

What Explains the Difference in the Effect of Retirement on Health?: Evidence from Global Aging Data

Motegi, Hiroyuki and Nishimura, Yoshinori and Oikawa, Masato

University of Tokyo

 $23 \ {\rm September} \ 2016$

Online at https://mpra.ub.uni-muenchen.de/73963/ MPRA Paper No. 73963, posted 25 Sep 2016 16:17 UTC

What Explains the Difference in the Effect of Retirement on Health?: Evidence from Global Aging Data ^{*†}

Hiroyuki Motegi[‡]

Yoshinori Nishimura[§]

Masato Oikawa¶

September 25, 2016

Abstract

This paper analyzes the reasons for differences in the effect of retirement on health estimated results in previous studies. We investigate these differences by focusing on the analysis methods used by these studies. Using various health indexes, numerous researchers have examined the effects of retirement on health. However, there are no unified views on the impact of retirement on various health indexes. Consequently, we show that the choice of analysis method is one of the key factors in explaining why the estimated results of the effect of retirement on health differ. Moreover, we re-estimate the effect of retirement on health by using a fixed analysis method controlling for individual heterogeneity and endogeneity of the retirement behavior. We analyze the effect of retirement on health parameters, such as cognitive function, self-report of health, activities of daily living (ADL), depression, and body mass index in eight countries. We find that the effects of retirement on self-report of health, depression, and ADL are positive in many of these countries.

JEL Classification Numbers: I00, I100, I120, I190, J260. Keywords: aging, health, retirement, global aging data

^{*}We would like to thank Eric Bonsang, Konan Hara, Tomohiro Hara, Kosuke Hirose, Toshiaki Iizuka and Jose Iparraguirre for helpful comments. We sincerely thank Stefanie Behncke, Dhaval Dave and Mathilde Godard for giving advice and computer codes. We also would like to thank the seminar participants at the 6th Biennial Conference of the American Society of Health Economists and the EuHEA conference 2016 for helpful comments. We are responsible for all errors and interpretations.

[†]We certify that we have the right to deposit the contribution with MPRA.

[‡]Graduate School of Economics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: motegihiro@gmail.com

[§]Corresponding author: Graduate School of Economics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: nishimura.yy@gmail.com

[¶]Corresponding author: Graduate School of Economics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: masato.oikawa1991@gmail.com

1 Introduction

Retirement related policies, such as pension system reform, have become important for developed countries to sustain their social security systems. Numerous developed countries have faced the same problems of a decreasing birthrate and an ageing population. As population ages, the cost of social security and social welfare increases, eroding the country's budget. As such, developed countries have reformed their pension systems to reduce the cost of social security and social welfare. Moreover, many developed countries, such as the United States, the United Kingdom, and Korea have already decided to increase pension eligibility age for the next decades. Japan has already increased the pension eligibility age. These pension reforms in developed countries are expected to delay retirement. As Gruber and Wise (1998) discuss, the relationship between the social security system and retirement in developed countries generated a lot of attention in economics. When policy makers evaluate the effect of these reforms, health is a key factor. If working is beneficial for the health of the elderly, it would lead to reduced medical expenses and vice-versa.

Along with a growing interest in the effect of these retirement delaying policies, a number of studies have investigated the relation between retirement and health over the last two decades. ¹ Using various health indexes, numerous researchers have examined the relationship between health and retirement. To the best of our knowledge, Kerkhofs and Lindeboom (1997) is one of the first papers suggesting endogenous decisions between retirement and health, and identifying the effect of retirement on health. They find that the Hopkins Symptom Checklist (HSCL) health index can be improved after early retirement in the Netherlands by applying FE methods. Lindeboom et al. (2002) extend Kerkhofs and Lindeboom (1997) study to other indices such as the mini-mental state examination (MMSE) test on cognitive ability, the Center for Epidemiological Studies-Depression (CES-D) test of depressing feelings, and others, and apply FE methods to Dutch data different from that of Kerkhofs and Lindeboom (1997). Charles (2004) is also one of the first investigations that analyze the causal effect of retirement on health focusing on subjective well-being (SWB) in economic literature by using instrumental variables (IVs).

Additionally, there are numerous other papers that study the effect of retirement on various health indexes (e.g., Bound and Waidmann, 2007; Coe and Lindeboom, 2008, Dave, Rashad, and Spasojevic, 2008; Neuman, 2008; Johnston and Lee, 2009; Latif, 2011; Coe and Zamarro, 2011; Kajitani, 2011; Behncke, 2012; Bonsang, Adam, and Perelman, 2012; Mazzonna and Peracchi, 2012; Hernaes et al., 2013; Bingley and Martinello, 2013; Hashimoto, 2013; Insler, 2014; Kajitani, Sakata, and McKenzie, 2014; Hashimoto, 2015; Kajitani, Sakata, and McKenzie, 2016). There are, however, no unified views on the impact of retirement on various health indexes. While some studies conclude that retirement has a positive impact on health defined as mental or physical health, other studies conclude that retirement has no or negative effect. Additionally, these results depend on characteristics such as gender and education.

The goal of this paper is to explain why the effect of retirement on health estimated results in the previous studies differ. One of the keys to understanding these differences is a better understanding of the path through which retirement influences health. If there is an important link between retirement and health (i.e., a mechanism through which retirement influences health outcomes), the effect of retirement on health could be heterogeneous. In fact, some researchers focus on the change in the health investment behaviors after retirement to explain why the effect of retirement on health estimated results in the previous studies differ (e.g., Zhao, Konishi, and Noguchi, 2013;

¹We omit the literature on the effect of health on retirement. However, a representative paper is McGarry (2004).

Ayyagari, 2014; Insler, 2014; Eibich, 2015; Motegi, Nishimura, and Terada, 2016). Eibich (2015) is the first study to clearly point out the importance of the mechanism to explain the difference in the effect of retirement on health. On the other hand, we investigate the differences by focusing on the analysis methods. There is no study to focus on the analysis methods to explain why the effect of retirement on health estimated results in the previous studies differ. Iparraguirre (2014) broadly reviews some methodological differences found in the literature including public health literature. We will discuss which factor causes the difference in the estimated results by the previous studies.

According to our analysis, the analysis method is one of the determinants of these differences. By choosing an analysis methodology, we also comprehensively reexamine the effect of retirement on health in eight countries. We analyze five health indexes, such as self-reported health, depression, cognitive function, body mass index (BMI), and activities of daily living (ADL). Related literature does not seem to control for retirement endogeneity, while we control for individual heterogeneity and endogeneity of retirement behavior. By doing so, we show the comprehensive results of the effect of retirement on health. The rest of this paper is organized as follows: Section 2 reviews preceding studies; Section 3 discusses the data; Section 4 examines why the estimated results of the effect of retirement on health in previous studies differ from each other; Section 5 performs harmonized analysis on the effect of retirement on health; and Section 6 concludes this paper and discusses future research scope.

2 Literature Review

This section summarizes related studies, focusing on economic literature. As such, we introduce studies that examine the effect of retirement on health. The study by Kerkhofs and Lindeboom (1997) is one of the first to suggest an endogenous decision linking retirement and health regarding the effects of retirement on health. Using a fixed effects (FE) method, they find that, in the Netherlands, the HSCL health index can be improved after early retirement. Lindeboom et al. (2002) extended the study by Kerkhofs and Lindeboom (1997) with other measurement scales, such as the MMSE and the CES-D, with FE methods, using Dutch data, obtaining different results. Charles (2004) also conducted an early investigation analyzing the causal effects of retirement on health by focusing on SWB and through IV. Psychological and psychiatric literature boasts a large body of research on the correlation of retirement and SWB, but has paid scant attention to causal effects. 2

Furthermore, Rohwedder and Willis (2010), who investigated the effects of retirement on cognitive abilities and compared micro data across the USA, the UK, and 11 European countries, found a negative influence of retirement on cognitive abilities. They suggest that institutional differences across countries, such as pensions, taxes, and disability policies, are also important in explaining the differences in health outcomes across countries. As such, Rohwedder and Willis (2010) gave an impetus to research on the effect of retirement on cognitive abilities, making possible studies such as those by Bonsang et al. (2012), Mazzonna and Peracchi (2012), Coe et al. (2012), and Bingley and Martinello (2013). Additionally, numerous other studies assessed the effects of retirement on other aspects of health. ³ Finally, Tables 1, 2, 3, and 4 show a summary of relevant studies, chosen

 $^{^{2}}$ Charles (2004) surveyed psychological research both theoretically and empirically.

³Bound and Waidmann (2007), Coe and Lindeboom (2008), Dave et al. (2008), Neuman (2008), Johnston and Lee (2009), Lee and Smith (2009), Latif (2011), Coe and Zamarro (2011), Behncke (2012), Hernaes et al. (2013), Fonseca et al. (2014) and Insler (2014) are representative papers. Furthermore, recently review papers have been published on the impact of retirement on health in other fields. For example, van der Heide et al. (2013) put retirement in the

based on the following criteria:

- We choose all papers that analyze the effect of retirement on health which have been published by November 2015.
- We choose all working papers that have more than 50 citations on Google Scholar by November 2015.

In Tables 1, 2, 3, and 4, we show the category of health outcome, method, the definition of retirement, control variables information, dataset, the method of sample selection, and the surveyed country. Here, "positive" means the positive impact on a health status (better after retirement), "negative" means a negative impact worse after retirement, and "no" means no impact. According to Tables 1, 2, 3, and 4, there is no unifying result in all health indexes except the health index, which only a few studies analyze. Numerous studies analyze CES-D, self-report of health, ADL, and cognitive functioning. We consider why they obtain different results. We also add BMI to the analyzed indexes, although only two duties in our list use it. This is because we comprehensively analyze the effect of retirement on health indexes. In the Appendix (A.2. The Review of Additional Preceding Studies), we show the other indexes on illness. However, this paper does not focus on the health indexes of illness.

public health context, whereas Wang and Shi (2014) took up retirement in a psychological context.

	Kerkhofs and Lin-	Lindeboom et al.	Charles	Bound and Waid-	Coe and Linde-	Dave et al.	Neuman
	deboom	2000 H 11 F	2004 D 1 :	mann	boom	2000 G (1	2000 I C I I
	1997, Health Eco-	2002, Health Eco-	2004, Research in	2007, Univ. Michi-	2008, IZA DP	2008, Sourtnern	2008, J of Labor
antata al ta dan	nomics	nomics	Labor Economics	gan wP		Economic Journal	Research
Original index							$(\mathbf{M}) = (\mathbf{D})$
CESD		positive			no	negative	no (M) no(F)
SWB			positive			no(psychological problem	
SR health					positive (restricting within 2 years)	negative	positive(M) posi- tive(F)
health fair poor				positive(M) posi- tive(F)			
HSCL	positive						
Method	Fixed effect	Fixed effect	Instrumental vari-	pseudo RDD	Instrumental vari-	Fixed effect	Instrumental vari-
	method	method	able method		able method	method	able method
Method (details)			IVs: Social secu-		IVs: Pension eligi-	Restricting sample	IVs: public and
			rity normal retire-		bility age	who has good	private PEA for
			ment age			health before re-	respondent and
						tirement, and retire	for spouse working
						as of 62	more than 10 years
Def. of Retirement	Early retirement		not working for pay		Report to be out of	complete retire-	Working less than
	(elderly who retire		not seeking work		the labor force or	ment (retired and	1200 hours in a
	as of 55 y/o)		not worked for a		not having any paid	not working)	year
			year		employment		
Controls(Demog.)	age, education	age, residential	race, education,		age, education,	age, sex, race, mar-	age, education,
		area, marital	age, marital status		marital status,	ital status, educa-	race, whether par-
		status, children'			children	tion	ents living or not,
		health					children, marital
							status, region
Controls(Economic)						income, asset	financial status
Controls(Working.)	working status, oc-	employment status			job types (blue and		occupation
	cupation				white collar)		
Controls(Health)	lifestyle habits	health	health conditions			lifestyle habits	early factors health
							behaviors
Data	CERRA 93, 95	Longitudinal Aging	HRS	ELSA 1st wave	HRS 1st-7th wave	HRS 1st-7th wave	HRS 1st-7th wave
		Study Amsterdam					
		panel 92, 95, 98					
Sample					male workers aged		
					55-70 years		
Country	Netherlands	Netherlands	The U.S.	The U.K.	The U.S.	The U.S.	The U.S.

Table 1: Original index and Mental health 1

-				_				
	Johnston and Lee	Lee and Smith	Kajitani	Latif	Coe and Zamarro	Behncke	Fonseca et al.	Insler
	2009, Economics	2009, J Population	2011, Japan and	2011, J Socio-	2011, J Health Eco-	2012, Health Eco-	2014, J Population	2014, J Human Re-
	Letters	Aging	the World Econ-	Economics	nomics	nomics	Aging	sources
			omy					
original index					positive	negative		positive (for the
								case of long term
CESD	positive(M)	no				10		
SWB	positive(iii)	110		positive		10	no (EUBOD)	
SR health			positive(=1 if "ex-	positive	positive	negative		
			cellent" or "fairly		P			
			good")					
Method	RDD	Two-limit Robit	Probit	Fixed effect	Instrumental vari-	Nonparametric	Instrumental vari-	FE-IV
		and Probit		method and FE-IV	able method	matching	able method	
Method (details)	Using 65 years		1st stage: Tobit	IVs: pension eligi-	IVs: eligibility age	Using state pension	IVs: pension eligi-	IV; working ex-
	as kink points		estimation with the	bility age	for early and full re-	eligibility age as IV	bility age	pectations and
	robustness check		employment sta-		tirement			preference derived
	by changing band-		tus(self-employed					from "workers"
	width		or not) and marital					sell-reported prob-
			2nd stage: Probit					past ages 62 and
			estimation					65."
Def. of Retirement	Retired from paid	Answering retired	working hours per	currentry not work-	Not in the paid la-	retired describes	Answered retired	short retirement;
	work	from working,	week	ing due to retire-	bor force	her current situa-		retire at period t,
		never worked,		ment		tion best and not		long term retire-
		retired and unem-				in paid work was		ment; retire before
		ployed				her activity in the		period t-1. self re-
						last month		ported retirement
								(robustness check;
								Are you currently
Controls(Domony)						alildaan lintl	and and almosting	working for pay)
Controls(Demog.)		sex, education,	age, age-squared,	idential area mari	status shildren	place residential	age, sex, education	sex, age, marital
		children status,	holder large city	tal status	status, cindren	area		race
		ciliaren	vear dummy	tu status		area		Tucc
Controls(Economic)		income, asset	<i>y</i>		income	income		
Controls(Working.)		employment status	longest-held occu-		self employment	working hours, em-		asset
			pation dummy			ployment status		
Controls(Health)		health condition	BMI category, ill-	health conditions			disability and	
		and lifestyle habits	ness of any member				health conditions	
			of the respondent's					
D		TZT CA 1	family			DICA 1 + 0 1		UDC 100220010
Data	Find Find	KLOSA 1st wave	1990, 1993, and	Canadian National	SHARE 1st-2nd	LLSA 1st-3rd wave	SHARE 2004, 06,	HKS 1992 2010
	England		Surveys of the	Survey 1st 6th	wave		10	
			Japanese Elderly	wave				
Sample			male over 60 vears					restricting elderly
			old					working more than
								10 years
Country	The U.K.	Korea	Japan	Canada	European countries	The U.K.	European countries	The U.S.

Table 2: Original index and Mental health 2

	Lindeboom et al.	Bound and Waid-	Coe and Linde-	Dave et al.	Neuman	Johnston and Lee	Rohwedder and
		mann	boom				Willis
	2002, Health Eco-	2007, Univ.	2008, IZA DP	2008, Sourthern	2008, J of Labor	2009, Economics	2010, J Econ Per-
	nomics	Michigan WP		Economic Journal	Research	Letters	spectives
cognitive functioning	negative(MMSE						negative
	(tests cognitive						
	abilities))						
physical performance		no(M) nega- tive(F)					
body nagi limitations		positive (M) posi- tive(F)					
ADL			no	negative	no(M) positive(F)		
Body Mass Index						No	
Method	FE method	pseudo RDD	IV method	Fixed effect method	Iinstrumenta variable method	RDD	IV
Method (details)			IVs: pension eli-	Restricting sam-	IVs: public and	Using 65 years	IVs: pension el-
			gibility age	ple who has good	private PEA for	as kink points	igibility age for
				health before re-	respondent and	robustness check	early and full
				tirement, and re-	for spouse work-	by changing	
				tire as of 62	ing more than 10	bandwidth	
					years		
Def. of Retirement			people report to	complete retire-	elderly working	Retired from paid	not having
			be out of the la-	ment (retired and	less than 1200	work	worked for pay in
			bor force or not	not working)	hours in a year		the last 4 weeks
			having any paid				
			employment				
Controls(Demog.)	age, residential		age, education,	age, sex, race,	age, education,		
	area, marital		marital status,	marital status,	race, whether		
	status, children		children	education	parents living		
	health				or not, children,		
					marital status,		
					region		
Controls(Economic)	1			income, asset	financial status		
Controls(Working.)	employment sta- tus		and white collar)		occupation		
Controls(Health)	health			lifestyle habits	early factors health beaviors		
Data	Longitudinal Ag-	ELSA 1st wave	HRS 1st-7th wave	HRS 1st-7th wave	HRS 1st-7th wave	Health Survey for	HRS ELSA
	ing Study Ams-		male workers			England	SHARE at 2004
	terdam panel 92, 95, 98		aged 55-70 years				
Sample						Male who do not have degree	
Country	Netherlands	The U.K.	The U.S.	The U.S.	The U.S.	The U.K.	The U.S.The
							U.K.European
							countries

 Table 3: Cognitive functioning and Physical function 1

	Coe and Zamarro	Behncke	Bonsang et al.	Mazzonna and	Coe, Gaudecker,	Bingley and Mar-	Godard
				Peracchi	Lindeboom and	tinello	
					Maurer		
	2011, J Health	2012, Health Eco-	2012, J Health	2012, European	2012, Health Eco-	2013, European	2016, J Health
	Economics	nomics	Economics	Economic Review	nomics	Economic Review	Economics
cognitive functioning	no	negative	negative	negative	positive (blue col-	negative	
		-	-	-	lor) no (white col-	-	
					lor)		
physical performance					,		
body nagi limitations							
ADL		negative					
Body Mass Index		0					positive(BMLM).
							no(BMLF)
Method	Iinstrumenta	Nonparametric	FE-IV method	IV method	Generalization of	IV method	FE-IV method
momou	variable method	matching	1 L I I III III III III III III III III	1, moonou	2SLS	1, momou	1 L IV mothod
Method (details)	IVs: eligibility	Using state pen-	IVs: pension eli-	IVs: pension el-	IVs: pension	IVs pension el-	IVs: pension
Mictiliou (detailis)	age for early and	sion eligibility age	gibility age	igibility age for	eligibility age	igibility age for	eligibility age for
	full retirement	as IV	gibinty age	early and full	(nonparametric	early and full	early retirement
	run reurement	0.0 1 V			regression of first	carry and run	age
					stage regression)		a50
Def. of Potiroment	somoono who is	rotirodo dosaribos	not having	max 10 aur	interview voor	not having	solf dealared aur
Del. Of Retirement	someone who is	hor current citue	worked for pay in	ront oro oro	rotiromont year-	worked for pay in	ront job situation
	hor fores	tion best and not	the left 1 year	rent age-age	(coloulating by	the lest 4 weeks	(whether on indi
	bor lorce	in paid work was	the last 1 year	including unom	(calculating by	the last 4 weeks	(whether an indi-
		In paid work was		including unem-	units of month		vidual is retired)
		ner activity in the		ployment elderly	and convert to		
(1 + 1/D)	1	last month		as retirement	the unit of year)	1 1	1
Controls(Demog.)	education, mariti	children, birth	age	age and education	education, race,	age, sex, and edu-	age, age squared,
	status, children	place, residential			religion and age	cation	year dummy, liv-
		area					ing with partners
							or not
Controls(Economic)	income	income					
Controls(Working.)	self employment	working hours,					
		employment					
		status					
Controls(Health)							
Data	SHARE 1st-2nd	ELSA 1st-3rd	HRS 1998~2008 6	SHARE 2004, 06	HRS, only male	HRS ELSA	SHARE 2004,
	wave	wave	waves		elderly born after	SHARE 2004	2006, 2010.
					1931		
Sample						Dropping elderly	restricting 50-69
						whose educa-	
						tional variables	
						are missing and	
						restricting 60 [~] 64.	
Country	EU	The U.K.	The U.S.	European coun-	The U.S.	The U.S.The	European coun-
				tries		U.K.European	tries
						countries	

Table 4:	Cognitive	functioning	and Physical	function 2
			•/ •• • • •	

3 Data

This paper uses the Health and Retirement Study (HRS)⁴ and other related datasets, such as the English Longitudinal Study of Ageing (ELSA), the Health Survey for England (HSE), the Survey of Health, Ageing, and Retirement in Europe (SHARE), and the Japanese Study of Ageing and Retirement (JSTAR). These are panel surveys of individuals 50 or older. These family datasets are constructed so that the questions in the HRS family studies are as similar to the original questions in the HRS as possible. They include a rich variety of variables to capture living aspects in terms of economic status, health status, family background, as well as social and work status. We subsequently explain all health indexes used.

Cognitive score: We use the cognitive function score in the HRS and other related datasets. In the HRS, we use the immediate word recall scores (first half of the word recall test), delayed word recall (second half of the word recall test), ⁵ and word recall summary score (immediate word recall plus delayed word recall). The word recall summary score is between 0 and 20. The immediate word recall and delayed word recall tests ask the respondent to recall as many words as possible from a list of 10 words. The score of immediate word recall and delayed word recall is the number of words from the 10-word list that were recalled correctly.

Self-report of health: In the HRS, there is a variable that indicates self-reported health conditions. The variable measures the categories of health self-reports as excellent, very good, good, fair, poor. The health categories are numbered from 1 (excellent) to 5 (poor). In all related datasets, the same variable is present. We convert the five values into two health statuses, poor health or not poor health. Additionally, in the ELSA and the SHARE, we can use another scale of self-assessed health: very good, good, fair, bad, and very bad. We also define the health self-report index of "bad health." ⁶

ADL: This variable measures the change in the index for ADL. In the HRS and other related datasets, all respondents are asked to answer questions such as "Because of a health or memory problem do you have any difficulty with bathing or showering?" We use this information when calculating the ADL score.

Depression: In the HRS, there is a question targeting whether a respondent has symptoms of depression. For example, one of the statements is "Much of the time during the past week, you felt depressed." We use these questions when we calculate the CES-D score. In the HRS and other related datasets, there are similar questions. Additionally, we use another depression scale, EURO-D, which is available in all version of the SHARE. We mainly use the EURO-D scale in the SHARE because the CES-D scale is only available in waves 1 and 2 of the SHARE.

BMI: In the HRS and other related datasets, all respondents are asked to provide their weight and height, and BMI is calculated using this information. We use the value of BMI and create a dummy variable that takes the value 1 if the respondents BMI value is greater than or equal to 30.

We summarize all scores and values of these health indexes in Tables 5 and 6. In Table 5, we

⁴See the website at (http://hrsonline.isr.umich.edu) for more details on HRS.

⁵There are two rounds in the Word Recall tests. In the first round (Immediate Word Recall), there is a test to recall the number of words as much as possible. After a while, the second round starts. In the second round (Delayed Word Recall), a respondent is asked to recall the same words as much as possible.

 $^{^{6}}$ "Bad health" is a dummy variable that takes the value 1 if respondents assess their health as fair, bad, and very bad, and 0 otherwise.

show the descriptive statistics of the age group above 50 in all countries and the descriptive statistics for the USA in Table 6. According to Table 5, the scores and values are not at the same level in all countries, BMI in the US being higher than in other countries. In Table 6, we can observe characteristics of the cognitive function. Females have a higher score than males in the word recall summary score. Highly educated individuals have higher overall cognitive scores.

In Section 5, we perform a dynamic analysis for selected countries. We utilize both the pension eligibility age and the long-term variation of retirement behavior. Moreover, we choose the analyzed countries based on the availability of information regarding pension eligibility age. We mainly use the harmonized datasets. ⁷ However, when our preferred variables are not available in the harmonized datasets, we use the variables of the original datasets. In Table 7, we show a summary explaining which dataset we use in Section 5 of this paper.

More importantly, we use the pensionable age when we calculate our IVs. We explain this point in Appendix (A.1), while in section 5, we use only the pensionable age confirmed to be correct.

⁷The Gateway to Global Aging Data (http://gateway.usc.edu) provides harmonized versions of data from the international ageing and retirement studies (e.g., HRS, ELSA, SHARE, KLoSA). All variables of each dataset have the same items and follow the same naming conventions. The harmonized datasets enable researchers to conduct cross-national comparative studies. The program code to generate the harmonized datasets from the original datasets is provided by the Center for Global Ageing Research, USC Davis School of Gerontology and the Center for Economic and Social Research (CESR). This code is used to input some variables, such as measures of assets and income.

	Obs.	Mean	S.D.	Min	Max
HRS					
Word Recall Summary Score	19681	9.61	3.41	0	20
Serial 7's Score	19681	3.41	1.68	0	5
Poor health	21029	0.09	0.28	0	1
ADL summary score $(0-3)$	20892	0.25	0.66	0	3
CESD summary score $(0-8)$	19480	1.51	2.03	0	8
BMI	20645	28.46	6.16	7	79
\mathbf{ELSA}^{*1}					
Word Recall Summary Score	9536	10.40	3.73	0	20
Poor health	9570	0.08	0.27	0	1
ADL summary score (0-3)	10087	0.26	0.63	0	3
CESD summary score (0-8)	9435	1.51	1.96	0	8
BMI* ²	8230	28.26	5.30	15	71
SHARE* ³					
Word Recall Summary Score	55472	8.91	3.76	0	20
Serial 7's Score	53332	3.78	1.75	0	5
Poor health	56790	0.13	0.33	0	1
ADL summary score (0-3)	56770	0.17	0.53	0	3
EURO-D summary score (0-12)	55229	2.58	2.31	0	12
BMI	54110	26.92	4.93	6	222
JSTAR					
Word Recall Summary Score	1690	9.56	3.04	0	20
Serial 7's Score	1740	4.16	1.18	0	5
Poor health	2263	0.03	0.17	0	1
ADL summary score (0-3)	2265	0.05	0.33	0	3
CESD summary score (0-8)	1865	2.11	1.75	0	8
BMI	2222	23.52	2.96	13	41
KLoSA					
Word Recall Summary Score ^{*4}	7231	4.48	1.57	0	6
Serial 7's Score	7231	3.57	1.76	0	5
Poor health	7649	0.24	0.43	0	1
ADL summary score (0-3)	7649	0.10	0.49	0	3
CESD summary score (0-7)	7596	2.64	1.95	0	7
BMI	7458	23.20	2.81	12	37

Table 5: Summary Statistics of Cognition Scores (Age 50 or older) around 2010

*1: No Serial 7's Score in ELSA.

 $^{\ast 2}:$ We use BMI in Wave 4 ELSA because Wave 5 ELSA does not include BMI.

*³: Calculated using weight.

 $^{\ast 4}:$ KLoSA's Word Recall Scores are not comparable with other dataset.

10.510 01 200										
	Obs.	Mean	S.D.	Min	Max	Obs.	Mean	S.D.	Min	Max
			Male				I	Female		
Word Recall Summary Score	8291	9.07	3.31	0	20	11390	10.01	3.42	0	20
Serial 7's Score	8291	3.66	1.57	0	5	11390	3.22	1.74	0	5
Poor health	8993	0.08	0.28	0	1	12036	0.09	0.29	0	1
ADL summary score $(0-3)$	8929	0.22	0.61	0	3	11963	0.27	0.70	0	3
CESD summary score $(0-8)$	8202	1.30	1.88	0	8	11278	1.67	2.12	0	8
BMI	8904	28.42	5.27	7	61	11741	28.49	6.75	9	79
		Not Un	iv. Gra	aduate			Univ.	Grad	uate	
Word Recall Summary Score	15286	9.18	3.32	0	20	4391	11.12	3.29	0	20
Serial 7's Score	15286	3.17	1.73	0	5	4391	4.21	1.18	0	5
Poor health	16441	0.10	0.30	0	1	4584	0.03	0.18	0	1
ADL summary score $(0-3)$	16332	0.29	0.70	0	3	4556	0.13	0.49	0	3
CESD summary score $(0-8)$	15116	1.67	2.10	0	8	4360	0.96	1.63	0	8
BMI	16103	28.69	6.30	7	79	4538	27.65	5.53	12	61
		•	White					Blue		
Word Recall Summary Score	8634	10.16	3.43	0	20	3187	8.52	3.27	0	20
Serial 7's Score	8634	3.65	1.59	0	5	3187	3.14	1.74	0	5
Poor health	9095	0.06	0.24	0	1	3528	0.10	0.30	0	1
ADL summary score $(0-3)$	9082	0.20	0.61	0	3	3528	0.27	0.68	0	3
CESD summary score $(0-8)$	8560	1.26	1.87	0	8	3147	1.49	1.98	0	8
BMI	8993	28.12	5.92	7	72	3491	28.57	5.68	11	59

Table 6: Summary Statistics: The US (Age 50 or older) at 2010

 Table 7: The datasets which we use in each section

	Wave	Year
Section 5 (The Harmonized Analysis)		
The HRS	3-11	1996-2011
The SHARE ^{*1}	1,2,4,5	2004-2006, 2010-2012
The ELSA	1-6	2002-2014
The JSTAR	1-4	2007-2013
The KLoSA	1-4	2006-2012

*¹: We analyze only Denmark, France, Germany, and Switzerland.

4 Critical Literature Assessment

4.1 Targeted Literature

Our goal is to explain why the estimated results of the effect of retirement on health in previous studies differ. We investigate the difference by focusing on the research framework. First, we create pairs of related studies for each health index, based on the following criteria:

- We choose papers from Tables 1, 2, 3, and 4.
- We can replicate them by using the HRS, related studies (the Global Aging Data), and the HSE.
- We choose only published papers in Health Economics or Labor Economics.
- We choose published papers in journals with higher impact factor as much as possible.
- We choose only published papers that estimate a linear model to analyze the effect of retirement on health.

Based on these criteria, we choose the studies in Table 8, which we use in the next sections. In the subsequent section, we explain how we analyze why the effect of retirement on health differs.

(1)Cognition				
Bonsang et al. (2012)	Coe and Zamarro (2011)	-		
Negative	No			
United States	European countries			
HRS	SHARE			
Word recall	Word recall, Verbal fluency			
FE-IV	IV			
Retired for at least one year	Not working for pay			
Only Age variables	B, E, L, H			
	(1) Bonsang et al. (2012) Negative United States HRS Word recall FE-IV Retired for at least one year Only Age variables	(1)CognitionBonsang et al. (2012)Coe and Zamarro (2011)NegativeNoUnited StatesEuropean countriesHRSSHAREWord recallWord recall, Verbal fluencyFE-IVIVRetired for at least one yearNot working for payOnly Age variablesB, E, L, H		

 Table 8: The Targeted Literature

	(2)Self-report of health				
	Dave et al. (2008)	Coe and Zamarro (2011)			
Impact	Negative	Positive			
Survey countries	United States	European countries			
Dataset	HRS	SHARE			
Method	${ m FE}$	IV			
Definition of Retirement	Reporting retired and not working	Not working for pay			
Control variables ^{*1}	B, E	B, E, L			

	(3)Depression				
	Dave et al. (2008)	Coe and Zamarro (2011)			
Impact	Negative	No			
Survey countries	United States	European countries			
Dataset	HRS	SHARE			
Index	CESD	EUROD			
Method	${ m FE}$	IV			
Definition of Retirement	Reporting retired and not working	Not working for pay			
Control variables ^{*1}	$\mathrm{B,E}$	B, E, L			

	(4)ADL				
	Dave et al. (2008)	Neuman (2008)			
Impact	Negative	No (Male)/Positive(Female)			
Survey countries	United States	United States			
Dataset	HRS	HRS			
Method	${ m FE}$	IV			
Definition of Retirement	Reporting retired and not working	Work less than 1200 h per year			
Control variables ^{*1}	B, E	B, E, H			

	(5)Obesity	
	Johnston and Lee (2009)	Godard (2016)	
Impact	No	Negative	
Survey countries	England	European countries	
Dataset	HSE	SHARE	
Index	BMI	$BMI \ge 30$	
Method	RDD	FEIV	
Definition of Retirement	Reporting retired	Reporting retired	
Control variables ^{$*1$}	No	В	

*¹ B:Basic variables(Ex:Age, education), E:Economic variables(Ex:Income), L:Labor force status(Ex:Self-employed), H:Health variables(Ex:Number of ADLs).

4.2 Review 1

Having chosen the targeted studies, we first analyze the effect of the difference in each factor on the final results. Each study consists of certain factors, such as surveyed country, analysis method, retirement definition, etc. (see Table 8). These studies use various identification strategies, analysis methods, and definitions of retirement. As such, we analyze why the estimated results of the effect of retirement on heath in previous studies differ by focusing on the differences in these factors. In each pair of studies, we first replace only one factor (e.g., the estimation method). Finally, we replace all the factors, one by one, in the paired studies, as shown in Figure 1. By replacing each factor, we analyze the effect of each factor on the difference in the final results. There are five characteristics in each study: "index," "def. of retire," "controls," "method," "sample," and "survey country." The differences in these characteristics explain the different results on the effect of retirement on health. The details of these characteristics are as follows.

- Index: characteristics of the index used (e.g., CES-D versus EURO-D);
- Def. of retire: definition of retirement (e.g., retired for at least one year versus not working for pay);
- Controls: What the researchers include as control variables (e.g., only family structure variables versus family structure variables + economic variables);
- Method: analysis method (e.g., FE methods versus IV methods);
- Sample: sample selection method (e.g. only male versus full sample);
- Survey country: surveyed country (e.g., the USA versus France).

Here, we summarize our results.

- The sensitivity of replacing the definition of retirement is not strong.
- The sensitivity of replacing the analysis method is not weak. In almost all indexes, the estimated results change when replacing the analysis method.
- The sensitivity of replacing the surveyed country is also significant.
- The difference in the estimated results cannot be explained by only one-factor replacement.

In this section, by replacing only one factor, we have checked the sensitivity of each factor on the estimated results. According to our results, it is difficult to explain why the estimated results are different by replacing only one factor. In the next section, we provide another framework to explain why the estimated results in the previous studies differ.

Figure 1: Replacement 1

In the Appendix (A.3), we summarize the replication and replacement notes in this section. When we replicate and replace the analysis of related literature, we make some adjustments if needed (see section A.3 for details).

Cognitive score (Bonsang et al. (2012) versus Coe and Zamarro (2011)):

• According to Table 9, when transplanting one factor from Bonsang et al. (2012) to Coe and Zamarro (2011), the replacement of the surveyed country yields the opposite results (negative-positive) and vice-versa. However, the sensitivity of replacing the control variables, the surveyed country, and the method are important.

Self-report of health (Dave et al. (2008) versus Coe and Zamarro (2011)):

• According to Table 10, when transplanting one factor from Dave et al. (2008) to Coe and Zamarro (2011), the replacement of the analysis method and the surveyed country change from a negative effect to no effect and vice-versa. The sensitivity of replacing the index, the analysis method, the sample selection method, and the surveyed country are important.

ADL (Dave et al. (2008) versus Neuman (2008)):

• We discuss Table 11. Transplanting one factor from Dave et al. (2008) to Neuman (2008), the replacement of the estimation method and the sample selection method change from a

	Table 9: Cognitive score		
	Bonsang et al. (2012)		Coe and Zamarro (2011)
Estimated result in the paper	-0.942***	-	-0.0390
Def. of retire		\rightarrow	-1.244***
Controls	Our replication result	\rightarrow	-1.189***
Method	-1.036***	\rightarrow	-1.444***
Sample		\rightarrow	-1.266*
Survey country		\rightarrow	23.672**
	Coe and Zamarro (2011)		Bonsang et al. (2012)
Estimated result in the paper	-0.0390	-	-0.942***
Def. of retire		\rightarrow	1.064
Controls	Our replication result	\rightarrow	-3.248***
Method	0.995	\rightarrow	6.468***
Sample		\rightarrow	-0.035
Survey country		\rightarrow	-2.649**

^{*1} The red (blue) character indicates the positive (negative) impact.

negative effect to no effect, while replacing other factors does not produce such a difference, and vice-versa. This time, the replacement of each factor, except the definition of retirement, produces a change in the results, while the change in the estimation method produces the opposite result for female samples.

Depression (Dave et al. (2008) versus Coe and Zamarro (2011)):

• We discuss Table 12. Transplanting one factor from Dave et al. (2008) to Coe and Zamarro (2011), the replacement of the estimation method and the surveyed country, ⁸ change from a negative effect to no effect, while replacing other factors does not produce such a difference, and vice-versa. This time, the replacement of each factor, except the control variables, produces a change in the results.

BMI (Godard (2016) versus Johnston and Lee (2009)):

• We discuss Table 13. Transplanting one factor from Godard (2016) to Johnston and Lee (2009), the replacement of all factors except the definition of retirement and the control variables change from a negative effect to no effect, while replacing other factors does not produce such a difference, and vice-versa. This time, the replacement of each factor does not produce a change in the results.

⁸We also change the index of depression (from CES-D to EURO-D) when we change the surveyed country.

	Table 10: Self-report of he	ealth	
	Dave et al. (2008)		Coe and Zamarro (2011)
Estimated result in the paper	0.0268^{***}		-0.3545**
Def. of retire		\rightarrow	0.023***
Controls	Our replication result	\rightarrow	0.025***
Method	0.025***	\rightarrow	0.02
Sample		\rightarrow	0.027***
Survey country		\rightarrow	0.009

	Coe and Zamarro (2011)		Dave et al. (2008)
Estimated result in the paper	-0.3545**		0.0268***
Index		\rightarrow	-0.011
Def. of retire		\rightarrow	-0.187***
Controls	Our replication result	\rightarrow	-0.234***
Method	-0.241*	\rightarrow	-0.001
Sample		\rightarrow	-0.226
Survey country		\rightarrow	-0.123(Poor health)

^{*1} The red (blue) character indicates the positive (negative) impact.

	Table 11: ADL		
	Dave et al. (2008)		Neuman (2008)
Estimated result in the paper	0.0267^{***}		$-0.025(M)/0.101^{**}(F)$
Def. of retire		\rightarrow	0.021^{***}
Controls	Our replication result	\rightarrow	0.029***
Method	0.043***	\rightarrow	0.142
Sample		\rightarrow	$0.003({ m M})/0.004({ m F})$
	Neuman (2008)		Dave et al. (2008)
Estimated result in the paper	-0.025(M)/ <mark>0.101**</mark> (F)		0.0267***
Def. of retire		\rightarrow	$-0.03(M)/0.219^{***}(F)$
Controls	Our replication result	\rightarrow	0.014(M)/0.082(F)
Method	-0.013(M)/ <mark>0.211**</mark> (F)	\rightarrow	$0.029^{***}(M)/0.042^{***}(F)$
Sample		\rightarrow	0.01

 $^{\ast 1}$ The red (blue) character indicates the positive (negative) impact.

	Table 12: Depression		
	Dave et al. (2008)		Coe and Zamarro (2011)
Estimated result in the paper	0.1157^{***}		-0.0691
Def. of retire		\rightarrow	0.165***
Controls	Our replication result	\rightarrow	0.109^{***}
Method	0.116***	\rightarrow	-0.132
Sample		\rightarrow	0.143^{***}
Survey country		\rightarrow	0.042(EURO-D)

	Coe and Zamarro (2011))	Dave et al. (2008)
Estimated result in the paper	-0.0691		0.1157***
Index		\rightarrow	-0.141
Def. of retire		\rightarrow	0.404
Controls	Our replication result	\rightarrow	2.605^{***}
Method	0.534	\rightarrow	-0.049
Sample		\rightarrow	1.009
Survey country		\rightarrow	-0.195

^{*1} The red (blue) character indicates the positive (negative) impact.

	Table 13: BMI		
	Godard (2016)		Johnston and Lee (2009)
Estimated result in the paper	0.115^{**}		0.092
Index		\rightarrow	0.371
Def. of retire		\rightarrow	0.122^{**}
Controls	Our replication result	\rightarrow	0.077^{***}
Method	0.122**	\rightarrow	0.077
Sample		\rightarrow	0.072
Survey country		\rightarrow	-0.386

	Johnston and Lee (2009)		Godard (2016)
Estimated result in the paper	0.092		0.115**
Index		\rightarrow	-0.018
Def. of retire		\rightarrow	0.118
Controls	Our replication result	\rightarrow	-0.798
Method	0.118	\rightarrow	0.728
Sample		\rightarrow	0.235
Survey country		\rightarrow	0.291

^{*1} The red (blue) character indicates the positive (negative) impact.

4.3 Review 2

In the previous section, we have discussed the sensitivity of each factor on the estimated results. We have also found that there are multiple factors that explain why the estimated results are different. In this section, we propose another framework to explain why the estimated results are different. As such, we start from one study and arrive at another study, replacing factors one by one (see Figure 2). If the source of the difference in the effect of retirement on health exists, the result will change after we change this source as per Figure 2. We discuss the results in the following.

Cognitive score (Bonsang et al. (2012) versus Coe and Zamarro (2011)):

- In Table 14, we combine method, controls, and country, as these are the factors producing the change in the results in Review 1. We consider that these factors are important for explaining the difference in the effect of retirement on health between two different studies. The figure on the left shows the change in the estimation results when we change the order of replacing the block (method + controls + country). On the other hand, the right-hand figure shows the change in the estimation results when we change the order of replacing the retirement definition. We compare these cases as follows.
- In all patterns (A, B, C), we observed that the estimated results change after replacing the block (method + controls + country) (Negative → No)(left-hand figure). On the other hand, we do not observe any change just after replacing the definition of retirement (right-hand figure).

Self-report of health (Dave et al. (2008) versus Coe and Zamarro (2011)):

• In Table 15, we show the same procedure as in Table 14. The left-hand figure shows the change in the estimation results when we change the order of replacing the block (method + controls

+ country + index), as these factors (method + controls + country + index) produce the change in the results in Review 1. On the other hand, the right-hand figure shows the change in the estimation results when we change the order of replacing the retirement definition. We compare these cases as follows.

• In all patterns (A, B, C), we observed that the estimated results change after replacing the block (method + controls + country + index) (Negative → Positive)(left-hand figure). On the other hand, we do not observe any change just after replacing the definition of retirement except in pattern B (right-hand figure).

ADL (Dave et al. (2008) versus Neuman (2008)):

- In Table 16, we show the same procedure as in Table 14. The left-hand figure shows the change in the estimation results when we change the order of replacing the block (method + controls), as these factors (method + controls) produce the change in the results in Review 1. On the other hand, the right-hand figure shows the change in the estimation results when we change the order of replacing the retirement definition. We compare these cases as follows.
- In all patterns, changing both the estimation method and the difference in what the researcher uses as control variables produce a change in the results. In particular, in pattern C (left-hand figure), the change in method + controls produces the opposite impact for female samples. In patterns A and B, "sample" is also significant. The estimated results changes just after replacing "sample" (No → No (male) and Positive (female))(left-hand figure). As such, the definition of retirement seems to have no impact on the results (right-hand figure).

Depression (Dave et al. (2008) versus Coe and Zamarro (2011)):

- In Table 17, we show the same procedure as in Table 14. The left-hand figure in Figure 17 shows the change in the estimation results when we change the order of replacing the block (method + controls), as these factors (method + controls) produce the change in the results in Review 1. On the other hand, the right-hand figure shows the change in the estimation results when we change the order of replacing the retirement definition. We compare these cases as follows.
- In all patterns (A, B, C), we observe that the estimated results change after replacing the block (method + controls) (Negative → No). In pattern D, "country + index" is also significant. The estimated results changes just after replacing "country + index" (Negative → No)(left-hand figure). On the other hand, we do not observe any change just after replacing the retirement definition (right-hand figure).

BMI (Johnston and Lee (2009) versus Godard (2016)):

• In Table 18, we show the same procedure as in Table 14. The left-hand figure in Table 18 shows the change in the estimation results when we change the order of replacing the block (method + controls + sample), as these factors (method + sample) produce the change in the results in Review 1. On the other hand, the right-hand figure shows the change in the estimation results when we change the order of replacing the index. There is no difference in the definition of retirement between Johnston and Lee (2009) and Godard (2016). Here, we replace the index, and compare these cases as follows.

 In all patterns (A, B), we observe that the estimated results change after replacing the block (method + controls + sample) (Negative → No). In patterns C and D, "country" is also significant. The estimated results changes just after replacing "country" (Negative → No)(left-hand figure). On the other hand, we do not observe any change just after replacing the index except for pattern A (right-hand figure).

Finally, we summarize our results.

- The choice of the estimation method seems to be the key factor for explaining the difference in the estimation results in all indexes. Additionally, the use of control variables is also important. What the researcher uses as control variables is also included in all health indexes. In all health indexes, the estimation method plus other factors (e.g., method + controls) changes in the estimation result.
- The influence of the difference in the surveyed country is also important for explaining the difference in the effect of retirement on health.
- Changes in the definition of retirement have a lower impact.

According to our results, the difference in the estimation method is a key factor in explaining why the estimated effects of retirement on health in preceding studies differ. It is intuitive that the sensitivity of the surveyed country chosen is strong. However, we do not consider this as problematic. On the other hand, a strong sensitivity of the analysis method choice is problematic because it is possible that we do not appropriately estimate the effect of retirement on health, depending on the choice of the analysis method. In some studies, it is possible that there remains room for further improvement. For example, Coe and Zamarro (2011) estimate the effect of retirement on cognitive function by using cross-sectional data. They use the exogenous variation of the pensionable age as an IV, the SHARE being their data source. As such, we can use a dynamic variation of the retirement behavior in the SHARE. Dave et al. (2008) only use FE and do not use an IV. Consequently, we can use the FE-IV method, often used in recent studies to estimate the effect of retirement on health indexes. For example, Bonsang et al. (2012), Insler (2014) and Godard (2016) use the FE-IV method to estimate the effect of retirement on health.

	1able 14: Cognitive score										
-	Pattern A			Pattern B			Pattern A			Pattern B	
	Bonsang et al. (2012)			Bonsang et al. (2012)			Bonsang et al. (2012)			Bonsang et al. (2012)	
	-0.942***			-0.942***			-0.942***			-0.942***	
	-1.036***(Replication)	-		-1.036***(Replication)	-		-1.036***(Replication)	-		-1.036***(Replication)	-
\downarrow	Method + Controls + Country	\uparrow	\downarrow	Def. of Retirement	1	\downarrow	Def. of Retirement	Ť	\downarrow	Method + Controls + Country	Ŷ
	-0.216			-1.244***			-1.244***			-0.216	
\downarrow	Def. of Retirement	\uparrow	\downarrow	Method + Controls + Country	1	\downarrow	Method + Controls + Country	1	\downarrow	Def. of Retirement	1
	-0.214			-0.214			-0.214			-0.214	
\downarrow	Sample	\uparrow	\downarrow	Sample	1	\downarrow	Sample	Ť	\downarrow	Sample	Ŷ
	0.995(Replication)			0.995(Replication)			0.995(Replication)			0.995(Replication)	
	-0.0390	-		-0.0390	-		-0.0390	-		-0.0390	-
	Coe and Zamarro (2011)			Coe and Zamarro (2011)			Coe and Zamarro (2011)			Coe and Zamarro (2011)	
	Pattern C						Pattern C				
	Bonsang et al. (2012)						Bonsang et al. (2012)				
	-0.942***						-0.942***	-			
	-1.036^{***} (Replication)						-1.036^{***} (Replication)				
\downarrow	Def. of Retirement	Ť				\downarrow	Method + Controls + Country	1			
	-1.244***						-0.216				
\downarrow	Sample	Ť				\downarrow	Sample	Ť			
	-1.825*						0.981				
\downarrow	Method + Controls + Country	\uparrow				\downarrow	Def. of Retirement	1			
	0.995(Replication)	_					0.995(Replication)	_			
	-0.0390	-					-0.0390	-			
	Coe and Zamarro (2011)						Coe and Zamarro (2011)				

Table 14: Cognitive score

Table 15: Self-report of health

				10010 101 001		<u> </u>	ore or meanen				
	Pattern A			Pattern B			Pattern A			Pattern B	
	Dave et al. (2008)			Dave et al. (2008)			Dave et al. (2008)			Dave et al. (2008)	
	0.0268***			0.0268***			0.0268***			0.0268***	
	0.025***(Replication)			0.025***(Replication)	-		0.025*** (Replication)			0.025*** (Replication)	-
\downarrow	Method + Controls + Country + Index	Ŷ	\downarrow	Sample	1	\downarrow	Def. of Retirement	Ŷ	\downarrow	Method + Controls + Country + Index	Ŷ
	-0.276*			0.027***			0.023***			-0.276*	
\downarrow	Sample	↑	\downarrow	Method + Controls + Country + Index	↑	\downarrow	Method + Controls + Country + Index	¢	\downarrow	Def. of Retirement	1
	-0.183*			-0.183*			-0.226			-0.226	
\downarrow	Def. of Retirement	1	\downarrow	Def. of Retirement	1	\downarrow	Sample	Ŷ	\downarrow	Sample	Ŷ
	-0.241*(Replication)			-0.241*(Replication)			-0.241*(Replication)			-0.241*(Replication)	
	-0.3545**			-0.3545**	-		-0.3545**	-		-0.3545**	-
	Coe and Zamarro (2011)			Coe and Zamarro (2011)			Coe and Zamarro (2011)			Coe and Zamarro (2011)	
	Pattern C						Pattern C				
	Dave et al. (2008)						Dave et al. (2008)				
	0.0268***						0.0268***				
	0.025***(Replication)						0.025***(Replication)				
\downarrow	Sample	Ŷ				\downarrow	Method + Controls + Country + Index	1			
	0.027***						-0.276*				
\downarrow	Def. of Retirement	1				\downarrow	Sample	Ŷ			
	0.051***						-0.187**				
\downarrow	Method + Controls + Country + Index	Ť				\downarrow	Def. of Retirement	Ŷ			
	-0.241*(Replication)						-0.241*(Replication)				
	-0.3545**						-0.3545**	-			
_	Coe and Zamarro (2011)						Coe and Zamarro (2011)				

				Table 10:	A	Σ					
	Pattern A			Pattern B			Pattern A			Pattern B	
	Dave et al. (2008)			Dave et al. (2008)			Dave et al. (2008)			Dave et al. (2008)	
	0.0267***			0.0267***			0.0267***			0.0267***	
	0.043***(Replication)			0.043***(Replication)			0.043***(Replication)	-		0.043***(Replication)	-
\downarrow	Method + Controls	1	\downarrow	Def. of Retirement	\uparrow	\downarrow	Def. of Retirement	1	\downarrow	Method + Controls	1
	-0.01			0.021***			0.021***			-0.01	
\downarrow	Def. of Retirement	↑	\downarrow	Method + Controls	1	\downarrow	Method + Controls	↑	\downarrow	Def. of Retirement	Ť
	0.01			0.01			0.01			0.01	
\downarrow	Sample	1	\downarrow	Sample	1	\downarrow	Sample	↑	\downarrow	Sample	1
	-0.013(M)/0.211***(F)			-0.013(M)/0.211***(F)			-0.013(M)/0.211***(F)(Replication)			-0.013(M)/0.211***(F)(Replication)	
	-0.025(M)/0.101**(F)(Replication)	-		-0.025(M)/0.101**(F)(Replication)			-0.025(M)/0.101**(F)	-		-0.025(M)/0.101**(F)	-
	Neuman (2008)			Neuman (2008)			Neuman (2008)			Neuman (2008)	
	Pattern C						Pattern C				
	Dave et al. (2008)						Dave et al. (2008)				
	0.0267^{***}						0.0267***				
	0.043***						0.043*** (Replication)	-			
\downarrow	Def. of Retirement	↑				\downarrow	Method + Controls	↑			
	0.021***						-0.01				
\downarrow	Sample	1				\downarrow	Sample	1			
	$0.062^{***}(M)/0.084^{***}(F)$						-0.03(M)/ <mark>0.219***</mark> (F)				
\downarrow	Method + Controls	↑				\downarrow	Def. of Retirement	↑			
	-0.013(M)/ <mark>0.211***</mark> (F)						$-0.013(M)/0.211^{***}(F)(Replication)$				
	-0.025(M)/0.101**(F)(Replication)						-0.025(M)/0.101**(F)	-			
	Neuman (2008)						Neuman (2008)				

Table 16: ADL

Table 17: Depression

							1				
	Pattern A			Pattern B			Pattern A			Pattern B	
	Dave et al. (2008)			Dave et al. (2008)			Dave et al. (2008)			Dave et al. (2008)	
	0.1157^{***}			0.1157^{***}			0.1157^{***}			0.1157^{***}	
-	0.116***(Replication)	-		0.116***(Replication)	-		0.116***(Replication)	-		0.116***(Replication)	
\downarrow	Method + Controls	1	\downarrow	Def. of Retirement	1	\downarrow	Def. of Retirement	1	\downarrow	Method + Controls	\uparrow
	0.274			0.165***			0.165^{***}			0.274	
\downarrow	Def. of Retirement	1	\downarrow	Method + Controls	1	\downarrow	Method + Controls	1	\downarrow	Def. of Retirement	\uparrow
	0.282			0.282			0.282			0.282	
\downarrow	Sample	\uparrow	\downarrow	Sample	1	\downarrow	Sample	1	\downarrow	Sample	\uparrow
	-0.227			-0.227			-0.227			-0.227	
\downarrow	Country + Index	1	\downarrow	Country + Index	1	\downarrow	Country + Index	1	\downarrow	Country + Index	\uparrow
	0.534(Replication)			0.534(Replication)			0.534(Replication)			0.534(Replication)	
	-0.0691			-0.0691			-0.0691			-0.0691	
	Coe and Zamarro (2011)			Coe and Zamarro (2011)			Coe and Zamarro (2011)			Coe and Zamarro (2011)	
				. ,			. ,				
	Pattern C			Pattern D			Pattern C			Pattern D	
	Pattern C Dave et al. (2008)			Pattern D Dave et al. (2008)			Pattern C Dave et al. (2008)			Pattern D Dave et al. (2008)	
	Pattern C Dave et al. (2008) 0.1157***			Pattern D Dave et al. (2008) 0.1157***			Pattern C Dave et al. (2008) 0.1157***			Pattern D Dave et al. (2008) 0.1157***	
-	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication)	_		Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication)	-		Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication)	-		Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication)	
- +	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement	-	Ļ	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement	-	Ļ	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls	- ↑	↓	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls	↑
- +	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165***	_	Ļ	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165***	-	Ļ	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274	- ↑	Ļ	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274	†
↓ ↓	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample	- ↑ ↑	\downarrow	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample	- ↑	\downarrow	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample	- ↑ ↑	↓ ↓	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample	↑ ↑
↓ ↓	Pattern C Dave et al. (2008) 0.1157*** 0.116 ^{***} (Replication) Def. of Retirement 0.165*** Sample 0.259***	- ↑ ↑	\downarrow	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259***	- ↑ ↑	\downarrow \downarrow	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285	- ↑ ↑	\downarrow \downarrow	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285	↑ ↑
\downarrow \downarrow \downarrow	Pattern C Dave et al. (2008) 0.1157*** 0.116 ^{***} (Replication) Def. of Retirement 0.165*** Sample 0.259*** Method + Controls	- ↑ ↑ ↑	\downarrow \downarrow \downarrow	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259*** Country + Index	- ↑ ↑	\downarrow \downarrow \downarrow	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Def. of Retirement	- ↑ ↑	· ↓ ↓ ↓	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Country + Index	↑ ↑ ↑
\downarrow \downarrow \downarrow	Pattern C Dave et al. (2008) 0.1157*** 0.116 ^{***} (Replication) Def. of Retirement 0.165*** Sample 0.259*** Method + Controls -0.227	- ↑ ↑	$\downarrow \qquad \downarrow \qquad \qquad$	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259*** Country + Index 0.046	- ↑ ↑	\downarrow \downarrow \downarrow	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Def. of Retirement -0.227	- ↑ ↑	↓ ↓ ↓	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Country + Index 0.374	↑ ↑ ↑
- + + +	Pattern C Dave et al. (2008) 0.1157*** 0.116 ^{***} (Replication) Def. of Retirement 0.165*** Sample 0.259*** Method + Controls -0.227 Country + Index	- ↑ ↑ ↑	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259*** Country + Index 0.046 Method + Controls	-	$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Def. of Retirement -0.227 Country + Index	- † † †	\downarrow \downarrow \downarrow \downarrow	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Country + Index 0.374 Def. of Retirement	↑ ↑ ↑
+ + + +	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259*** Method + Controls -0.227 Country + Index 0.534(Replication)	- ↑ ↑ ↑	$\downarrow \qquad \downarrow \qquad \downarrow$	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259*** Country + Index 0.046 Method + Controls 0.534(Replication)	- ↑ ↑ ↑ ↑	$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Def. of Retirement -0.227 Country + Index 0.534(Replication)	- ↑ ↑ ↑	\downarrow \downarrow \downarrow \downarrow	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Country + Index 0.374 Def. of Retirement 0.534(Replication)	↑ ↑ ↑
+ + + +	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259*** Method + Controls -0.227 Country + Index 0.534(Replication) -0.0691	- ↑ ↑ ↑	$\downarrow \qquad \downarrow \qquad \downarrow$	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Def. of Retirement 0.165*** Sample 0.259*** Country + Index 0.046 Method + Controls 0.534(Replication) -0.0691	- ↑ ↑ ↑ ↑	$\downarrow \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$	Pattern C Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Def. of Retirement -0.227 Country + Index 0.534(Replication) -0.0691	- ↑ ↑ ↑	\downarrow \downarrow \downarrow \downarrow \downarrow .	Pattern D Dave et al. (2008) 0.1157*** 0.116***(Replication) Method + Controls 0.274 Sample -0.285 Country + Index 0.374 Def. of Retirement 0.534(Replication) -0.0691	↑ ↑ ↑

_				100.	<u> </u>	<u> </u>	DMI				
	Pattern A			Pattern B			Pattern A			Pattern B	
	Godard (2016)			Godard (2016)			Godard (2016)			Godard (2016)	
	0.115**			0.115**			0.115**			0.115^{**}	
	0.122**(Replication)	-		0.122**(Replication)			0.122**(Replication)	-		0.122**(Replication)	
\downarrow	Method + Controls + Sample	Ť	\downarrow	Def. of Retirement	\uparrow	\downarrow	Index	1	\downarrow	Method + Controls + Sample	\uparrow
	0.002			0.122**			0.371			0.002	
\downarrow	Def. of Retirement	1	\downarrow	Method + Controls + Sample	Ŷ	\downarrow	Method + Controls + Sample	Ť	\downarrow	Index	\uparrow
	0.002			0.002			0.291			0.291	
\downarrow	Country	1	\downarrow	Country	Ť	\downarrow	Def. of Retirement	Ť	\downarrow	Def. of Retirement	\uparrow
	-0.018			-0.018			0.291			0.291	
\downarrow	Index	↑	\downarrow	Index	\uparrow	\downarrow	Country	1	\downarrow	Country	↑
	0.118(Replication)			0.118(Replication)			0.118(Replication)			0.118(Replication)	
	0.092	-		0.092			0.092	-		0.092	
	Johnston and Lee (2009)			Johnston and Lee (2009)			Johnston and Lee (2009)			Johnston and Lee (2009)	
	Pattorn C			Pattorn D			Pattorn C			Pattorn D	
	Pattern C Codord (2016)			Pattern D Codord (2016)			Pattern C Codord (2016)			Pattern D Codord (2016)	
	Pattern C Godard (2016)			Pattern D Godard (2016)			Pattern C Godard (2016)			Pattern D Godard (2016)	
	Pattern C Godard (2016) 0.115**			Pattern D Godard (2016) 0.115**			Pattern C Godard (2016) 0.115**			Pattern D Godard (2016) 0.115**	
	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement	-	I	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Batirement		I	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sampla	^	I	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sampla	
Ļ	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122**	- ↑	\downarrow	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122**	↑	Ļ	Pattern C Godard (2016) 0.115^{**} 0.122^{**} (Replication) Method + Controls + Sample 0.002	↑	\downarrow	Pattern D Godard (2016) 0.115^{**} 0.122^{**} (Replication) Method + Controls + Sample 0.002	↑
↓ ↓	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country	- ↑	Ļ	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country	↑ ↑	Ļ	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement	↑	Ļ	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement	↑
↓ ↓	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386	- ↑ ↑	\downarrow	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386	↑ ↑	\downarrow \downarrow	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002	↑ ↑	\downarrow	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002	↑
↓ ↓ ↓	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Method + Controls + Sample	- ↑ ↑	\downarrow \downarrow \downarrow	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Index	↑ ↑	\downarrow \downarrow \downarrow	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Index	↑ ↑	\downarrow \downarrow	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Country	↑ ↑
↓ ↓ ↓	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Method + Controls + Sample -0.018	- ↑ ↑	\downarrow \downarrow	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.3866 Index -2.057	↑ ↑	$\downarrow \\ \downarrow \\ \downarrow$	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Index 0.291	↑ ↑	$\downarrow \qquad \downarrow \qquad \qquad$	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Country -0.018	↑ ↑
+ + +	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Method + Controls + Sample -0.018 Index	- ↑ ↑ ↑	$\downarrow \qquad \downarrow \qquad$	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Index -2.057 Method + Controls + Sample		$\downarrow \downarrow \downarrow \downarrow \downarrow$	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Index 0.291 Country	↑ ↑ ↑	\downarrow \downarrow \downarrow	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Country -0.018 Index	
+ + +	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Method + Controls + Sample -0.018 Index 0.118(Replication)	- ↑ ↑ ↑	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array}$	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Index -2.057 Method + Controls + Sample 0.118(Replication)		$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Index 0.291 Country 0.118(Replication)		$\downarrow \qquad \downarrow \qquad \downarrow$	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Country -0.018 Index 0.118(Replication)	
+ + + +	Pattern C Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Method + Controls + Sample -0.018 Index 0.118(Replication) 0.092	- ↑ ↑ +	$\downarrow \qquad \downarrow \qquad \downarrow$	Pattern D Godard (2016) 0.115** 0.122**(Replication) Def. of Retirement 0.122** Country -0.386 Index -2.057 Method + Controls + Sample 0.118(Replication) 0.092	·	$\downarrow \qquad \downarrow \qquad$	Pattern C Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Index 0.291 Country 0.118(Replication) 0.092		$\downarrow \qquad \downarrow \qquad \downarrow$	Pattern D Godard (2016) 0.115** 0.122**(Replication) Method + Controls + Sample 0.002 Def. of Retirement 0.002 Country -0.018 Index 0.118(Replication) 0.092	

T 11 10 DM

Harmonized Analysis of the Effect of Retirement on Health $\mathbf{5}$

Analysis Framework 5.1

Here, we use the FE-IV estimation method and estimate the impact of retirement on certain health indexes for eight countries. Coe and Zamarro (2011) estimate the effect of retirement on cognitive function by using cross-sectional data, and use the cross-country variation of pensionable age to control for retirement endogeneity, using SHARE. However, we use a dynamic variation of the retirement behavior, and control for retirement endogeneity by using the pensionable age in the surveyed countries. We also estimate the effect of retirement on health indexes for each country. While Dave et al. (2008) only use FE, we use the FE-IV method to estimate the effect of retirement on health indexes as follows:⁹

$$health_index_{it} = \beta_0 + \beta_1 retire_{it} + \gamma' x_{it} + a_{1i} + \lambda_{1t} + \epsilon_{1it}$$
(1)

$$retire_{it} = \alpha_0 + \alpha_1 \{age_{it} \ge A_i^{eb}\} + \alpha_2 \{age_{it} \ge A_i^{fb}\}$$

$$+\alpha_{1}1\{age_{it} \geq A_{i}^{eb}\} \cdot age_{it} + \alpha_{2}1\{age_{it} \geq A_{i}^{fb}\} \cdot age_{it} + \eta' x_{it} + a_{2i} + \lambda_{2t} + \epsilon_{2i}$$

$$A_{i}^{eb}: \text{ the early retirement benefit eligibility age}$$

$$A_{i}^{fb}: \text{ the full retirement benefit eligibility age}$$

$$(2)$$

where $retire_{it}$ is an indicator which is equal to 1 when a respondent retires at period t. We use two

⁹All models are estimated using the STATA module xtivreg2. See Schaffer (2010) for further details.

retirement definitions. The first is "not work for pay," which means that a respondent is retired if he/she is not working for payment. The second definition is "complete retire," which is the same retirement definition of Dave et al. (2008). λ_{1t} and λ_{2t} are time FE; a_{1i} and a_{2i} are individual FE; x_{it} are control variables at period t. We restrict the sample to those aged above 50.

Our identification strategy utilizes the fact that the proportion of retired elderly in many developed countries starts to increase dramatically after the pensionable age. Pension eligibility age is exogenous. The incentive to retire from the labor market increases after the exogenous pensionable age. However, the pension eligibility threshold does not directly influence health status, but while it increases the incentive to retire form the labor market. We exploit this fact to identify the effect of retirement on health.¹⁰ As such, we use dummy variables (e.g., $\{age_{it} \ge A_i^{eb}\}$) and the cross terms between the dummy variable and age (e.g., $\{age_{it} \ge A_i^{eb}\} \cdot age_{it}$) to identify changes in retirement after the pensionable age.

Figure 3 shows the proportions of retired elderly by age by pooling all samples. In Figure 3, the pensionable age is represented by the red line. In the US, the UK, Denmark, France, Germany, Switzerland, Japan (male), and South Korea, there is a sharp increase in the proportion of retired around the pensionable age. In the US, Denmark, France, Germany, and Switzerland, around the early retirement age, there is also a sharp increase in the proportion of retired elderly. In the UK, Japan (male) and South Korea, there is a sharp increase in the proportion of retired elderly around the normal retirement age. Additionally, after the early retirement age, the slope of the proportion of the retired elderly changes in many countries. As a result, we use the cross term (e.g., $\{age_{it} \geq A_i^{eb}\} \cdot age_{it}$) to identify this movement. In the next section, the first stage results are presented as to check the validity of our strategy. Eibich (2015) uses a similar strategy to exploit the discontinuity of retirement status around the pensionable age. Furthermore, we control individual demographics (x_{it}) , including variables to control the age effect. Around the pensionable age, it is possible that there is a change in individual demographics. As such, we control for these effects.

¹⁰Bonsang et al. (2012), Latif (2013), Zhu and He (2015), Zhu (2016), Zhu (2016) and Godard (2016) exploit a similar identification strategy.

Figure 3: The Proportion of Retired Elderly By Age and Country (US, UK, Denmark and France, Germany, Switzerland, Japan(Male) and South Korea)

υĸ

^{*1}Early pension eligibility age (Birth cohort:~1953)
*2Normal pension eligibility age (Birth cohort:~1953)

*2Normal pension eligibility age (Birth cohort:~1942)

*1Early pension eligibility age

*1Early pension eligibility age (Birth cohort:~1951.6) *2Normal pension eligibility age (Birth cohort:~1952)

*1Early pension eligibility age (Birth cohort:~1952)
*2Normal pension eligibility age (Birth cohort:~1952)

5.2 The Results

We discuss the estimated results only when the coefficients of IV in the first stage are significant. We also test the endogeneity of retirement with the Durbin-Wu-Hausman test. When we do not reject the null hypothesis, we support the results of FE model. We analyze only countries where pensionable ages are confirmed to be correct, and discuss how to confirm each pensionable age in Appendix (A.1). We use the retirement definition of "not work for pay" in all countries except Korea and Japan. On the other hand, in Korea and Japan, we use the retirement definition of "complete retire." This is because, in Korea and Japan, we do not obtain a significant result in the first stage regression by using the retirement definition of not work for pay. We perform a robustness check with respect to the retirement definition in the next section. With respect to Depression, we use both CES-D and Euro-D, and identify which scale we use in the analysis (e.g., US (CES-D(0-8), Denmark (Euro-D)). The total score of CES-D is seven or eight. On the other hand, the total score of Euro-D is 20. We use Euro-D in the European countries because the sample size is larger when we use Euro-D. The first stage results are shown in Table 19.¹¹

- As per Table 20, in each health index, only Korea has an opposite effect compared to the US. ¹² With respect to self-reported health and CES-D, in half of the surveyed countries, we observe a positive effect of retirement on health. However, only in Korea and the US there is a significant effect on cognitive function. Nonetheless, there is an opposite effect (positive or negative) between these countries.
- As per Table 21, there is a negative effect or no effect of retirement on BMI (BMI: negative = increase and positive = decrease). However, in half of the surveyed countries, there is a positive effect of retirement on ADL.
- Summarizing the estimated results (Table 20 and 21), in the US, we observe a change in health outcomes after retirement for almost all health outcomes. BMI increases after retirement in the US. With respect to poor health, CES-D and ADL summaries, health outcomes improve after retirement, as do in the UK. On the other hand, in Denmark, France, Germany, and Japan, almost all health outcomes remain constant after retirement. In Switzerland, no health outcome changes after retirement.
- Summarizing the results by gender (Table 20 and 21), with respect to poor health, CES-D and ADL summaries, in the US and UK, the coefficients are similar for both elderly males and females. In these countries, health outcomes improve after retirement for both elderly males and females. Regarding the CES-D summary, the magnitude of the coefficient is large (-2.435) for elderly Japanese males, and their CES-D summary improves after retirement. Additionally, BMI increases after retirement, and the magnitude of the coefficient is large (2.796) in Japan.
- In subjective indexes, such as the self-report of health and depression, the index improves in many countries, while the health self-report index worsens only in Korea. With respect to objective indexes, such as BMI and ADL, BMI increases or remains constant and ADL improves or remains constant.

¹¹For Germany and Denmark (except for females), we use only the dummy variables (e.g. $\{age_{it} \geq A_i^{eb}\}$).

¹²The full results, including control variables, are available on request.

Table 19: The Results of 1st Stage Regression (only Poor health)

						<u> </u>	<u> </u>		(0		/		
		US			UK				Denmark			France	
	Full	Male	Female	Full	Male	Female		Full	Male	Female	Full	Male	Female
IV-bi-E	0.105***	0.120^{***}	0.089***					0.115***	0.076***	0.124***	0.168***	0.157***	0.176^{***}
	(0.005)	(0.007)	(0.006)					(0.017)	(0.023)	(0.027)	(0.020)	(0.030)	(0.026)
IV-bi-N	-0.457^{***}	-0.472^{***}	-0.323^{***}	0.153^{***}	0.176^{***}	0.131^{***}	(0.165^{***}	0.150^{***}	1.464^{***}	1.775^{***}	2.143^{***}	1.481^{***}
	(0.067)	(0.114)	(0.083)	(0.008)	(0.012)	(0.012)		(0.019)	(0.027)	(0.507)	(0.270)	(0.446)	(0.337)
IV-bi-N - Age	0.008^{***}	0.008^{***}	0.006^{***}	0.001^{***}	0.000^{**}	0.001^{***}				-0.020**	-0.027^{***}	-0.033***	-0.022^{***}
	(0.001)	(0.002)	(0.001)	(0.000)	(0.000)	(0.000)				(0.008)	(0.004)	(0.007)	(0.005)
Observations	162130	68199	93931	45070	20062	25008	_	6672	3120	3552	11214	4894	6320
		Germany			Switzerland	l			Japan			Korea	
	Full	Male	Female	Full	Male	Female			Male		Full	Male	
IV-bi-E	0.142***	0.075^{**}	0.180***	0.090***	0.061*	0.114^{***}	_				-1.257^{***}	-2.161***	
	(0.024)	(0.037)	(0.034)	(0.026)	(0.037)	(0.038)					(0.253)	(0.326)	
IV-bi-N	0.107^{***}	0.153^{***}	0.092^{***}	-2.062***	-1.519^{*}	-2.578^{***}			-1.409^{**}		-0.043^{***}	-0.067***	
	(0.021)	(0.034)	(0.028)	(0.551)	(0.857)	(0.699)			(0.682)		(0.013)	(0.017)	
IV-bi-N - Age				0.034^{***}	0.026^{*}	0.042^{***}			0.024^{**}				
				(0.009)	(0.013)	(0.011)			(0.011)				
IV-bi-E - Age											0.022^{***}	0.038^{***}	
											(0.005)	(0.006)	
Observations	5380	2512	5380	5358	1977	3381			3721		24353	10898	

Poor health	J	JS	Eng	gland	Den	mark	Fra	ance	Ge	rmany	Swi	tzerland	Ja	pan	K	orea
Full sample				~										-		
FE	0.034***	DWH p-val	0.020^{***}	DWH p-val	0.003	DWH p-val	-0.007	DWH p-val	-0.013	DWH p-val	0.004	DWH p-val			0.063^{***}	DWH p-val
FE-IV	-0.138^{***}	0.000	-0.097***	0.000	-0.053	0.297	-0.158^{***}	0.016	-0.143^{*}	0.079	0.003	0.997	-		0.071	0.996
Male													-			
FE	0.041***	DWH p-val	0.026^{***}	DWH p-val	-0.009	DWH p-val	-0.001	DWH p-val	0.003	DWH p-val	-0.005	DWH p-val	-0.035^{***}	DWH p-val	0.072^{***}	DWH p-val
FE-IV	-0.119^{***}	0.000	-0.061^{*}	0.010	-0.012	0.967	-0.070	0.674	-0.059	0.586	-0.073	0.352	0.146	0.070	-0.060	0.362
Female																
FE	0.029***	DWH p-val	0.014^{***}	DWH p-val	0.017	DWH p-val	-0.011	DWH p-val	-0.025	DWH p-val	0.010	DWH p-val				
FE-IV	-0.159^{***}	0.000	-0.154^{***}	0.000	-0.080	0.144	-0.206***	0.015	-0.201*	0.078	0.011	0.939				
											-					
Depression	US(CE	SD(0-8))	England(CESD(0-8))	Denmar	k(EuroD)	France	(EuroD)	German	ny(EuroD)	Switzerl	and(EuroD)	Japan(C	ESD(0-8))	Korea(C	ESD(0-7))
Full sample																
FE	0.193***	DWH p-val	0.084^{***}	DWH p-val	-0.121	DWH p-val	0.020	DWH p-val	-0.035	DWH p-val	-0.064	DWH p-val			0.045	DWH p-val
FE-IV	-1.153^{***}	0.000	-0.501***	0.000	-1.336^{***}	0.005	-0.040	0.887	-0.194	0.736	-0.099	0.954	-		1.155	0.252
Male																
\mathbf{FE}	0.194^{***}	DWH p-val	0.043	DWH p-val	-0.158	DWH p-val	0.137	DWH p-val	0.047	DWH p-val	-0.004	DWH p-val	-0.001	DWH p-val	0.105^{*}	DWH p-val
FE-IV	-0.865^{***}	0.000	-0.586^{***}	0.001	-1.358^{**}	0.073	0.881	0.224	-0.192	0.725	0.021	0.910	-2.234^{*}	0.064	1.185	0.190
Female																
FE	0.189***	DWH p-val	0.116^{***}	DWH p-val	-0.067	DWH p-val	-0.083	DWH p-val	-0.083	DWH p-val	-0.103	DWH p-val				
FE-IV	-1.308^{***}	0.000	-0.406^{*}	0.027	-1.265^{**}	0.027	-0.793	0.245	-0.736	0.390	-0.008	0.961	-			
Word Recall	J	JS	Eng	gland	Den	mark	Fra	ance	Ge	rmany	Swi	tzerland	Ja	pan	K	orea
Full sample	_															
\mathbf{FE}	-0.102***	DWH p-val	0.039	DWH p-val	-0.014	DWH p-val	0.140	DWH p-val	-0.176	DWH p-val	0.091	DWH p-val	_		0.037	DWH p-val
FE-IV	-0.091	0.936	0.358	0.236	0.585	0.397	-0.356	0.445	0.949	0.202	1.359	0.169	-		1.895^{**}	0.007
Male	_															
$\rm FE$	-0.092**	DWH p-val	-0.010	DWH p-val	-0.115	DWH p-val	-0.056	DWH p-val	-0.354	DWH p-val	-0.176	DWH p-val			0.046	DWH p-val
FE-IV	-0.781^{**}	0.072	0.102	0.817	0.576	0.571	-0.478	0.647	1.002	0.221	1.166	0.403	-		1.316^{**}	0.030
Female																
FE	-0.122***	DWH p-val	0.081	DWH p-val	0.060	DWH p-val	0.310	DWH p-val	-0.043	DWH p-val	0.269	DWH p-val				
FE-IV	0.354	0.164	0.255	0.644	0.688	0.464	-0.284	0.494	1.707	0.149	1.248	0.388	-			

Table 20: FEIV estimation 1

Standard errors in parentheses

* p < .1, ** p < .05, *** p < .01

All specifications include age, age squared, married, number of children, HH income, housing, HH total wealth, region and wave dummy.

The red (blue, **bold**) character indicates the positive and significant (negative and significant, insignificant) impact.

BMI	Ţ	JS	Eng	gland	Der	ımark	Fr	ance	Ger	many	Swit	zerland	Ja	apan	K	orea
Full sample			~	-										-		
FE	0.115^{***}	DWH p-val	0.124^{**}	DWH p-val	-0.035	DWH p-val	0.136	DWH p-val	-0.048	DWH p-val	0.072	DWH p-val			0.016	DWH p-val
FE-IV	1.406^{***}	0.000	0.179	0.840	0.121	0.730	-0.056	0.645	-0.331	0.708	0.776	0.245			0.532	0.612
Male																
FE	0.079^{**}	DWH p-val	0.176^{**}	DWH p-val	0.037	DWH p-val	0.151	DWH p-val	-0.035	DWH p-val	0.080	DWH p-val	0.185^{*}	DWH p-val	-0.092	DWH p-val
FE-IV	1.419^{***}	0.000	0.880^{**}	0.065	1.003	0.169	-0.027	0.941	-0.073	0.901	0.785	0.375	2.796^{***}	0.003	-0.504	0.535
Female																
FE	0.153^{***}	DWH p-val	0.069	DWH p-val	-0.108	DWH p-val	0.124	DWH p-val	-0.090	DWH p-val	0.076	DWH p-val				
FE-IV	1.524^{***}	0.000	-0.833	0.081	-0.686	0.406	-0.180	0.622	-0.939	0.340	0.796	0.438				
$BMI \ge 30$	J	JS	Eng	gland	Der	nmark	Fr	ance	Ger	many	Swit	zerland	Ja	apan	K	orea
Full sample																
FE	0.006^{**}	DWH p-val	-0.011	DWH p-val	0.007	DWH p-val	-0.007	DWH p-val	-0.013	DWH p-val	0.013	DWH p-val			0.006^{**}	DWH p-val
FE-IV	0.069^{***}	0.013	-0.004	0.881	0.064	0.382	0.005	0.652	0.025	0.667	0.121^{*}	0.106			-0.074	0.257
Male																
FE	0.003	DWH p-val	-0.008	DWH p-val	0.022	DWH p-val	-0.015	DWH p-val	-0.015	DWH p-val	0.001	DWH p-val	0.002	DWH p-val	-0.001	DWH p-val
FE-IV	0.039	0.339	0.062	0.291	0.098	0.477	0.062	0.365	-0.070	0.574	0.143	0.343	0.081	0.400	-0.036	0.302
Female																
FE	0.009^{**}	DWH p-val	-0.014	DWH p-val	-0.006	DWH p-val	0.000	DWH p-val	-0.012	DWH p-val	0.021^{*}	DWH p-val				
FE-IV	0.094^{***}	0.016	-0.067	0.431	-0.004	0.969	-0.040	0.934	0.035	0.643	0.088	0.365				
ADL summary (0-3)	Ţ	JS	Eng	gland	Der	ımark	Fr	ance	Ger	many	Swit	zerland	Ja	apan	K	orea
Full sample																
\mathbf{FE}	0.041^{***}	DWH p-val	0.044^{***}	DWH p-val	0.030^{*}	DWH p-val	-0.018	DWH p-val	0.003	DWH p-val	-0.018	DWH p-val			0.021^{**}	DWH p-val
FE-IV	-0.484^{***}	0.000	-0.146^{***}	0.000		0.060	0.049	0.781	-0.328^{***}	0.011	-0.173^{*}	0.255			-0.471^{**}	0.002
Male																
FE	0.056^{***}	DWH p-val	0.040^{***}	DWH p-val	0.045	DWH p-val	-0.022	DWH p-val	-0.014	DWH p-val	-0.026	DWH p-val	-0.030	DWH p-val	0.065^{***}	DWH p-val
FE-IV	-0.376^{***}	0.000	-0.168^{***}	0.000	-0.108	0.308	0.155	0.437	-0.316^{*}	0.051	-0.266	0.187	-0.134	0.665	-0.248^{*}	0.011
Female																
FE	0.031^{***}	DWH p-val	0.048^{***}	DWH p-val	0.017	DWH p-val	-0.015	DWH p-val	0.020	DWH p-val	-0.011	DWH p-val				
FE-IV	-0.523^{***}	0.000	-0.123^{**}	0.003	-0.046	0.267	-0.009	0.367	-0.393**	0.011	-0.153	0.497				

Table	21:	FEIV	l estimation	2
TODIO	<u> </u>	T TT 1		-

Standard errors in parentheses

* p < .1, ** p < .05, *** p < .01

All specifications include age, age squared, married, number of children, HH income, housing, HH total wealth, region and wave dummy.

The red (blue, bold) character indicates the positive and significant (negative and significant, insignificant) impact.

				()((I		/ (0 /	
			Con	trols					Con	trols	
ADL(0-3)	Def. of retire	Pattern 1	Pattern 2	Pattern 3	Pattern 4	Poor health	Def. of retire	Pattern 1	Pattern 2	Pattern 3	Pattern 4
United States	Not work	-0.493***	-0.484***	-0.473***	-0.484***	United States	Not work	-0.107***	-0.110***	-0.107***	-0.138***
United States	Complete retire	-0.323***	-0.318^{***}	-0.310^{***}	-0.284^{***}	United States	Complete retire	-0.082***	-0.084^{***}	-0.082***	-0.105^{***}
England	Not work	-0.173***	-0.166***	-0.149***	-0.146***	Fugland	Not work	-0.094***	-0.095***	-0.098***	-0.097***
Eligiand	Complete retire	-0.102^{***}	-0.098***	-0.090***	-0.088***	England	Complete retire	-0.059***	-0.060***	-0.062***	-0.061***
Donmark	Not work	-0.114	-0.112	-0.119	-0.104	Donmark	Not work	0.010	0.008	0.002	0.003
Dennark	Complete retire	-0.008	-0.007	-0.127**	-0.120**	Deminark	Complete retire	0.009	0.007	0.006	0.008
France	Not work	-0.009	-0.009	-0.017	-0.018	France	Not work	-0.135**	-0.130**	-0.149***	-0.158^{***}
France	Complete retire	-0.009	-0.01	-0.018	-0.019	France	Complete retire	-0.013	-0.011	-0.076**	-0.082**
Cormony	Not work	-0.326***	-0.252**	-0.328***	-0.328***	Cormony	Not work	0.132*	-0.129*	-0.140*	-0.143*
Germany	Complete retire	-0.206***	0.170**	-0.227***	-0.225^{***}	Germany	Complete retire	-0.025*	-0.023*	-0.023*	-0.023
Switzenland	Not work	-0.004	-0.005	-0.017	-0.018	Switzenland	Not work	0.002	0.002	0.002	0.004
Switzenand	Complete retire	0.019	-0.097*	0.018	0.017	Switzenand	Complete retire	0.006	0.006	0.005	0.007

Table 22: Robustness check: ADL (0-3)(Left) and Poor health (Self-report of health)(Right)

Pattern 1 includes age and age squared.

Pattern 2 includes age, age squared, married and number of children(basic variables).

Pattern 3 includes basic variables and, HH income, housing and HH total wealth (economic variables).

Pattern 4 includes basic variables, economic variables and, region dummy and wave dummy. * p < .1, ** p < .05, *** p < .01

The red (blue) character indicates the positive (negative) impact.

Pattern 1 includes age and age squared.

Pattern 2 includes age, age squared, married and number of children (basic variables). Pattern 3 includes basic variables and, HH income, housing and HH total wealth (economic variables). Pattern 4 includes basic variables, economic variables and, region dummy and wave dummy. * p < .1, ** p < .05, *** p < .01

The red (blue) character indicates the positive (negative) impact.

Table 23: International comparison of the effect of retirement on health

	US	England	Denmark	France	Germany	Switzerland	Japan	South Korea
Self-report of health	+	+		+	+			-
Depression	+	+	+				+	
Cognition	-							+
BMI	-	-					-	
ADL	+	+			+			+

Subsequently, we check the sensitivity of the retirement definition and the pattern of control variables on the effect of retirement on health. We prepare two retirement definitions ("not work for pay" and "complete retire") and four control patterns ("Pattern 1," etc.). According to Table 22, in most analyzed countries and patterns, the estimates are robust, although we change the retirement definition and control variable patterns for each country regardless of health outcomes. The results are sensitive depending on the definition of retirement in Denmark (Pattern 4, ADL) and Germany (Pattern 4, health self-report). The results are not significant for some countries, but there is no opposite effect. In Table 22, we show only the final results after performing the DWH test, by choosing FE or FE-IV.

5.3 Discussion

We summarize our main results in Table 23. Our analysis method (FE-IV) is established in this section. According to Table 23, when we fix our analysis method, we find a few of opposite results (positive or negative effects) (health self-report, cognition). For each health index, we obtain positive (negative) or no effects of retirement on health in all surveyed countries. The important point is that there is heterogeneity of the effect of retirement on health, even if we fix our method and control for retirement endogeneity. Heterogeneities depending on the surveyed countries cannot be explained by the differences in the analysis method. It is possible that these differences can be explained by the heterogeneity of the health investment behavior change after retirement. Consequently, we should investigate the relationship between the heterogeneity of the effect of retirement on health investment behaviors after retirement. Eibich (2015) discusses this point solely for Germany.

6 Conclusion

We summarize the results of this study as follows.

- Review 1:
 - The sensitivity of replacing the definition of retirement is not strong.
 - The sensitivity of replacing the analysis method is not weak. In almost all indexes, the estimated results change when replacing the analysis method.
 - The sensitivity of replacing the surveyed country is also significant.
- Review 2:
 - The choice of the estimation method seems to be the key factor for explaining the difference in the estimation results in all indexes. Additionally, what the researcher uses as control variables is also important. In all health indexes, the estimation method plus other factors (e.g., method + controls) changes the estimation result. What the researcher uses as control variables is also included in all health indexes.
 - The influence of the difference in the surveyed country is also important for explaining the difference in the effect of retirement on health.
 - Changes in the definition of retirement have a lower impact.

We summarize our main results in Table 23, and fix our analysis method (FE-IV) in Section 5. According to Table 23, when we fix our analysis method, we obtain comparatively stable results. However, there is heterogeneity of the effect of retirement on health even if we fix our methods and control for the endogeneity of retirement. As such, future work could answer on why is there heterogeneity of the effect of retirement on health among different countries. It is possible that the change in health investment behaviors after retirement is an important factor for explaining these heterogeneities. Future work can investigate the relationship between the heterogeneity of the effect of retirement on health observed in many countries and the one of the change in health investment behaviors after retirement.

A Appendix

A.1 Pension Eligibility Age

To obtain pensionable age, we use the information from the Bureau of Labor Statistics in each country. However, this information is not available for some countries. Subsequently, we contact the Bureau of Labor Statistics or Bureau of Statistics directly, and obtain the information if possible. If we cannot find any information in the previous step, we use the OECD Pensions at a Glance, social security programs throughout the world (Europe, Asia and the Pacific, and the Americas) and The EUs Mutual Information System in Social Protection (MISSOC) as data sources. However, we cannot obtain the detailed pension eligibility age for many countries. Finally, the correct pension eligibility ages are obtained for the USA, the UK, Germany, France, Denmark, Switzerland, Czech, Estonia, Japan, China, and Korea. We do not consider countries where this information is missing. In this paper, we analyze the USA, the UK, Denmark, France, Germany, Switzerland, Japan and Korea. We show the pension eligibility ages used in this paper, as per the following tables.

Table 24: Pension eligibility age in Section 5

Table 25:	PEA: US
Birth cohort	PEA
Early PEA	
	62y0m
Normal PEA	
~ 1937.12	65y0m
1938.1 ~ 1938.12	65y2m
1939.1 ~ 1939.12	65y4m
1940.1 ~ 1940.12	65y6m
1941.1 ~ 1941.12	65y8m
1942.1 ~ 1942.12	65y10m
1943.1 ~ 1943.12	66y0m
1944.1 ~ 1944.12	66y0m
1945.1 ~ 1945.12	66y0m
1946.1 ~ 1946.12	66y0m
1947.1 ~ 1947.12	66y0m
1948.1 ~ 1948.12	66y0m
1949.1 ~ 1949.12	66y0m
1950.1 ~ 1950.12	66y0m
1951.1 ~ 1951.12	66y0m
1952.1 ~ 1952.12	66y0m
1953.1 ~ 1953.12	66y0m
1954.1 ~ 1954.12	66y0m
1955.1 ~ 1955.12	66y2m
1956.1 ~ 1956.12	66y4m
1957.1 ~ 1957.12	66y6m
1958.1 ~ 1958.12	66y8m
1959.1 ~ 1959.12	66y10m
1960.1 ~ 1960.12	67y0m

Table 26	: <u>PEA: U</u> K
Birth cohort	PEA
Normal PEA:	Male
~ 1953.12	65y0m
1954.1 $$ 1954.12	66y0m
$1955.1 \ \ \ 1959.12$	66y0m
$1960.1 \ \ \ 1960.12$	67y0m
1961.1 ~	67y0m
Normal PEA:	Female
~ 1949.12	60y0m
$1950.1 \ \ \ 1950.12$	61y0m
1951.1 ~ 1951.12	62y0m
1952.1 ~ 1952.12	63y0m
1953.1 ~	65y0m

Table 27: PEA: Germany						
Birth cohort	PEA					
Early PEA: Ma	le					
~ 1952.12	63y0m					
$1953.1 \ \ 1953.12$	63y2m					
1954.1 $$ 1954.12	63y4m					
$1955.1 \ \ \ 1955.12$	63y6m					
$1956.1 \ \ \ 1956.12$	63y8m					
1957.1 $$ 1957.12	63y10m					
1958.1 $$ 1958.12	64y0m					
1959.1 $$ 1959.12	64y2m					
$1960.1 \ \ \ 1960.12$	64y4m					
$1961.1 \ \ \ 1961.12$	64y6m					
$1962.1 \ \ 1962.12$	64y8m					
$1963.1 \ \ 1963.12$	64y10m					
$1964.1 \ \tilde{\ } \ 1964.12$	65y0m					
Early PEA: Fer	nale					
~ 1951.12	60y0m					
Normal PEA						
~ 1946.12	65y0m					
$1947.1 \ \ \ 1947.12$	65y1m					
$1948.1 \ \ \ 1948.12$	65y2m					
1949.1 ~ 1949.12	65y3m					
1950.1 ~ 1950.12	65y4m					
1951.1 ~ 1951.12	65y5m					
1952.1 ~ 1952.12	65y6m					
1953.1 ~ 1953.12	65y7m					
$1954.1 \ \ \ 1954.12$	65y8m					
$1955.1 \ \ \ 1955.12$	65y9m					
$1956.1 \ \ \ 1956.12$	65y10m					
1957.1 ~ 1957.12	65y11m					
$1958.1 \ \ \ 1958.12$	66y0m					
1959.1 ~ 1959.12	66y2m					
$1960.1 \ \ \ 1960.12$	66y4m					
$1961.1 \ \ \ 1961.12$	66y6m					
$1962.1 \ \tilde{\ } \ 1962.12$	66y8m					
$1963.1 \ \tilde{\ } \ 1963.12$	66y10m					
1964.1 ~ 1964.12	67y0m					

Table 28: 1	PEA: Fra
Birth cohort	PEA
Early PEA	
~ 1951.6	60y0m
1951.7 ~ 1951.12	60y4m
1952.1 ~ 1952.12	60y9m
1953.1 ~ 1953.12	61y2m
1954.1 ~ 1954.12	61y7m
1955.1 ~ 1955.12	62y0m
1956.1 ~ .	62y0m
Normal PEA	
~ 1951.6	65y0m
1951.7 ~ 1951.12	65y4m
1952.1 ~ 1952.12	65y9m
1953.1 ~ 1953.12	66y2m
1954.1 ~ 1954.12	66y7m
1955.1 ~ 1955.12	67y0m
1956.1 ~ .	67y0m

Table 30: P	EA: Denmark	Table 31: PE	A: Switzerland	Table 32: I	PEA: Japan	Table 33:	PEA: Korea
Birth cohort	PEA	Birth cohort	PEA	Birth cohort	PEA	Birth cohort	PEA
Early PEA		Early PEA: Ma	ale	Normal PEA: M	fale	Early PEA	
~ 1953.12	60y0m	~ 1924.12	63y0m	~1941.4.1	60y0m	~ 1952.12	55y0m
$1954.1 \ \ \ 1954.6$	60y6m	$1925.1 \ \ \ 1950.12$	63y0m	1941.4.2~1943.4.1	61v0m	1953.1 ~ 1956.12	56y0m
1954.7 $$ 1954.12	61y0m	Early PEA: Fer	nale	1943.4.2~1945.4.1	62v0m	1957.1 ~ 1960.12	57y0m
$1955.1 \ \ \ 1955.6$	61y6m	~ 1937.12	60y0m	1945.4.2~1947.4.1	63y0m	$1961.1 \ \tilde{\ } \ 1964.12$	58y0m
1955.7 ~ 1955.12	62y0m	$1938.1 \ \ \ 1940.12$	61y0m	1947.4.2~1949.4.1	64y0m	$1965.1 \ \tilde{\ } \ 1968.12$	59y0m
$1956.1 \ \ \ 1956.6$	62y6m	1941.1 ~	62y0m	1949.4.2~1953.4.1	65y0m	1969.1 ~ .	60y0m
1956.7 $$ 1958.12	63y0m	Normal PEA: N	Male	$1953.4.2^{\sim}1955.4.1$	65y0m	Normal PEA	
1959.1 ~ 1959.6	63y6m	~ 1924.12	65y0m	1955.4.2~1957.4.1	65y0m	~ 1952.12	60y0m
1959.7 ~ 1964.6	64y0m	$1925.1 \ \ \ 1950.12$	65y0m	1957.4.2~1959.4.1	65y0m	1953.1 ~ 1956.12	61y0m
1964.7 ~	64y0m	Normal PEA: I	Female	1959.4.2~1961.4.1	65y0m	1957.1 ~ 1960.12	62y0m
Normal PEA		~ 1937.12	62y0m	1961.4.2~	65y0m	$1961.1 \ \tilde{\ } \ 1964.12$	63y0m
~ 1953.12	65y0m	$1938.1 \ \tilde{\ } 1940.12$	63y0m	Normal PEA: F	emale	1965.1 ~ 1968.12	64y0m
1954.1 ~ 1954.6	65y6m	1941.1 ~	64y0m	~1932.4.1	55y0m	1969.1 ~ .	65y0m
$1954.7 \ \ 1954.12$	66y0m			$1932.4.2^{\sim}1934.4.1$	56y0m		
1955.1 ~ 1955.6	66y6m			$1934.4.2^{\sim}1936.4.1$	57y0m		
1955.7 ~ 1955.12	67y0m			$1936.4.2^{\sim}1937.4.1$	58y0m		
1956.1 ~ 1956.6	67y0m			$1937.4.2^{~}1938.4.1$	58y0m		
1956.7 ~ 1958.12	67y0m			1938.4.2~1940.4.1	59y0m		
1959.1 ~ 1959.6	67y0m			1940.4.2~1946.4.1	60y0m		
1959.7 ~ 1964.6	67y0m			1946.4.2~1948.4.1	61y0m		
1964.7 ~	67y0m			$1948.4.2^{\degree}1950.4.1$	62y0m		
				1950.4.2~1952.4.1	63y0m		
				1952.4.2~1954.4.1	64y0m		
				$1954.4.2^{\circ}1958.4.1$	65y0m		
				$1958.4.2^{\sim}1960.4.1$	65y0m		
				$1960.4.2^{\sim}1962.4.1$	65y0m		
				$1962.4.2^{\sim}1964.4.1$	65y0m		
				1964.4.2~1965.4.1	65y0m		

Table 29: Pension eligibility age in Section 5

A.2 Additional Literature Review

Here, we show the rest of the results on the health indexes which we do not introduce in Section 2. We summarize the rest of the results on health indexes in Table 34.

 $1965.4.2^{\sim}$

65y0m

					0.10			
	Bound and Waidmann	Coe and Lindeboom	Dave et al.	Neuman	Johnston and Lee	Coe and Zamarro	Behncke	Hernaes et al.
	2007, Univ. Michigan	2008, IZA DP	2008, Southern Eco-	2008, J of Labor Re-	2009, Economics Let-	2011, J Health Eco-	2012, Health Economics	2013, J Health Eco-
	WP		nomic Journal	search	ters	nomics		nomics
Metabolic Syndrome	positive(M) no(F)	positive (restricting	negative(diabetes)				negative(metabolic syn-	
U U		within 4 years)					drome) no(diabetes)	
heart risk	no(M) no(F)	no(heart attack)	no(heart desease)		no		no(heart attack) nega-	
		,					tive(again heart attack	
							and stroke)	
mortality		10				no		no(M&F)
SPBB score	positive(M) po(F)							
heart diabats diagnosis M	po(M) negative(F)							
chronic illness M	$\operatorname{positive}(M)$ $\operatorname{positive}(F)$			no(M) no(F) chronic			negative	
chronic micso w	positive(iii) positive(i)			condition			licgauive	
plain M	positive(M) positive(F)			condition				
bish blood pressure	positive(iii) positive(i')				n (hum ont on sign)			
nigh blood pressure		110	10		no(nypertension)			
cancer		110	10	$(M) \rightarrow (T)$			negative	
mobility			negative	no(M) no(F)			negative(difficulty walk-	
-11							ing)	
illness			negative					
stroke			no					
arthritis			negative					
difference in self ratings				no(M) no(F)				
large muscle functions				no(M) no(F)				
# days ill					positive			
asthma					no			
arthritis					no		no	
depression					positive(mental health)	no(EUROD)		
angina							no	
stroke							negative	
psychiatric							10	
health stock							negative	
limitting long standing illness							negative	
sooing difficulties							no	
bearing difficulties							no	
high C resisting protein (> 2mg/L)							negative	
light C-reactive protein (>5ing/L)							10	
high fibrinogen (/>mmol/L)							negative	
low hemoglobin (<12g/dl)	1.000				DDD		negative	
Method	pseudo RDD	IV method	Fixed effect method	IV method	RDD	IV method	Nonparametric match-	IV method and hazard
							ing	model
Method (details)		IVs: pension eligibility	Restricting sample who	IVs: public and private	Using 65 years as kink	IVs: eligibility age for	Using state pension eli-	IVs: entitle retirement
		age	has good health before	PEA for respondent and	points robustness check	early and full retirement	gibility age as IV	age
			retirement, and retire as	for spouse working more	by changing bandwidth			
			of 62	than 10 years				
Def. of Retirement		people report to be out	complete retirement	elderly working less	Retired from paid work	someone who is not in	retire describes her cur-	receiing pension, other
		of the labor force or	(retired and not work-	than 1200 hours in a		the paid labor force	rent situation best and	benefits or sharp drop of
		not having any paid em-	ing)	year			not in paid work was	income
		ployment					her activity in the last	
							month	
Controls(Demog.)		age, education, marital	age, sex, race, marital	age, education, race,		education, marital sta-	children, birth place,	education, faculty, mar-
		status, children	status, education	whether parents living		tus, children	residential area	ital status,
			· · ·	or not, children, marital				,
				status, region				
Controls(Economic)			income, asset	financial status		income	income	income, pension infor-
								mation
Controls(Working)		ioh types (blue and		occupation		self employment	working hours employ	job industry
Constone((rothing.)		white collar)				son employment	ment status	Job maasary
Controls(Health)		" more contai)	lifectulo habite	oarly factors hoalth bo			mone searces	
Controis(nearth)			mestyle habits	barriero				
Data	ELCA 1st mans	UDC 1st 7th mans	HDC 09205 7 mm	Haviors	Hashib Comment for Day	CHADE 1st 2nd main	FIGA 1st 2nd man	a diministration 1.7.
Data	LL5A 1st wave	nns 1st-/th wave	пп 5 92 05 / wave	nn5 1992 2004 / wave.	nearth Survey for Eng-	SHAKE ISU-2nd wave	LL5A 1st-3rd wave	administrative data
				Univ elderly consecu-	iand			1992 2010
C		1.55.50		uve for 3 years				
Sample		male workers aged 55-70						
		years						
Country	The U.K.	The U.S.	The U.S.	The U.S.	The U.K.	European countries	The U.K.	Norway

Table 34: Illness

A.3 Notes on Replication and Replacement

- Replication 1: In this subsection, we explain the details of replication and replacement procedures. Table 35 shows the table number in the original papers we replicate, the number of samples when we replicate the results, and our comments on the replication. In most cases, we can replicate the results in preceding literature with a number of samples similar to the original number of samples, except for Coe and Zamarro (2011). When we replicate Coe and Zamarro (2011), the number of samples is 7,066 for self-report of health and depression, and 6,637 for cognition, while the number of samples in the original paper are 5,282 and 4,926, respectively. It is possible that the difference in the number of samples is due to the difference in the version of the SHARE dataset. We use the SHARE 5.0.0 for all waves, while Coe and Zamarro (2011) use 2.0.1 SHARE 2004. However, the summary statistics (e.g., average value) calculated by our replicated samples are very similar to the original test statistics, and, therefore, we use the replication results with our replicated samples of Coe and Zamarro (2011).
- Replication 2: We exclude some control variables when we replicate Neuman (2008) because of data limitation. Neuman (2008) uses detailed regional information and the health status when a respondent is a child. We have generated these variables by using the Cross-Wave: Census Region/Division and Mobility File and Aging Trends and Effects (RELATE) Files. However, when we include these generated variables in the estimated model, the sample size significantly decreases. Therefore, we exclude these variables from the control variables in the Neuman (2008) replication.

	Table we replicate	Sample replication	Comment
		$(\text{Original}) \rightarrow (\text{Our replication})$	
Cognition			
Bonsang et al. (2012)	Table 1	$54377 \rightarrow 55564$	
Coe and Zamarro (2011)	Table 6 (Memory)	$4928 \rightarrow 6637$	
Self-report of health			
Dave et al. (2008)	Table 2 (Poor health)	NA (not mentioned) $\rightarrow 35594$	
Coe and Zamarro (2011)	Table 5 (Bad health)	$5282 \rightarrow 7066$	
Depression			
Dave et al. (2008)	Table2 (Column 3)	NA (not mentioned) $\rightarrow 28420$	
Coe and Zamarro (2011)	Table 5 (Euro-D)	$5282 \rightarrow 7066$	
ADL			
Dave et al. (2008)	Table 2 (Column 3)	NA (not mentioned) $\rightarrow 30731$	
Neuman (2008)	Table 3	$7632 \rightarrow 7655$	We omit some control variables.
Obesity			
Johnston and Lee (2009)	Table 1 (Bandwidth 3)	$2877 \rightarrow 2876$	
Godard (2016)	Table 9 (Obese)	$3951 \rightarrow 4059$	

Table 35: Notes on Replication

Tables 36 and 37 summarize the notes on the replacement procedures by each replacement factor. For example, (Bonsang et al. $(2012) \rightarrow$ Coe and Zamarro (2011)) describe the comments when we carry out the replacement procedure from Bonsang et al. (2012) to Coe and Zamarro (2011). (Controls) describes the comments when we replace control variables.

Cognition

Bonsang et al. $(2012) \rightarrow \text{Coe}$ and Zamarro (2011)

(Controls)

•We exclude some control variables Coe and Zamarro (2011) include because the variables are not available in all waves used in Bonsang et al. (2012). The problem is that the sample size significantly decreases when we include these variables.^{*1}

(Sample)

•Coe and Zamarro (2011) use health condition variables to restrict the analyzed samples in the SHARE. Since some of these variables are not available in the HRS, we do not apply the same sample restriction procedure in Coe and Zamarro (2011).

Coe and Zamarro $(2011) \rightarrow$ Bonsang et al. (2012)

(Method and data)

•Since Coe and Zamarro (2011) use only wave 1 of the SHARE, we cannot directly apply the FE-IV estimation for the analysis framework of Coe and Zamarro (2011). Therefore, we use wave 1 and 2 of the SHARE for FE-IV estimation when replacing the method and the dataset.

Self-report of health

Dave et al. (2008) \rightarrow Coe and Zamarro (2011)

(Method)

•Since Dave et al. (2008) use the FE estimation, they do not use the IVs. Therefore, when applying IV estimation to Dave et al. (2008), we use the same pensionable ages as Bonsang et al. (2012) for the IVs, because Dave et al. (2008) and Bonsang et al. (2012) analyze the USA and the data collection periods roughly overlap.

•We use age and age squared instead of the age dummy when we use the IV estimation. There is a multicollinearity between the IVs (takes the value 1 after a respondent reaches pensionable age) and the age dummy when applying the IV estimation.

Coe and Zamarro $(2011) \rightarrow \text{Dave et al.} (2008)$

(Index)

•We use "Poor health" (included in wave 1 and 2) as the index for FE estimation because the European scale of self-report of health is asked only in the SHARE wave 1.

(Method and data)

•We use wave 1 and 2 in the SHARE for FE estimation when replacing the method and data because of the same reason in (method and data) of the cognition section.

(Controls)

•We exclude some control variables that are not asked in the SHARE^{*2} and the health insurance variable that is asked in only several countries, when replacing the control pattern from Coe and Zamarro (2011) to Dave et al. (2008).

(Data)

•We use "Poor health" in the HRS because the European scale of self-report of health is not asked in the HRS when replacing the dataset from the SHARE to the HRS.

^{*1}e.g., non-professional activities and physical activities.

^{*2}e.g., race, religious preference.

Depression
Dave et al. $(2008) \rightarrow \text{Coe} \text{ and Zamarro } (2011)$
(\mathbf{Method})
•The same comments as in Self-report of health apply.
(Method and data)
•The same comments as in Self-report of health apply.
(Controls)
•The same comments as in Self-report of health apply.
(Data)
•We use the CES-D in the HRS because the EURO-D is not asked in the HRS when replacing the dataset from the
SHARE to the HRS.

ADL

```
Dave et al. (2008) \rightarrow Neuman (2008)
```

(Method)

•When applying the estimation method by Neuman (2008), we use the same estimation equation and the IVs as Neuman (2008).

Acknowledgement

The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan.

The ELSA (English Longitudinal Study of Ageing) is funded by the US National Institute on Ageing and a consortium of UK government departments coordinated by the Office for National Statistics.

This paper uses data from SHARE Waves 1, 2, 3 (SHARELIFE), 4 and 5 (DOIs: 10.6103/SHARE.w1.260, 10.6103/SHARE.w2.260, 10.6103/SHARE.w3.100, 10.6103/SHARE.w4.111, 10.6103/

SHARE.w5.100), see Börsch-Supan et al. (2013) for methodological details. The SHARE data collection has been primarily funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005

-028857, SHARELIFE: CIT4-CT-2006-028812) and FP7 (SHARE-PREP: N211909, SHARE-LEAP: N227822, SHARE M4: N261982). Additional funding from the German Ministry of Education and Research, the U.S. National Institute on Aging (U01_AG09740-13S2, P01_AG00 5842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_

04-064\$) and from various national funding sources is gratefully acknowledged (see www.shareproject.org).

The Japanese Study of Aging and Retirement (JSTAR) was conducted by the Research Institute of Economy, Trade and Industry (RIETI), Hitotsubashi University, and the University of Tokyo.

References

- Ayyagari, P. (2014). The Impact of Retirement on Smoking Behavior. Eastern Economic Journal, pages 1–18.
- Behncke, S. (2012). Does Retirement Trigger Ill Health? *Health economics*, 21:282–300.
- Bingley, P. and Martinello, A. (2013). Mental retirement and schooling. *European Economic Review*, 63:292–298.
- Bonsang, E., Adam, S., and Perelman, S. (2012). Does retirement affect cognitive functioning? Journal of Health Economics, 31(3):490–501.
- Bound, J. and Waidmann, T. (2007). Estimating the Health Effects of Retirement. University of Michigan Retirement Research Center Working Papers.
- Charles, K. K. (2004). Is Retirement Depressing?: Labor Force Inactivity and Psychological Well being in Later Life. Research in Labor Economics, 23:269–299.
- Coe, N. B., Gaudecker, H.-M. V., Lindeboom, M., and Maurer, J. (2012). The Effect Of Retirement On Cognitive Functioning. *Health Economics*, 21:913–927.
- Coe, N. B. and Lindeboom, M. (2008). Does Retirement Kill You? Evidence from Early Retirement Windows. *IZA Discussion Papers*, 93.
- Coe, N. B. and Zamarro, G. (2011). Retirement effects on health in Europe. Journal of Health Economics, 30(1):77–86.
- Dave, D., Rashad, I., and Spasojevic, J. (2008). The Effects of Retirement on Physical and Mental Health Outcomes. Southern Economic Journal, 75(2):497–523.
- Devore, E. E., Stampfer, M. J., Breteler, M. M. B., Rosner, B., Kang, J. H., Okereke, O., Hu, F. B., and Grodstein, F. (2009). Dietary fat intake and cognitive decline in women with type 2 diabetes. *Diabetes Care*, 32(4):635–640.
- Eibich, P. (2015). Understanding the Effect of Retirement on Health: Mechanisms and Heterogeneity. Journal of Health Economics, 43:1–12.
- Fonseca, R., Kapteyn, A., Lee, J., Zamarro, G., and Feeney, K. (2014). A Longitudinal Study of Well-being of Older Europeans: Does Retirement Matter? Journal of population ageing, 7(1):21–41.
- Godard, M. (2016). Gaining weight through retirement ? Results from the SHARE survey. Journal of Health Economics, 45:27–46.
- Gruber, J. and Wise, D. A. (1998). Social Security and Retirement: An International Comparison. American Economic Review, Papers and Proceedings of the Hundred and Tenth Annual Meeting of the American Economic Association, 88(2):158–163.
- Hashimoto, H. (2013). Health Consequences of Transitioning to Retirement and Social Participation: Results based on JSTAR panel data. *RIETI Discussion Paper Series 13-E-078*.
- Hashimoto, H. (2015). Impacts of Leaving Paid Work on Health, Functions, and Lifestyle Behavior: Evidence from JSTAR panel data. *RIETI Discussion Paper Series 15-E-114*.
- Hernaes, E., Markussen, S., Piggott, J., and Vestad, O. L. (2013). Does retirement age impact mortality? Journal of Health Economics, 32(3):586–598.
- Insler, M. (2014). The Health Consequences of Retirement. *Journal of Human Resources*, 49(1):195–233.
- Iparraguirre, J. (2014). Physical Functioning in work and retirement : commentary on age-related

trajectories of physical functioning in work and retirement - the role of sociodemographic factors , lifestyle and disease by Stenholm et al. *Journal of Epidemiology and Community Health*, 68:493–499.

- Johnston, D. W. and Lee, W.-S. (2009). Retiring to the good life? The short-term effects of retirement on health. *Economics Letters*, 103(1):8–11.
- Kajitani, S. (2011). Working in old age and health outcomes in Japan. Japan and The World Economy, 23:153–162.
- Kajitani, S., Sakata, K., and McKenzie, C. (2014). Occupation, Retirement and Cognitive Functioning. Discussion Paper Series Graduate School and School of Economics Meisei University, Discussion Paper Series, No.27.
- Kajitani, S., Sakata, K., and McKenzie, C. (2016). Occupation, retirement and cognitive functioning. Ageing and Society, May 2016:1–29.
- Kerkhofs, M. and Lindeboom, M. (1997). Age related health dynamics and changes in labour market status. *Health economics*, 6(4):407–423.
- Latif, E. (2011). The impact of retirement on psychological well-being in Canada. Journal of Socio-Economics, 40(4):373–380.
- Latif, E. (2013). The impact of retirement on mental health in Canada. Journal of Mental Health Policy and Economics, 16(1):35–46.
- Lee, J. and Smith, J. P. (2009). Work, Retirement, and Depression. *Journal of Population Ageing*, 2(1-2):57–71.
- Lindeboom, M., Portrait, F., and Van Den Berg, G. J. (2002). An econometric analysis of the mental-health effects of major events in the life of older individuals. *Health Economics*, 11(6):505–520.
- Mazzonna, F. and Peracchi, F. (2012). Ageing, cognitive abilities and retirement. European Economic Review, 56(4):691–710.
- McEwen, B. S. and Sapolsky, R. M. (1995). Stress and Cognitive Function. Current Opinion in Neurobiology, 5:205–216.
- McGarry, K. (2004). Health and Retirement: Do Changes in Health Affect Retirement Expectations? Journal of Human Resources, 39(3):624–648.
- Motegi, H., Nishimura, Y., and Terada, K. (2016). Does Retirement Change Lifestyle Habits? Japanese Economic Review, 67(2):169–191.
- Neuman, K. (2008). Quit your job and get healthier? The effect of retirement on health. Journal of Labor Research, 29(2):177–201.
- Rohwedder, S. and Willis, R. J. (2010). Mental Retirement. *Journal of Economic Perspectives*, 24(1):119–138.
- Schaffer, M. (2010). xtivreg2: Stata module to perform extended iv/2sls, gmm and ac/hac, liml and k-class regression for panel data models. Available online via http://repec.org/bocode/ x/xtivreg2.html (last accessed 19.9.2016).
- van der Heide, I., van Rijn, R. M., Robroek, S. J., Burdorf, A., and Proper, K. I. (2013). Is retirement good for your health? A systematic review of longitudinal studies. *BMC public health*, 13(1):1180.
- Wang, M. and Shi, J. (2014). Psychological research on retirement. Annual review of psychology, 65:209–33.

- Zhao, M., Konishi, Y., and Noguchi, H. (2013). Retiring for Better Health Evidence from Health Investment Behaviors in Japan. Mimeo.
- Zhu, R. (2016). Retirement and its consequences for women's health in Australia. Social Science & Medicine, 163(2016):117–125.
- Zhu, R. and He, X. (2015). How does women's life satisfaction respond to retirement? A two-stage analysis. *Economics Letters*, 137:118–122.