, the

maximum of a set of values must be
computed. In this case, it makes sense

for the max operation simply to ignore

NaNs.

Finally, rounding can be a problem.

The IEEE standard defines rounding pre -

20Unless the rounding mode is round toward – m,

in which case x – x = – O.

cisely, and it depends on the current

value of the rounding modes. This some-

times conflicts with the definition of im-

plicit rounding in type conversions or the

explicit round function in languages.

This means that programs that wish

to use IEEE rounding cannot use the

natural language primitives, and con-

versely the language primitives will be

inefficient to implement on the ever-

increasing number of IEEE machines.

3.2.3 Optimizers

Compiler texts tend to ignore the subject

of floating point. For example, Aho et al.

[19861 mentions replacing x/2.O with
x * 0.5, leading the reader to assume that

x/10.O should be replaced by 0.1 *x.

These two expressions do not, however,

have the same semantics on a binary

machine because 0.1 cannot be repre-

sented exactly in binary. This textbook

also suggests replacing x * y – x * z by

x *(y – z), even though we have seen that

these two expressions can have quite dif-

ferent values when y ==z. Although it

does qualify the statement that any alge-

braic identity can be used when optimiz-

ing code by noting that optimizers should

not violate the language definition, it

leaves the impression that floating-point

semantics are not very important.
Whether or not the language standard

specifies that parenthesis must be hon-

ored, (x + -y) + z can have a totally differ-

ent answer than x -F (y + z), as discussed

above.

There is a problem closely related to

preserving parentheses that is illus-

trated by the following code:

eps = 1
do eps = 0.5* eps while (eps + 1> 1)

This code is designed to give an estimate

for machine epsilon. If an optimizing

compiler notices that eps + 1 > 1 @ eps

>0, the program will be changed com-
pletely. Instead of computing the small-

est number x such that 1 @ x is still

greater than x(x = c = 8-F’), it will com-
pute the largest number x for which x/2

is rounded to O (x = (?em~).Avoiding this
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kind of “optimization” is so important

that it is worth presenting one more use-

ful algorithm that is totally ruined by it.

Many problems, such as numerical in-

tegration and the numerical solution of

differential equations, involve computing

sums with manv terms. Because each.
addition can potentially introduce an er-

ror as large as 1/2 ulp, a sum involving

thousands of terms can have quite a bit

of rounding error. A simple way to cor-

rect for this is to store the partial sum-

mand in a double-precision variable and

to perform each addition using double

precision. If the calculation is being done

in single precision, performing the sum

in double precision is easy on most com-

puter systems. If the calculation is al-

ready being done in double precision,

however, doubling the precision is not so

simple. One method that is sometimes

advocated is to sort the numbers and add

them from smallest to largest. There is a

much more efficient method, however,

that dramatically improves the accuracy

of sums, namely Theorem 8.

Theorem 8 (Kahan Summation Formula)

Suppose El: ~XJ is computed using the

following algorithm

s = X[l]
C=o
forj=2to N{

Y.xrjl-c
T=S+Y
C=(T– S)– Y
S=T

}

Then the computed sum S is equal to

Exj(l + dj) + 0(iVe2)X I xi 1, where I 6, I

s 2f.

Using the naive formula ~xl, the com-

puted sum is equal to Xx~(l + 6J) where

I 6, I < (n - j)e. Comparing this with the

error in the Kahan summation form-
ula shows a dramatic improvement.

Each summand is perturbed by only 2 e

instead of perturbations as large as n e

in the simple formula. Details are in

Section 4.3.

An optimizer that believed floating-

point arithmetic obeyed the laws of alge-

bra would conclude that C = [T – S] –

Y = [(S + Y) – S] – Y = O, rendering

the algorithm completely useless. These

examples can be summarized by saying

that optimizers should be extremely cau-

tious when applying algebraic identities

that hold for the mathematical real num-

bers to expressions involving floating-

point variables.

Another way that optimizers can

change the semantics of floating-point

code involves constants. In the expres-

sion 1.OE –40 *x, there is an implicit dec-

imal to binary conversion operation that

converts the decimal number to a binary

constant. Because this constant cannot

be represented exactly in binary, the in-

exact exception should be raised. In addi -

tion, the underflow flag should to be set
if the expression is evaluated in single

precision. Since the constant is inexact,

its exact conversion to binary depends on

the current value of the IEEE rounding

modes. Thus, an optimizer that converts

1.OE-40 to binary at compile time would

be changing the semantics of the pro-

gram. Constants like 27.5, however, that

are exactly representable in the smallest

available precision can be safely con-

verted at compile time, since they are

always exact, cannot raise any exception,

and are unaffected by the rounding
modes. Constants that are intended to be

converted at compile time should be done
with a constant declaration such as const

pi = 3.14159265.

Common subexpression elimination is

another example of an optimization that

can change floating-point semantics, as

illustrated by the following code:

C= A*B;
RndMode = Up
D= A*B;

Although A * B may appear to be a com-

mon subexpression, it is not because the

rounding mode is different at the two

evaluation sites. Three final examples

are x = x cannot be replaced by the

Boolean constant true, because it fails
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when x is an NaN; – x = O – x fails for

x = + O; and x < y is not the opposite of

x > y, because NaNs are neither greater
than nor less than ordinary floating-point

numbers.

Despite these examples, there are use-

ful optimizations that can be done on

floating-point code. First, there are alge -

braic identities that are valid for float-

ing-point numbers. Some examples in

IEEE arithmetic are x + y = y + x, 2 x

x=x+x. lxx=x. and O.5 XX =X12.

Even the’se simple ‘identities, however,

can fail on a few machines such as CDC

and Cray supercomputers. Instruction

scheduling and inline procedure substi-

tution are two other potentially useful
21As a final eXample) cOn-

optimizations.
sider the expression dx = x * y, where x

and y are single precision variables and
dx is double m-ecision. On machines that

have an ins~ruction that multiplies two

single-precision numbers to produce a

double-precision number, dx = x * y can

get mapped to that instruction rather

than compiled to a series of instructions

that convert the operands to double then

perform a double-to-double precision

multiply.

Some compiler writers view restric-

tions that prohibit converting (x + y) -t z
to x + (y + z) as irrelevant, of interest

only to programmers who use unportable

tricks. Perham thev have in mind that

floating-point’ num~ers model real num-

bers and should obey the same laws real

numbers do. The problem with real num-

ber semantics is that thev are extremelv.
expensive to implement. Every time two
n bit numbers are multiplied, the prod-

uct will have 2 n bits. Every time two n

bit numbers with widely spaced expo-
nents are added, the sum will have 2 n

bits. An algorithm that involves thou-
sands of operations (such as solving a

linear system) will soon be operating on

huge numbers and be hopelessly slow.

‘lThe VMS math libraries on the VAX use a weak

form of inline procedure substitution in that they

use the inexpensive jump to subroutine call rather

than the slower CALLS and CALLG instructions.

The implementation of library functions

such as sin and cos is even more difficult,

because the value of these transcenden-

tal functions are not rational numbers.
Exact integer arithmetic is often pro-

vided by Lisp systems and is handy for
some problems. Exact floating-point

arithmetic is, however, rarely useful.

The fact is there are useful algorithms

(like the Kahan summation formula) that

exploit (x + y) + z # x + (y + z), and

work whenever the bound

afllb=(a+b)(l+d)

holds (as well as similar bounds for –,

x, and /). Since these bounds hold for
almost all commercial hardware not just

machines with IEEE arithmetic, it would

be foolish for numerical programmers to
ignore such algorithms, and it would be

irresponsible for compiler writers to de-

stroy these algorithms by pretending that

floating-point variables have real num-

ber semantics.

3.3 Exception Handling

The topics discussed up to now have pri-

marily concerned systems implications of

accuracy and precision. Trap handlers

also raise some interesting systems is-

sues. The IEEE standard strongly recom-

mends that users be able to specify a trap

handler for each of the five classes of

exceptions, and Section 2.3.1 gave some

applications of user defined trap han-

dlers, In the case of invalid operation

and division by zero exceptions, the han-

dler should be provided with the

operands, otherwise with the exactly
rounded result. Depending on the pro-

gramming language being used, the trap

handler might be able to access other

variables in the program as well. For all

exceptions, the trap handler must be able

to identify what operation was being

performed and the precision of its
destination.

The IEEE standard assumes that oper-

ations are conceptually serial and that

when an interrupt occurs, it is possible to
identify the operation and its operands.
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On machines that have pipelining or

multiple arithmetic units, when an ex-

ception occurs, it may not be enough sim-

ply to have the trap handler examine the

program counter. Hardware support for

identifying exactly which operation

trapped may be necessary.

Another problem is illustrated by the

following program fragment:

x=y*z
Z=X*W

a=b+c
d = a/x

Suppose the second multiply raises an

exception, and the trap handler wants to

use the value of a. On hardware that can

do an add and multiply in parallel,

an o~timizer would mobablv move the.
addi<ion operation ahead of the second

multiply, so that the add can proceed in

parallel with the first multiply. Thus,

when the second multiply traps, a = b +

c has already been executed, potentially

changing the result of a. It would not be

reasonable for a compiler to avoid this

kind of optimization because every float-

ing-point operation can potentially trap,

and thus virtually all instruction

scheduling optimizations would be elimi-

nated. This problem can be avoided by

prohibiting trap handlers from accessing

any variables of the program directly.
Instead, the handler can be given the

operands or result as an argument.
But there are still problems. In the

fragment

x=y*!z

z=a+b

the two instructions might well be exe-
cuted in parallel If the multiply traps,

its argument z could already have been

overwritten by the addition, especially
since addition is usually faster than mul-

tiply. Computer systems that support

trap handlers in the IEEE standard must

pro~ide some way to save the value of z,

either in hardware or by having the

compiler avoid such a situation in the
first ~lace.

Ka~an has proposed using presubstitu-

tion instead of trap handlers to avoid

these problems. In this method, the user

specifies an exception and a value to be

used as the result when the exception

occurs. As an example, suppose that in

code for computing sin x /x, the user de-

cides that x = O is so rare that it would

improve performance to avoid a test for

x = O and instead handle this case when
a 0/0 trap occurs. Using IEEE trap han-

dlers, the user would write a handler

that returns a value of 1 and installs it

before computing sin x/x. Using presub -

stitution, the user would specify that

when an invalid operation occurs, the

value of 1 should be used. Kahan calls

this presubstitution because the value to

be used must be specified before the ex-

ception occurs. When using trap han-

dlers, the value to be returned can be

computed when the trap occurs.

The advantage of presubstitution is

that it has a straightforward hardware

implementation. As soon as the type of

exception has been determined, it can be

used to index a table that contains the

desired result of the operation. Although

presubstitution has some attractive at-

tributes, the widespread acceptance of the

IEEE standard makes it unlikely to be

widely implemented by hardware manu-

facturers.

4. DETAILS

Various claims have been made in this

paper concerning properties of floating-
point arithmetic. We now proceed to

show that floating point is not black
magic, but rather a straightforward

subject whose claims can be verified

mathematically.

This section is divided into three parts.

The first part represents an introduction
to error analysls and provides the detads

for Section 1. The second part explores
binary-to-decimal conversion, filling in

some gaps from Section 2. The third

part discusses the Kahan summation
formula, which was used as an example
in Section 3,

4.1 Rounding Error

In the discussion of rounding error, it

was stated that a single guard digit is

enough to guarantee that addition and
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subtraction will always be accurate (The-

orem 2). We now proceed to verify this

fact. Theorem 2 has two parts, one for

subtraction and one for addition. The part
for subtraction is as follows:

Theorem 9

If x and y are positive fZoating-point num-

bers in a format with parameters D and p

and if subtraction is done with p + 1 dig-

its (i. e., one guard digit), then the rela-

tive rounding error in the result is less

than [(~/2) + l]~-p = [1+ (2/~)]e = 26.

Proof Interchange x and y is neces-

sary so that x > y. It is also harmless to
scale x and y so that x is represented by

Xo. xl ““” x ~_ ~ x 13°. If y is represented
as yo. yl . . . YP. 1, then the difference is
exact. If y is represented as O.yl . . c yP,

then the guard digit ensures that the

computed difference will be the exact dif-

ference rounded to a floating-point num-

ber, so the rounding error is at most ~. In

general, let y = 0.0 “ . . Oy~+l .00 yh+P

and let Y be y truncated to p + 1 digits.

Then,

< (0 – 1)(6-P-1 ““” +p-~-~).

(15)

From the definition of guard digit, the

computed value of x – y is x–y

rounded to be a floating-point number;

that is, (x – J) + 8, where the rounding

error 8 satisfies

(16)

The exact difference is x – y, so the er-

roris(x –y)–(x–ji+ ~)= J–y +6.

There are three cases. If x – y >1, the

relative error is bounded by

y–j+ti

1

[
==~-p (~- 1)(~-’+ ““” +6-’)+:

1

()<P’1+5
2

(17)

Second, if x – ~ <1, then 6 = O. Since

the smallest that x – y can be is

k k

1.0 – o.r—— o@”””@

> (P – 1)(8-1 + ...+p-~)

(where Q = ~ – 1), in this case the rela-

tive error is bounded by

< (6- l)p-p(r’ + . . . +p-k)

(/3- 1)(6-’ + . . . +6-’)

= /’-P (18)

The final case is when x – y <1 but

x – ~ > 1. The only way this could hap-

pen is if x – j = 1, in which case 8 = O.

But if 6 = O, then (18) applies, so again

the relative error is bounded by b ‘p <

p-p(l + 6/2). ❑

When P = 2, the bound is exactly

2 e, and this bound is achieved for x =

1 + 22-P and y = 21-P – 21-2P in the

limit as p + co. When adding numbers of

the same sign, a guard digit is not neces-

sary to achieve good accuracy, as the

following result shows.

Theorem 10

If x >0 and y >0, the relative error in

computing x -t y is at most 2 e, even if no

guard digits are used.

Proof The algorithm for addition

with k guard digits is similar to the
algorithm for subtraction. If x = y, and

shift y right until the radix points of x

and y are aligned. Discard any digits

shifted past the p + k position. Compute

the sum of these two p + k digit num-

bers exactly. Then round to p digits.
We will verify the theorem when no

guard digits are used; the general case is

similar. There is no loss of generality in
assuming that x z y ~ O and that x is

scaled to be of the form d. d 00. d X /3°.

First, assume there is no carry out. Then

the digits shifted off the end of y have a
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value less than (3‘p +1 and the sum is at

least 1, so the relative error is less than

~-P+l/l = 2e. If there is a carry out, the

error from shifting must be added to the

rounding error of (1/2) ~ ‘p’2. The sum is

at least II, so the relative error is less

than (~-p+l + (1/2) ~-p+2)/~ = (1 +

p/2)~-~ s 2,. H

It is obvious that combining these two

theorems gives Theorem 2. Theorem 2

gives the relative error for performing

one operation. Comparing the rounding

error of x 2 – y2 and (x+y)(x–y) re-

quires knowing the relative error of mul-

tiple operations. The relative error of
xeyis81= [(x0 y)-(x-y)l/

(x – y), which satisfies I al I s 26. Or to

write it another way,

This relative error is equal to 81 + 62 +

t+ + 618Z + 616~ + 6263, which is bounded

by 5e + 8 E2. In other words, the maxi-

mum relative error is about five round-

ing errors (since ~ is a small number, C2

is almost negligible).

A similar analvsis of ( x B x) e

(y@ y) cannot result in a small value for

the relative error because when two

nearby values of x and y are plugged
into X2 — y2, the relative error will usu-

ally be quite large. Another way to see

this is to try and duplicate the analysis

that worked on (x e y) 8 (x O y),

yielding

(Xth) e (YC8Y)

= [x’(l +8J - Y2(1 + ‘52)](1 + b)

Xey=(x–y)(l+dl), 18, J< 26.
= ((X2 - y’)(1 + 61) + (6, - 62)Y2)

(19) (1 + &J.

Similarly,

x@y=(x+y)(l+a2), 182] <2E.

(20)

Assuming that multiplication is per-

formed by computing the exact product

then rounding, the relative error is at

most 1/2 ulp, so

u@u=uu(l+~3), 18315C (21)

for any floating point numbers u and u.

Putting these three equations together

(letting u = x 0 y and v = x Q y) gives

(xey)~(xey)

= (X-y)(l +(!,)

X(x+ y)(l + 32)(1 + 63). (22)

So the relative error incurred when com-
puting (x – y)( x + y) is

(Xey)o(x ey)-(xa-y’)

(Xa-ya)

= (1 +6,)( 1+62)(1+8,) -1. (23)

When x and y are nearby, the error

term (61 – 82)y2 can be as large as the

result X2 – y2. These computations for-

mally justify our claim that ( x – y)

(x + y) is more accurate than x’ – y’.

We next turn to an analysis of the
formula for the area of a triangle. To

estimate the maximum error that can

occur when computing with (7), the fol-

lowing fact will be needed.

Theorem 11

If subtraction is performed with a guard

digit and y/2 < x< 2y, then x – y is

computed exactly,

Proof Note that if x and y have the

same exponent, then certainly x G y is
exact. Otherwise, from the condition of
the theorem, the exponents can differ by
at most 1. Scale and interchange x and y

if necessary so O < y < x and x is repre-
sented as XO.xl “ . “
. . .

Xp.l and y as O.Yl
yP. Then the algorithm for comput -

ing x e y will compute x – y exactly

and round to a floating-point number but
if the difference is of the form O.dl . . .

dp, the difference will already be p digits

long, and no rounding is necessary. Since
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X= 2y, x– ysy, and since y is of the

form O.dl .” “ ciP, sois x-y. ❑

When (1 >2, the hypothesis of Theo-
rem 11 cannot be replaced by y/~ s x s

~y; the stronger condition y/2 < x s 2 y

is still necessary. The analysis of the
error in ( x – y)( x + y) in the previous

section used the fact that the relative

error in the basic operations of addition

and subtraction is small [namely, eqs.

(19) and (20)]. This is the most common

kind of error analysis. Analyzing for-

mula (7), however, requires something

more; namely, Theorem 11, as the follow-

ing proof will show.

Theorem 12

If subtraction uses a guard digit and if a,

b, and c are the sides of a triangle, the

relative error in computing (a i- (b +

c))(c – (a – b))(c + (a – b))(a + (b – c))

is at most 16 t, provided e < .005.

Proof Let us examine the factors one

by one. From Theorem 10, b ‘d3 c =

(b + c)(1 -i- al), where al is the relative

error and I til I s 2 ~. Then the value of

the first factor is (a 63 (b ED c)) = (a +

(b 63 c))(1 + 8,) = (a+ (b + c)(I + 81))
x(1 + ti2), and thus

(a+ b+ C)(l-242
<[a+ (b+c)(l-2~)](1-2e)

<a@(b @c)

=[a+(b+ c)(l+2c)](l+2c)

s (a+ b+ c)(1 +.2E)2.

This means that there is an VI so that

(a @ (b @ c)) = (a+ b+c)(l+ql)’,

The next term involves the potentially

catastrophic subtraction of c and a 63 b,

because a GI h may have rounding er.

ror. Because a, b, and c are the sides of a
triangle, a < b + c, and combining this

with the ordering c < b < a gives a < b

+c<2b~2a. So a– b satisfies the

conditions of Theorem 11. This means

a – b = a El b is exact, and hence c a

(a – b) is a harmless subtraction that

can be estimated from Theorem 9 to be

(C 0 (a e b)) = (c- (a- b))(l+nJ,

/q21 s2,. (25)

The third term is the sum of two exact

positive quantities, so

(C @I(a e b))= (c+ (a- b))(l+ v,),

lq31 <2c. (26)

Finally, the last term is

(a@ (b 0 c)) = (a+ (b-c) )(l+q4)2,

IvAI S2E, (27)

using both Theorem 9 and Theorem 10.

If multiplication is assumed to be exactly

rounded so that x @ y = xy(l + f) with

I f I s e, then combining (24), (25), (26),
and (27) gives

(a d) (b 63 c))(c 0 (a 0 b))

(C @ (a 0 b))(a @ (b 0 c))

s (a+ (b +c))(c - (a- b))

(c+ (a- b))

(a+(b-c))E ?

where

E = (1 + ql)2(l+ q2)(l+ q3)(l+ T4)2

(1+ ~1)(1+ ~,)(1+ ~,).

An upper bound for E is (1 + 2C)6(1 +

e)3, which expands to 1 + 15c + 0(e2).
Some writers simply ignore the 0(~2)

term, but it is easy to account for it.

Writing (1 + 26)6(1 + C)3 = 1 + 15e +

cl?(e), l?(~) is a polynomial in ~ with

positive coefficie~ts, so it is an increasing
function of G. Since R(.005) = .505, R(.)

< 1 for all ~ < .005, and hence E s (1 +
2C)6(1 + ~)3 <1 + 166. To get a lower

bound on E, note that 1 – 15e – cR(6) <

E; so when c <.005, 1 – 166< (1 –
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26)6(1 – 6)3. Combining these two

bounds yields 1 – 16c < E < 1 + 16c.

Thus the relative error is at most 16~.

E

Theorem 12 shows there is no catas-

trophic cancellation in formula (7).
Therefore, although it is not necessary to

show formula (7) is numerically stable, it

is satisfying to have a bound for the en-

tire formula, which is what Theorem 3 of

Section 1.4 gives.

Theorem 13

If p(x) = ln(l + x)/x, then for O S x <

3/4, 1/2 s W(x) < 1 and the derivative

satisfies I K’(x) I < 1/2.

Proof Note that p(x) = 1 – x/2 +

x2/3 –... is an alternating series with

decreasing terms, so for x <1, p(x) >1
— x/2 = 1/2. It is even easier to see that
because the series for p is alternating,

V(x) <1. The Taylor series of M’(x) is
also alternating, and if x = 3/4 has de-

Proof Theorem 3. Let
creasing terms, so – 1/2 < p’(x) < – 1/2

+ 2x/3, or – 1/2 s p’(x) s O, thus

q=(a+(b +c))(c -(a-b))
/ p’(%)1 s 1/2. m

(c+ (a- b))(a+ (b-c))
Proof Theorem 4. Since the Taylor se-

ries for In,

and

Q=(a@(b @c))@ (ce(a Ob))

Then Theorem 12 shows that Q = q(l +

8), with 6 = 166. It is easy to check that

sl +.52161 (28)

provided 6< .04/( .52)2 = .15. Since I 8 I

< 16e s 16(.005) = .08, 8 does satisfy the

condition. Thus, @ = [q(l + 6)] ’/2

=ti(l+~~), with Ihl =.521~1 =
8 .5e. If square roots are computed to
within 1/2 ulp, the error when comput -

ing ~ is (1 + 61)(1 + 62), with I 62 I <

c. If 6 = 2, there is no further error com-
mitted when dividing by 4. Otherwise,

one more factor 1 + 63 with I 63 I s ~ is
necessary for the dlvlsion, and using the

method in the proof of Theorem 12, the
final error bound of (1 + 61)(1 + 8Z)(1 +

ti~) is dominated by 1 + 6A, with I til I s
he. ❑

X2 X3
ln(l+x)=x–l+~ –...,

is an alternating series, O < x – ln(l +

x) < X2/2. Therefore, the relative error

incurred when approximating ln(l + x)

by x is bounded by x/2. If 1 @ x = 1,

then I x I < c, so the relative error is

bounded by E/2.

When 1 @ x # 1, define 2 via 1 @ x

=1+2. Then since O<x<l, (l@ x)

@ 1 = i. If division and logarithms are

computed to within 1/2 ulp, the com-

puted value of the expression ln(l +

x)/((1 + x) – 1) is

ln(lo‘) (1 + 6,)(1+ 62)
(lox)el

—— 1n(12+2)(1 + (31)(1 + 62)

= p(i)(l +(31)(1 + 62), (29)

where ] 61 [ s c and I 62 I < c. To esti-
mate P( 2), use the mean value theorem,
which says that

/J(i) – jL(x) = (i – X)v’(. g) (30)

for some $ between x and 2. From the
To make the heuristic explanation im- definition of i, it follows that I ~ – x I s

mediately following the statement of e. Combining this with Theorem 13 gives
Theorem 4 precise, the next theorem de- 11-L(2)- I-L(x)I s ~/2 or lw(2)/v(x) -11
scribes just how closely p(x) approxi - s e/(2 I p(x) 1) < ~, which means ~(t) =
mates a constant. ,u(x)(1 + 63), with 183 I s e. Finally,
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multiplying by x introduces a final 6A, so

the computed value of xln(l + x)/((1 +

x) – 1) is

X(l +83)(1 +(s4), \tjls E.

It is easy to check that if ~ <0.1, then

(1 + 8,)(1 + 82)(1 + 83)(1 + 84) = 1 + 8,

with 16\s5e. ❑

An interesting example of error analy-

sis using formulas (19), (20), and (21)

occurs in the quadratic formula [ – b

~ ~]/2 a. Section 1.4 explained

how rewriting the eauation will elimi -

nate the pote~tial can~ellation caused by

the ~ operation. But there is another

~otential cancellation that can occur.
when commtin~ d = bz – 4 ac. This one.
cannot be elim~nated by a simple rear-

rangement of the formula. Roughly

speaking, when b 2 = 4 ac, rounding error

can contaminate up to half the digits in

the roots computed with the quadratic

formula. Here is an informal proof

(another approach to estimating the er-

ror in the quadratic formula appears in
Kahan [1972]).

If b2 = 4 ac, rounding error can con-

taminate up to half the digits in the roots

computed with the quadratic formula [ – b

% ~1/2a.

Proof Write (b @ b) @ (4a @ c) =

(b2(l + al) – 4 ac(l + 62))(1 + 63), where

16, I s 26.22 Using d = b2 - 4ac, this
can be rewritten as ( d(l + al) – 4 ac(dl

– 82))(1 + 6J. To get an estimate for the
size of this error, ignore second-order

terms in 6 i, in which the case of the

absolute error is d(~l + 63) – 4 aca~,

where ld11=181– 62\< 2c. Since d<

4 ac, the first term d(61 + da) can be ig-

nored. To estimate the second term, use

221n this informal proof, assume (3 = 2 so multipli-

cation by 4 is exact and does not require a 6,.

the fact that ax2 + bx + c = a(x – rl)(x
— rz), so arlr2 = c. Since b2 = 4ac, then

rl = r2, so the second error term is 4 ac~~

= 4 a2 r~til. Thus, the computed value of

~is~ d + 4 a2 r~~~ . The inequality

shows that ~d -t- 4a2r~8d = ~ + E,

where I E I s ~-, so the abso-

lute error in ~/2a is about rl A.

Since 6A = P-’, & = fi-p12, and thus

the absolute error of rl & destroys the

bottom half of the bits of the roots rl =

r2. In other words, since the calculation

of the roots involves computing with

~/2 a and this expression does not have
meaningful bits in the position corre-

sponding to the lower order half of r,, the

lower order bits of r, cannot be meaning-

ful. ❑

Finally, we turn to the proof of Theo-

rem 6. It is based on the following fact in

Theorem 14, which is proven in the

Appendix.

Theorem 14

Let O<k<p, andsetm=~k+l, and

assume floating-point operations are ex-

actly rounded. Then (m @ x] 0 (m @ x

e x] is exactly equal to x rounded to

p – k significant digits. More precisely, x

M rounded by taking the significant of x,

imagining a radix point just left of the k

least significant digits and rounding to

an integer.

Proof Theorem 6. By Theorem 14, x~ is

x rounded to p – k = ~p/2~ places. If

there is no carry out, x~ can be repre-

sented with ~p/2 ~ significant digits.

Suppose there is a carry out. If x =

X. xl xp_~ x P’, rounding adds 1 to

‘p –k.–1>.the only way there can be a carrY
out 1s lf xp_k_l = ~ – 1. In that case,

however, the low-order digit of x~ is 1 +

x = O, and so again x~ is repre-

s&/a~le in ~p/2] digits.
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To deal with xl, scale x to be an inte-

ger satisfying (3P-1 s x s Bp – 1. Let x

= ?ik + it, where ?ifi is the p – k high-

order digits of x and Zl is the k low-order

digits. There are three cases to consider.

If 21< (P/2)/3~-1, then rounding x to

p – k places is the same as chopping and

X~ = ~h, and xl = Il. Since Zt has at

most k digits, if p is even, then Zl has at

most k = ( p/21 = ( p/21 digits. Other-

wise, 13= 2 and it < 2k-~ is repre-
sentable with k – 1 < fp/21 significant

bits. The second case is when It >

(P/2) 0~- 1; then computing Xk involves
rounding up, so Xh = 2~ + @k and xl =

x–xh=x —2h– pk = 21- pk. Once
again, El has at most k digits, so it is

representable with [ p/21 digits. Finally,

if 2L = (P/2) 6k–1, then xh = ith or 2~ +

f?k depending on whether there is a round

up. Therefore, xl is either (6/2) L?k-1 or
(~/2)~k-’ – ~k = –~k/2, both of which

are represented with 1 digit. H

Theorem 6 gives a way to express the

product of two single-precision numbers

exactly as a sum. There is a companion

formula for expressing a sum exactly. If

lxl>lyl, then x+y=(x~y) +(x

0 (x @ y)) @ y [Dekker 1971; Knuth

1981, Theorem C in Section 4.2.2]. When

using exactly rounded operations, how-

ever, this formula is only true for P = 2,

not for /3 = 10 as the example x = .99998,
y = .99997 shows.

4.2 Binary-to-Decimal Conversion

Since single precision has p = 24 and

2‘4 <108, we might expect that convert-

ing a binary number to eight decimal

digits would be sufficient to recover the
original binary number. This is not the

case, however.

converting the decimal number to the

closest binary number will recover the

original floating-point number.

Proof Binary single-precision num-

bers lying in the half-open interval
[103, 210) = [1000, 1024) have 10 bits to

the left of the binary point and 14 bits to

the right of the binary point. Thus, there

are (210 – 103)214 = 393,216 different bi-

nary numbers in that interval. If decimal

numbers are represented with eight dig-

its, there are (210 – 103)104 = 240,000

decimal numbers in the same interval.

There is no way 240,000 decimal num-

bers could represent 393,216 different bi-

nary numbers. So eight decimal digits

are not enough to represent each single-

precision binary number uniquely.

To show that nine digits are sufficient,

it is enough to show that the spacing

between binary numbers is always

greater than the spacing between deci-

mal numbers. This will ensure that for

each decimal number N, the interval [ N
— 1/2 ulp, N + 1/2 ulp] contains at most

one binary number. Thus, each binary

number rounds to a unique decimal num-

ber, which in turn rounds to a unique

binary number.

To show that the spacing between bi-

nary numbers is always greater than the

spacing between decimal numbers, con-

sider an interval [10’, 10”+ l]. On this

interval, the spacing between consecu-

tive decimal numbers is 10(”+ 1)-9. On

[10”, 2 ‘1, where m is the smallest inte-
ger so that 10 n < 2‘, the spacing of

binary numbers is 2 m-‘4 and the spac-

ing gets larger further on in the inter-

val. Thus, it is enough to check that
~()(72+1)-9 < 2wL-ZA But, in fact, since
10” < 2n, then 10(”+ lJ-g = 10-lO-S <
2n10-s < 2m2-zl ❑

Theorem 15
The same argument applied to double

precision shows that 17 decimal digits

When a binary IEEE single-precision are required to recover a double-precision

number is converted to the closest eight number.
digit decimal number, it is not always Binary-decimal conversion also pro-

possible to recover the binary number vides another example of the use of flags.

uniquely from the decimal one. If nine Recall from Section 2.1.2 that to recover
decimal digits are used, however, then a binary number from its decimal expan-
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sion, the decimal-to-binary conversion

must be computed exactly. That conver-

sion is performed by multiplying the

quantities N and 10 Ip I (which are both

exact if P < 13) in single-extended preci-

sion and then rounding this to single

precision (or dividing if P < O; both cases

are similar). The computation of N .
10 IPI cannot be exact; it is the combined

operation round (N “ 10 Ip I) that must be

exact, where the rounding is from single

extended to single precision. To see why

it might fail to be exact, take the simple

case of ~ = 10, p = 2 for single and p = 3

for single extended. If the product is to

be 12.51, this would be rounded to 12.5

as part of the single-extended multiply

operation. Rounding to single precision
would give 12. But that answer is not

correct, because rounding the product to

single precision should give 13. The error

is a result of double rounding.

By using the IEEE flags, the double

rounding can be avoided as follows. Save
the current value of the inexact flag, then

reset it. Set the rounding mode to round

to zero. Then perform the multiplication
N .10 Ip 1. Store the new value of the

inexact flag in ixflag, and restore the

rounding mode and inexact flag. If ixflag

is O, then N o 10 I‘1 is exact, so round
(N. 10 Ip I) will be correct down to the

last bit. If ixflag is 1, then some digits

were truncated, since round to zero al-

ways truncates. The significant of the

product will look like 1. bl “ o“ bzz bz~

“ “ “ b~l. A double-rounding error may oc-

cur if bz~ “ . “ b~l = 10 “ “ “ O. A simple

way to account for both cases is to per-

form a logical OR of ixflag with b31. Then

round (N “ 10 Ip I) will be computed

correctly in all cases.

4.3 Errors in Summation

Section 3.2.3 mentioned the problem of

accurately computing very long sums.
The simplest approach to improving ac-

curacy is to double the precision. To get a
rough estimate of how much doubling

the precision improves the accuracy of a

sum, let SI = xl, sz = sl @x2,. ... s,=

s,_l e x,. Then s, = (1 + 8,)(s,_l + x,),

Floating-Point Arithmetic

where ~6, ~ < c, and ignoring

order terms in 6 i gives

. 43

second-

The first eaualitv of (31) shows that

the computed ~alue”of EXJ is the same as

if an exact summation was performed on

perturbed values of x,. The first term xl

is perturbed by ne, the last term X. by

only e. The second equality in (31) shows

that error term is bounded by n~ x I XJ 1.

Doubling the precision has the effect of

squaring c. If the sum is being done in

an IEEE double-precision format, 1/~ =

1016, so that ne <1 for any reasonable

value of n. Thus, doubling the precision
takes the maximum perturbation of ne

and changes it to n~z < e. Thus the 2 E

error bound for the Kahan summation
formula (Theorem 8) is not as good as

using double precision, even though it is

much better than single precision.

For an intuitive explanation of why

the Kahan summation formula works,

consider the following diagram of proce -

dure:

Isl

IT I

-r===

uYh

- 13___zl

u–Yl =C
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Each time a summand is added, there

is a correction factor C that will be ap-

plied on the next loop. So first subtract

the correction C computed in the previ-

ous loop from Xj, giving the corrected

summand Y. Then add this summand to

the running sum S. The low-order bits of

Y (namely, Yl) are lost in the sum. Next,

compute the high-order bits of Y by com-

puting T – S. When Y is subtracted from
this, the low-order bits of Y will be re-

covered. These are the bits that were lost

in the first sum in the diagram. They

become the correction factor for the next

loop. A formal proof of Theorem 8, taken

from Knuth [1981] page 572, appears in
the Appendix.

5. SUMMARY

It is not uncommon for computer system

designers to neglect the parts of a system

related to floating point. This is probably

due to the fact that floating point is given

little, if any, attention in the computer

science curriculum. This in turn has

caused the apparently widespread belief

that floating point is not a quantifiable

subject, so there is little point in fussing

over the details of hardware and soft-

ware that deal with it.

This paper has demonstrated that it is

possible to reason rigorously about float-

ing point. For example, floating-point al-

gorithms involving cancellation can be
proven to have small relative errors if

the underlying hardware has a guard

digit and there is an efficient algorithm

for binary-decimal conversion that can be

proven to be invertible, provided ex-

tended precision is supported. The task

of constructing reliable floating-point
software is made easier when the under-

lying computer system is supportive of
floating point. In addition to the two

examples just mentioned (guard digits
and extended precision), Section 3 of

this paper has examples ranging from
instruction set design to compiler opt-

imization illustrating how to better
support floating point.

The increasing acceptance of the IEEE

floating-point standard means that codes

that use features of the standard are be-

coming ever more portable. Section 2

gave numerous examples illustrating

how the features of the IEEE standard

can be used in writing practical floating-

point codes.

APPENDIX

This Appendix contains two technical

proofs omitted from the text.

Theorem 14

Let O<k<p, setm=fik+l, and as-

sume fZoating-point operations are exactly

rounded. Then (m @ x) e (m @ x @ x)

is exactly equal to x rounded to p – k

significant digits. More precisely, x is

rounded by taking the significant of x,

imagining a radix point just left of the k

least-significant digits, and rounding to

an integer.

Proofi The proof breaks up into two

cases, depending on whether or not the

computation of mx = fik x + x has a carry

out or not.

Assume there is no carry out. It is

harmless to scale x so that it is an inte-

ger. Then the computation of mx = x +

(3kx looks like this:

aa”. “aabb. ..bb

aa . . .
+

aabb .0. bb
>

Zz ”.. zzbb ~“ “ bb

where x has been partitioned into two

parts. The low-order k digits are marked

b and the high-order p – k digits are
marked a. To compute m @ x from mx

involves rounding off the low-order k

digits (the ones marked with b) so

m~x= mx– xmod(~k) + r~k. (32)

The value of r is 1 if .bb ..0 b is greater
than 1/2 and O otherwise. More pre -

cisel y,

r = 1 ifa.bb ““” broundstoa+l,

r = O otherwise. (33)
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Next compute ~~x + ~ looks like this:

m@x–x=mx –xmod((3h)+ r~k–x
aa”. “aabb”””bb

+
aa”” .aabb”””bb

= B’(x+r) - xmod(~’). Zzz “ “ “zZbb”””bb

The picture below shows the computation Thus, m @l x = mx – x mod(13k) + w~k,

of m @ x – x rounded, that is, (m @ x) where w = – Z if Z < /3/2, but the exact

0 x. The top line is flk(x + r), where B value of w in unimportant. Next m 8 x

is the digit that results from adding r to – x = IIkx – xmod(/3k) + wok. In a pic-

the lowest order digit b: ture

aa ..” aabb. .” bbOO”. .OO
aa. ” “aabb”””bBOO. ..OO

-bb””. bb
-bb”””bb

+W
Zz”” “ Zzzoo . ..00

If.bb.. b < 1/2, then r = O. Subtract-
ing causes a borrow from the digit

marked B, but the difference is rounded

up, so the net effect is that the rounded

difference equals the top line, which is

/?~x. If .bb “ o“ b > 1/2, then r = 1, and 1

is subtracted from B because of the bor-

row. So again the result is L?kx. Finally,

consider the case .bb “ “ “b=l/2. Ifr=
O, then B is even, Z is odd, and the

difference is rounded up giving /3kx.

Similarly, when r = 1, B is odd, Z is

even, the difference is rounded down, so

again the difference is 13kx. To summa-

rize,

(m@x) ex=~kx. (34)

Combining eqs. (32) and (34) gives

(m8x)–(m@x0x)=x–
x mod( 13~)+ rf?k. The result of perform-

ing this computation is

rOO”. .OO

aa. ” “aabb. .”bb

+
–bb.. ”bb

aa “.”aaOO”. .OO.

The rule for computing r, eq. (33), is the

same as the rule for rounding a “ “ “

ah””” b to p – k places. Thus, comput-

ing mx – ( mx – x) in floating-point
arithmetic precision is exactly equal to

rounding x to p – k places, in the case

when x + Okx does not carry out.

When x + 13kx does carry out, mx =

Rounding gives (m 8 x) 0 x = (3kx +

w@ – r(3k, where r=l if.bb”. ”b>

1/2 or if .bb “ “ “b = 1/2 and bO = 1. F’i-

nally,

(m C3x)-(rn@x Ox)

—— mx – x mod(fik) + w(3k

—— x – xmod[f?k) + rflk.

Once again, r = 1 exactly when rounding

a ““” ah”.. b to p – k places involves

rounding up. Thus, Theorem 14 is proven

in all cases. ❑

Theorem 8 (Kahan Summation Formula)

Suppose EJ! ~XJ is computed using the

following algorithm

s ==X[ll
C=o
fm-j=2to N{

Y=xrjl-c
T=S+Y
C=(T– S)– Y
S=T

}

Then the computed sum S is equal to

S = xx~(l + 6j) + 0( Nc2)Z I x~ 1, where

16JJ<2C.

Proof First recall how the error esti-

mate for the simple formula Xx; went.
Introduce SI = xl, s, = (1 + 8L)(s, _~ – 1

+ XL). Then the computed sum is s.,

which is a sum of terms, each of which
is an x, multiplied by an expression
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involving d~’s. The exact coefficient of xl c~= [{s~–sk_l}(l+7J –Yh](l+~k)
is(l + 6Z)(1 + d~)... (1 + 3P),.Therefore

by renumbering, the coefficient of Xz

must be (1 + 63)(1 + 8A) . . . (1 + a.), and

so on. The proof of Theorem 8 runs along

exactly the same lines, only the coeffi -
cients of xl is more complicated. In de-

tail so = co = O and

Yk=xk e %1= (.%– ck.l)(l+qk)

sk=s&~ @ Yk= (s&l +~k)(l ‘ok)

ck = (Sk e sk.1) e Y,

= [(sk - ‘k-l)(l +~k) -Y,](I +&)

where all the Greek letters are bounded

by ~. Although the coefficient of xl in s~
is the ultimate expression of interest, it

turns out to be easier to compute the

coefficient of xl in sh – Ck and Ck. When

k=l,

e,= (%(1 + 7,) - Y,)(1 + L)

= Yl((l + %)(1 + -YJ – 1)(1 + 61)

——%(% + 71 + %71)

(1 + (3,)(1+ ~,)

SI — c1 = Xl[(l + 01) – (q + ‘)’1 + %71)

(1+ ‘-L)](1+%)

[= xl 1 – ‘y~ – (7181– a~-y~

–8171 – a171aJ(1 + ~J.

Calling the coefficients of xl in these

expressions Ch and Sk, respectively, then

c1 = 26 + 0(E2)

S1=1+?7– 71+462+0(,3).

= [{((%, - %,) - %%,)(1 + u,)

-sk_l}(l + ~k) + ck_l(l + qk)]

(1+ ak)

= [{(s&l - ck-,)ffk- ~kck-~(1 + ok)

-ck_l}(l + ~,) + ck_l(l + qk)]

(1+ bk)

= [(sk-, - c&,)ok(l + yk)

‘ck-1(~~ + ~k(”k + ?’k + u~d)l

(1+ dk)

Sk – Ck

= ((Sk-, - Ck-,) - ~kck-,)

(1+ C7k)

‘[(Sk-, - c&,)uk(l ‘yk)

“k-,(~k + ~k(”k‘y, + ‘k~k))]

(1+ dk)

= (sk-, - ck-l)((l + ak)

‘~k(l + ~k)(l + 6k))

+ ck-~(–~k(l + ‘k)

+(~k + ~k(~k + ~k + uk~k))

(1+ 6k))

= (Sk-l - ck_J

(1 - u~(~k + 8k + ~k8k))

“k-l[-qk+~k

+~k(~k + uk~k)

+(~k + ‘%(”k + ~k + ‘k~k))dk]

To get the general formula for Sk and Since S~ and Ch are only being computed
Ck, expand the definitions of Sk and Ck, up to order ~2, these formulas can be
ignoring all terms involving x, with simplified to
i > 1.That gives

Sk = (Sk_l +&)(l + ok) Ck = (ok+ o(~2))&-1

= [Sk-, + (Xk- c,-,)(1 ‘~k)] +(–~k + o(e2))Ck_~

(1+ fJk) Sk = ((1 + 2e2 + o(,3))sk_,

= [(Sk-l - Ck-l) - ~kc&l](l + ‘h) +(26 + 0(~2))C&~.
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Using these formulas gives

C2 = (JZ+ 0(62)

52 = 1 +ql –’yl + 10E2+ O(C3),

and, in general, it is easy to check by
induction that

Ck = ok + 0(62)

S~=l+ql –~l+(4k +2) E2+O(e3).

Finally, what is wanted is the coeffi-

cient of xl in Sk. To get this value, let

x n+l = O, let all the Greek letters with

subscripts of n + 1 equal O and compute
Then s.+ ~ = s. – c., and the coef-

&~&t of .xI in s. is less than the coeffi-

cient in s~+ ~, which is S, = 1 + VI – -yI

+(4n+2)c2 = 1 +2c + 0(rze2). ❑
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