
Published as a conference paper at ICLR 2020

WHAT GRAPH NEURAL NETWORKS CANNOT LEARN:

DEPTH VS WIDTH

Andreas Loukas

École Polytechnique Fédérale Lausanne
andreas.loukas@epfl.ch

ABSTRACT

This paper studies the expressive power of graph neural networks falling within the
message-passing framework (GNNmp). Two results are presented. First, GNNmp

are shown to be Turing universal under sufficient conditions on their depth, width,
node attributes, and layer expressiveness. Second, it is discovered that GNNmp can
lose a significant portion of their power when their depth and width is restricted.
The proposed impossibility statements stem from a new technique that enables
the repurposing of seminal results from distributed computing and leads to lower
bounds for an array of decision, optimization, and estimation problems involving
graphs. Strikingly, several of these problems are deemed impossible unless the
product of a GNNmp’s depth and width exceeds a polynomial of the graph size;
this dependence remains significant even for tasks that appear simple or when
considering approximation.

1 INTRODUCTION

A fundamental question in machine learning is to determine what a model can and cannot learn. In
deep learning, there has been significant research effort in establishing expressivity results for feed-
forward (Cybenko, 1989; Hornik et al., 1989; Lu et al., 2017) and recurrent neural networks (Neto
et al., 1997), as well as more recently for Transformers and Neural GPUs (Pérez et al., 2019).
We have also seen the first results studying the universality of graph neural networks, i.e., neural
networks that take graphs as input. Maron et al. (2019b) derived a universal approximation theorem
over invariant functions targeted towards deep networks whose layers are linear and equivariant to
permutation of their input. Universality was also shown for equivariant functions and a particular
shallow architecture (Keriven & Peyré, 2019).

Universality statements allow us to grasp the expressive power of models in the limit. In theory, given
enough data and the right training procedure, a universal network will be able to solve any task that it
is presented with. Nevertheless, the insight brought by such results can also be limited. Knowing that
a sufficiently large network can be used to solve any problem does not reveal much about how neural
networks should be designed in practice. It also cannot guarantee that said network will be able to
solve a given task given a particular training procedure, such as stochastic gradient descent.

On the other hand, it might be easier to obtain insights about models by studying their limitations.
After all, the knowledge of what cannot be computed (and thus learned) by a network of specific
characteristics applies independently of the training procedure. Further, by helping us comprehend
the difficulty of a task in relation to a model, impossibility results can yield practical advice on how
to select model hyperparameters. Take, for instance, the problem of graph classification. Training a
graph classifier entails identifying what constitutes a class, i.e., finding properties shared by graphs in
one class but not the other, and then deciding whether new graphs abide to said learned properties.
However, if the aforementioned decision problem is shown to be impossible by a graph neural
network of certain depth then we can be certain that the same network will not learn how to classify a
sufficiently diverse test set correctly, independently of which learning algorithm is employed. We
should, therefore, focus on networks deeper that the lower bound when performing experiments.

1

Published as a conference paper at ICLR 2020

problem bound problem bound

cycle detection (odd) dw = Ω(n/log n) shortest path d
√
w = Ω(

√
n/ log n)

cycle detection (even) dw = Ω(
√
n/log n) max. indep. set dw = Ω(n2/log2 n) for w = O(1)

subgraph verification* d
√
w = Ω(

√
n/ log n) min. vertex cover dw = Ω(n2/log2 n) for w = O(1)

min. spanning tree d
√
w = Ω(

√
n/ log n) perfect coloring dw = Ω(n2/log2 n) for w = O(1)

min. cut d
√
w = Ω(

√
n/ log n) girth 2-approx. dw = Ω(

√
n/log n)

diam. computation dw = Ω(n/log n) diam. 3/2-approx. dw = Ω(
√
n/log n)

Table 1: Summary of main results. Subgraph verification* entails verifying one of the following
predicates for a given subgraph: is connected, contains a cycle, forms a spanning tree, is bipartite, is
a cut, is an s-t cut. All problems are defined in Appendix A.

1.1 MAIN RESULTS

This paper studies the expressive power of message-passing graph neural networks (GNNmp) (Gilmer
et al., 2017). This model encompasses several state-of-the-art networks, including GCN (Kipf &
Welling, 2016), gated graph neural networks (Li et al., 2015), molecular fingerprints (Duvenaud et al.,
2015), interaction networks (Battaglia et al., 2016), molecular convolutions (Kearnes et al., 2016),
among many others. Networks using a global state (Battaglia et al., 2018) or looking at multiple hops
per layer (Morris et al., 2019; Liao et al., 2019; Isufi et al., 2020) are not directly GNNmp, but they
can often be re-expressed as such. The provided contributions are two-fold:

I. What GNNmp can compute. Section 3 derives sufficient conditions such that a GNNmp can
compute any function on its input that is computable by a Turing machine. This result compliments
recent universality results (Maron et al., 2019b; Keriven & Peyré, 2019) that considered approximation
(rather than computability) over specific classes of functions (permutation invariant and equivariant)
and particular architectures. The claim follows in a straightforward manner by establishing the
equivalence of GNNmp with LOCAL (Angluin, 1980; Linial, 1992; Naor & Stockmeyer, 1993),
a classical model in distributed computing that is itself Turing universal. In a nutshell, GNNmp

are shown to be universal if four strong conditions are met: there are enough layers of sufficient
expressiveness and width, and nodes can uniquely distinguish each other. Since Turing universality
is a strictly stronger property than universal approximation, Chen et al. (2019)’s argument further
implies that a Turing universal GNNmp can solve the graph isomorphism problem (a sufficiently deep
and wide network can compute the isomorphism class of its input).

II. What GNNmp cannot compute (and thus learn). Section 4 analyses the implications of restrict-
ing the depth d and width w of GNNmp that do not use a readout function. Specifically, it is proven
that GNNmp lose a significant portion of their power when the product dw, which I call capacity, is
restricted. The analysis relies on a new technique that enables repurposing impossibility results from
the context of distributed computing to the graph neural network setting. Specifically, lower bounds
for the following problems are presented: (i) detecting whether a graph contains a cycle of specific
length; (ii) verifying whether a given subgraph is connected, contains a cycle, is a spanning tree, is
bipartite, is a simple path, corresponds to a cut or Hamiltonial cycle; (iii) approximating the shortest
path between two nodes, the minimum cut, and the minimum spanning tree; (iv) finding a maximum
independent set, a minimum vertex cover, or a perfect coloring; (v) computing or approximating the
diameter and girth. The bounds are summarized in Table 1 and the problem definitions can be found
in Appendix A. Section 5 presents some empirical evidence of the theory.

Though formulated in a graph-theoretic sense, the above problems are intimately linked to machine
learning on graphs. Detection, verification, and computation problems are relevant to classification:
knowing what properties of a graph a GNNmp cannot see informs us also about which features of
a graph can it extract. Further, there have been attempts to use GNNmp to devise heuristics for
graph-based optimization problems (Khalil et al., 2017; Battaglia et al., 2018; Li et al., 2018; Joshi
et al., 2019; Bianchi et al., 2019), such as the ones discussed above. The presented results can then be
taken as a worst-case analysis for the efficiency of GNNmp in such endeavors.

1.2 DISCUSSION

The results of this paper carry several intriguing implications. To start with, it is shown that the
capacity dw of a GNNmp plays a significant role in determining its power. Solving many problems

2

Published as a conference paper at ICLR 2020

is shown to be impossible unless dw = Ω̃(nδ), where δ ∈ [1/2, 2], n is the number of nodes of

the graph, and f(n) = Ω̃(g(n)) is interpreted as f(n) being, up to logarithmic factors, larger than
g(n) as n grows. This reveals a direct trade-off between the depth and width of a graph neural
network. Counter-intuitively, the dependence on n can be significant even if the problem appears
local in nature or one only looks for approximate solutions. For example, detecting whether G
contains a short cycle of odd length cannot be done unless dw = Ω̃(n). Approximation helps, but

only to a limited extent; computing the graph diameter requires dw = Ω̃(n) and this reduces to

dw = Ω̃(
√
n) for any 3/2-factor approximation. Further, it is impossible to approximate within any

constant factor the shortest path, the minimum cut, and the minimum spanning tree, all three of

which have polynomial-time solutions, unless d
√
w = Ω̃(

√
n). Finally, for truly hard problems, the

capacity may even need to be super-linear on n. Specifically, it is shown that, even if the layers of
the GNNmp are allowed to take exponential time, solving certain NP-hard problems necessitates

d = Ω̃(n2) depth for any constant-width network.

Relation to previous impossibility results. In contrast to universality (Maron et al., 2019b; Keriven
& Peyré, 2019), the limitations of GNNmp have been much less studied. In particular, the bounds
presented here are the first impossibility results that (i) explicitly connect GNNmp properties (depth
and width) with graph properties and that (ii) go beyond isomorphism by addressing decision, opti-
mization, and estimation graph problems. Three main directions of related work can be distinguished.
First, Dehmamy et al. (2019) bounded the ability of graph convolutional networks (i.e., GNNmp w/o
messaging functions) to compute specific polynomial functions of the adjacency matrix, referred to as
graph moments by the authors. Second, Xu et al. (2018) and Morris et al. (2019) established the equiv-
alence of anonymous GNNmp (those that do not rely on node identification) to the Weisfeiler-Lehman
(WL) graph isomorphism test. The equivalence implies that anonymous networks are blind to the
many graph properties that WL cannot see: e.g., any two regular graphs with the same number of
nodes are identical from the perspective of the WL test (Arvind et al., 2015; Kiefer et al., 2015). Third,
in parallel to this work, Sato et al. (2019) utilized a connection to LOCAL to derive impossibility
results for the ability of a class of novel partially-labeled GNNmp to find good approximations for
three NP-hard optimization problems. Almost all of the above negative results occur due to nodes
being unable to distinguish between neighbors at multiple hops (see Appendix D). With discriminative
attributes GNNmp become significantly more powerful (without necessarily sacrificing permutation
in/equivariance). Still, as this work shows, even in this setting certain problems remain impossible
when the depth and width of the GNNmp is restricted. For instance, though cycles can be detected
(something impossible in anonymous networks (Xu et al., 2018; Morris et al., 2019)), even for short

cycles one now needs dw = Ω̃(n). Further, in contrast to Sato et al. (2019), an approximation ratio

below 2 for the minimum vertex cover is not impossible, but necessitates dw = Ω̃(n2).

Limitations. First, all lower bounds are of a worst-case nature: a problem is deemed impossible if
there exists a graph for which it cannot be solved. The discovery of non worst-case capacity bounds
remains an open problem. Second, rather than taking into account specific parametric functions,
each layer is assumed to be sufficiently powerful to compute any function of its input. This strong
assumption does not significantly limit the applicability of the results, simply because all lower
bounds that hold with universal layers also apply to those that are limited computationally. Lastly,
it will be assumed that nodes can uniquely identify each other. Node identification is compatible
with permutation invariance/equivariance as long as the network output is asked to be invariant to the
particular way the ids have been assigned. In the literature, one-hot encoded node ids are occasionally
useful (Kipf & Welling, 2016; Berg et al., 2017). When attempting to learn functions across multiple
graphs, ids should be ideally substituted by sufficiently discriminative node attributes (attributes that
uniquely identify each node within each receptive field it belongs to can serve as ids). Nevertheless,
similar to the unbounded computation assumption, if a problem cannot be solved by a graph neural
network in the studied setting, it also cannot be solved without identifiers and discriminative attributes.
Thus, the presented lower bounds also apply to partially and fully anonymous networks.

Notation. I consider connected graphs G = (V, E) consisting of n = |V| nodes. The edge going from
vj to vi is written as ei←j and it is asserted that if ei←j ∈ E then also ej←i ∈ E . The neighborhood
Ni of a node vi ∈ V consists of all nodes vj for which ei←j ∈ E . The degree of vi is denoted by
degi, ∆ is the maximum degree of all nodes and the graph diameter δG is the length of the longest

3

Published as a conference paper at ICLR 2020

shortest path between any two nodes. In the self-loop graph G∗ = (V, E∗), the neighborhood set of
vi is given by N ∗i = Ni ∪ vi.

2 THE GRAPH NEURAL NETWORK COMPUTATIONAL MODEL

Graph neural networks are parametric and differentiable learning machines. Their input is usually
an attributed graph Ga = (G, (ai : vi ∈ V), (ai←j : ei←j ∈ E)), where vectors a1, . . . , an encode
relevant node attributes and ai←j are edge attributes, e.g., encoding edge direction.

Model 1 formalizes the graph neural network operation by placing it in the message passing
model (Gilmer et al., 2017). The computation proceeds in layers, within which a message mi←j is
passed along each directed edge ei←j ∈ E going from vj to vi and each node updates its internal
representation by aggregating its state with the messages sent by its incoming neighbors vj ∈ Ni.
The network output can be either of two things: a vector xi for each node vi or a single vector xG

obtained by combining the representations of all nodes using a readout function. Vectors xi/xG could
be scalars (node/graph regression), binary variables (node/graph classification) or multi-dimensional
(node/graph embedding). I use the symbols GNNn

mp and GNN
g
mp to distinguish between models that

return a vector per node and one per graph, respectively.

Computational model 1 Message passing graph neural network (GNNmp)

Initialization: Set x
(0)
i = ai for all vi ∈ V .

for layer ℓ = 1, . . . , d do
for every edge ei←j ∈ E∗ (in parallel) do

m
(ℓ)
i←j = MSGℓ

(

x
(ℓ−1)
i , x

(ℓ−1)
j , vi, vj , ai←j

)

for every node vi ∈ V (in parallel) do

x
(ℓ)
i = UPℓ

(

∑

vj∈N
∗

i

m
(ℓ)
i←j

)

Set xi = x
(d)
i .

return Either xi for every vi ∈ V (GNNn
mp) or xG = READ ({xi : vi ∈ V}) (GNN

g
mp).

The operation of a GNNmp is primarily determined by the messaging, update, and readout functions.
I assume that MSGℓ and UPℓ are general functions that act on intermediate node representations and
node ids (the notation is overloaded such that vi refers to both the i-th node as well as its unique
id). As is common in the literature (Lu et al., 2017; Battaglia et al., 2018), these functions are
instantiated by feed-forward neural networks. Thus, by the universal approximation theorem and
its variants (Cybenko, 1989; Hornik et al., 1989), they can approximate any general function that
maps vectors onto vectors, given sufficient depth and/or width. Function READ is useful when one
needs to retrieve a representation that is invariant of the number of nodes. The function takes as
an input a multiset, i.e., a set with possibly repeating elements, and returns a vector. Commonly,
READ is chosen to be a dimension squashing operator, such as a sum or a histogram, followed by a
feed-forward neural network (Xu et al., 2018; Seo et al., 2019).

Depth and width. The depth d is equal to the number of layers of the network. Larger depth means
that each node has the opportunity to learn more about the rest of the graph (i.e., it has a larger

receptive field). The width w of a GNNmp is equal to the largest dimension of state x
(l)
i over all

layers l and nodes vi ∈ V . Since nodes need to be able to store their own unique ids, in the following
it is assumed that each variable manipulated by the network is represented in finite-precision using
p = Θ(log n) bits (though this is not strictly necessary for the analysis).

3 SUFFICIENT CONDITIONS FOR TURING UNIVERSALITY

This section studies what graph neural networks can compute. It is demonstrated that, even without
readout function, a network is computationally universal1 if it has enough layers of sufficient

1It can compute anything that a Turing machine can compute when given an attributed graph as input.

4

Published as a conference paper at ICLR 2020

width, nodes can uniquely distinguish each other, and the functions computed within each layer are
sufficiently expressive. The derivation entails establishing that GNNn

mp is equivalent to LOCAL, a
classical model used in the study the distributed algorithms that is itself Turing universal.

3.1 THE LOCAL COMPUTATIONAL MODEL

A fundamental question in theoretical computer science is determining what can and cannot be
computed efficiently by a distributed algorithm. The LOCAL model, initially studied by Angluin
(1980), Linial (1992), and Naor & Stockmeyer (1993), provides a common framework for analyzing
the effect of local decision. Akin to GNNmp, in LOCAL a graph plays a double role: it is both
the input of the system and captures the network topology of the distributed system that solves the
problem. In this spirit, the nodes of the graph are here both the machines where computation takes
place as well as the variables of the graph-theoretic problem we wish to solve—similarly, edges
model communication links between machines as well as relations between nodes. Each node vi ∈ V
is given a problem-specific local input and has to produce a local output. The input contains necessary
the information that specifies the problem instance. All nodes execute the same algorithm, they are
fault-free, and they are provided with unique identifiers.

A pseudo-code description is given in Model 2. Variables s
(l)
i and s

(l)
i←j refer respectively to the

state of vi in round l and to the message sent by vj to vi in the same round. Both are represented
as strings. The computation starts simultaneously and unfolds in synchronous rounds l = 1, . . . , d.
Three things can occur within each round: each node receives a string of unbounded size from its
incoming neighbors; each node updates its internal state by performing some local computation;
and each node sends a string to every one of its outgoing neighbors. Functions ALG

1
l and ALG

2
l are

algorithms computed locally by a Turing machine running on node vi. Before any computation is
done, each node vi is aware of its own attribute ai as well as of all edge attributes {ai←j : vj ∈ N ∗i }.

Computational model 2 LOCAL (computed distributedly by each node vi ∈ V).

Initialization: Set s
(0)
i←i = (ai, vi) and s

(0)
i←j = (aj , vj) for all ei←j ∈ E .

for round ℓ = 1, . . . , d do

Receive s
(ℓ−1)
i←j from vj ∈ N ∗i , compute

s
(ℓ)
i = ALG

1
ℓ

({(

s
(ℓ−1)
i←j , ai←j

)

: vj ∈ N ∗i
}

, vi

)

,

and send s
(ℓ)
j←i = ALG

2
ℓ

(

s
(ℓ)
i , vi

)

to vj ∈ N ∗i .

return s
(d)
i

In LOCAL, there are no restrictions on how much information a node can send at every round.

Asserting that each message s
(ℓ)
i←j is at most b bits yields the CONGEST model (Peleg, 2000).

3.2 TURING UNIVERSALITY

The reader might have observed that LOCAL resembles closely GNNn
mp in its structure, with only a

few minor differences: firstly, whereas a LOCAL algorithm A may utilize messages in any way it
chooses, a GNNn

mp network N always sums received messages before any local computation. The
two models also differ in the arguments of the messaging function and the choice of information
representation (string versus vector). Yet, as the following theorem shows, the differences between
GNNn

mp and LOCAL are inconsequential when seen from the perspective of their expressive power:

Theorem 3.1 (Equivalence). Let Nℓ(Ga) be the binary representation of the state (x
(ℓ)
1 , . . . , x

(ℓ)
n)

of a GNNn
mp network N and Aℓ(Ga) = (s

(ℓ)
1 , . . . , s

(ℓ)
n) that of a LOCAL algorithm A. If MSGℓ and

UPℓ are Turing complete functions, then, for any algorithm A there exists N (resp. for any N there
exists A) such that

Aℓ(Ga) = Nℓ(Ga) for every layer ℓ and Ga ∈ Ga,

where Ga is the set of all attributed graphs.

5

Published as a conference paper at ICLR 2020

This equivalence enables us to reason about the power of GNNn
mp by building on the well-studied

properties of LOCAL. In particular, it is well known in distributed computing that, as long as the
number of rounds d of a distributed algorithm is larger than the graph diameter δG, every node in
a LOCAL can effectively make decisions based on the entire graph (Linial, 1992). Together with
Theorem 3.1, the above imply that, if computation and memory are not an issue, one may construct a
GNNn

mp that effectively computes any computable function w.r.t. its input.

Corollary 3.1. GNNn
mp can compute any Turing computable function over connected attributed

graphs if the following conditions are jointly met: each node is uniquely identified; MSGl and UPl are
Turing-complete for every layer ℓ; the depth is at least d ≥ δG layers; and the width is unbounded.

Why is this result relevant? From a cursory review, it might seem that universality is an abstract
result with little implication to machine learning architects. After all, the utility of a learning machine
is usually determined not with regards to its expressive power but with its ability to generalize to
unseen examples. Nevertheless, it can be argued that universality is an essential property of a good
learning model. This is for two main reasons: First, universality guarantees that the learner does
not have blind-spots in its hypothesis space. No matter how good the optimization algorithm is, how
rich the dataset, and how overparameterized the network is, there will always be functions which a
non universal learner cannot learn. Second, a universality result provides a glimpse on how the size
of the learner’s hypothesis space is affected by different design choices. For instance, Corollary 3.1
puts forth four necessary conditions for universality: the GNNn

mp should be sufficiently deep and
wide, nodes should be able to uniquely and consistently identify each other, and finally, the functions
utilized in each layer should be sufficiently complex. The following section delves further into the
importance of two of these universality conditions. It will be shown that GNNn

mp lose a significant
portion of their power when the depth and width conditions are relaxed.

The universality of GNN
g
mp. Though a universality result could also be easily derived for networks

with a readout function, the latter is not included as it deviates from how graph neural networks are
meant to function: given a sufficiently powerful readout function, a GNN

g
mp of d = 1 depth and O(∆)

width can be used to compute any Turing computable function. The nodes should simply gather one
hop information about their neighbors; the readout function can then reconstruct the problem input
based on the collective knowledge and apply any computation needed.

4 IMPOSSIBILITY RESULTS AS A FUNCTION OF DEPTH AND WIDTH

This section analyzes the effect of depth and width in the expressive power of GNNn
mp. Specifically, I

will consider problems that cannot be solved by a network of a given depth and width.

To be able to reason in terms of width, it will be useful to also enforce that the message size in
LOCAL at each round is at most b bits. This model goes by the name CONGEST in the distributed
computing literature (Peleg, 2000). In addition, it will be assumed that nodes do not have access to a
random generator. With this in place, the following theorem shows us how to translate impossibility
results from CONGEST to GNNn

mp:

Theorem 4.1. If a problem P cannot be solved in less than d rounds in CONGEST using messages
of at most b bits, then P cannot be solved by a GNNn

mp of width w ≤ (b− log2 n)/p = O(b/ log n)
and depth d.

The p = Θ(log n) factor corresponds to the length of the binary representation of every variable—the
precision needs to depend logarithmically on n for the node ids to be unique. With this result in place,
the following sections re-state several known lower bounds in terms of a GNNn

mp’s depth and width.

4.1 IMPOSSIBILITY RESULTS FOR DECISION PROBLEMS

I first consider problems where one needs to decide whether a given graph satisfies a certain prop-
erty (Feuilloley & Fraigniaud, 2016). Concretely, given a decision problem P and a graph G, the
GNNn

mp should output xi ∈ {true, false} for all vi ∈ V. The network then accepts the premise if the

logical conjunction of {x1, . . . , xn} is true and rejects it otherwise. Such problems are intimately
connected to graph classification: classifying a graph entails identifying what constitutes a class
from some training set and using said learned definition to decide the label of graphs sampled from

6

Published as a conference paper at ICLR 2020

the test set. Instead, I will suppose that the class definition is available to the classifier and I will
focus on the corresponding decision problem. As a consequence, every lower bound presented below
for a decision problem must also be respected by a GNNn

mp classifier that attains zero error on the
corresponding graph classification problem.

Subgraph detection. In this type of problems, the objective is to decide whether G contains a
subgraph belonging to a given family. I focus specifically on detecting whether G contains a cycle
Ck, i.e., a simple undirected graph of k nodes each having exactly two neighbors. As the following
result shows, even with ids, cycle detection remains relatively hard:

Corollary 4.1 (Repurposed from (Drucker et al., 2014; Korhonen & Rybicki, 2018)). There exists
graph G on which every GNNn

mp of width w requires depth at least d = Ω(
√
n/(w log n)) and d =

Ω(n/(w log n)) to detect if G contains a cycle Ck for even k ≥ 4 and odd k ≥ 5, respectively.

Whereas an anonymous GNNmp cannot detect cycles (e.g., distinguish between two C3 vs one
C6 (Maron et al., 2019a)), it seems that with ids the product of depth and width should exhibit an
(at least) linear dependence on n. The intuition behind this bound can be found in Appendix C and
empirical evidence in support of the theory are presented in Section 5.

Subgraph verification. Suppose that the network is given a subgraph H = (VH , EH) of G in its
input. This could, for instance, be achieved by selecting the attributes of each node and edge to be
a one-hot encoding of their membership on VH and EH , respectively. The question considered is
whether the neural network can verify a certain property of H . More concretely, does a graph neural
network exist that can successfully verify H as belonging to a specific family of graphs w.r.t. G? In
contrast to the standard decision paradigm, here every node should reach the same decision—either
accepting or rejecting the hypothesis. The following result is a direct consequence of the seminal
work by Sarma et al. (2012):

Corollary 4.2 (Repurposed from (Sarma et al., 2012)). There exists a graph G on which every

GNNn
mp of width w requires depth at least d = Ω(

√

n
w log2 n

+ δG) to verify if some subgraph H of G

is connected, contains a cycle, forms a spanning tree of G, is bipartite, is a cut of G, or is an s-t cut

of G. Furthermore, the depth should be at least d = Ω
((

n
w logn

)γ

+ δG

)

with γ = 1
2 − 1

2(δG′−1)

to verify if H is a Hamiltonian cycle or a simple path.

Therefore, even if one knows where to look in G, verifying whether a given subgraph meets a
given property can be non-trivial, and this holds for several standard graph-theoretic properties. For
instance, if we constrain ourselves to networks of constant width, detecting whether a subgraph is
connected can, up to logarithmic factors, require Ω(

√
n) depth in the worst case.

4.2 IMPOSSIBILITY RESULTS FOR OPTIMIZATION PROBLEMS

I turn my attention to the problems involving the exact or approximate optimization of some graph-
theoretic objective function. From a machine learning perspective, the considered problems can be
interpreted as node/edge classification problems: each node/edge is tasked with deciding whether
it belongs to the optimal set or not. Take, for instance, the maximum independent set, where one
needs to find the largest cardinality node set, such that no two of them are adjacent. Given only
information identifying nodes, GNNn

mp will be asked to classify each node as being part of the
maximum independent set or not.

Polynomial-time problems. Let me first consider three problems that possess known polynomial-
time solutions. To make things easier for the GNNn

mp, I relax the objective and ask for an approximate
solution rather than optimal. An algorithm (or neural network) is said to attain an α-approximation if
it produces a feasible output whose utility is within a factor α of the optimal. Let OPT be the utility
of the optimal solution and ALG that of the α-approximation algorithm. Depending on whether the
problem entails minimization or maximization, the ratio ALG/OPT is at most α and at least 1/α,
respectively.

According to the following corollary, it is non-trivial to find good approximate solutions:

Corollary 4.3 (Repurposed from (Sarma et al., 2012; Ghaffari & Kuhn, 2013)). There exists graphs
G and G′ of diameter δG = Θ(log n) and δG′ = O(1) on which every GNNn

mp of width w requires

7

Published as a conference paper at ICLR 2020

depth at least d = Ω(
√

n
w log2 n

) and d′ = Ω((n
w logn

)γ) with γ = 1
2 − 1

2(δG′−1)
, respectively, to

approximate within any constant factor: the minimum cut problem, the shortest s-t path problem, or
the minimum spanning tree problem.

Thus, even for simple problems (complexity-wise), in the worst case a constant width GNNn
mp should

be almost Ω(
√
n) deep even if the graph diameter is exponentially smaller than n.

NP-hard problems. So what about truly hard problems? Clearly, one cannot expect a GNNmp to

solve an NP-hard time in polynomial time2. However, it might be interesting as a thought experiment
to consider a network whose layers take exponential time on the input size—e.g., by selecting the
MSGl and UPl functions to be feed-forward networks of exponential depth and width. Could one
ever expect such a GNNn

mp to arrive at the optimal solution?

The following corollary provides necessary conditions for three well-known NP-hard problems:

Corollary 4.4 (Repurposed from (Censor-Hillel et al., 2017)). There exists a graph G on which every

GNNn
mp of width w = O(1) requires depth at least d = Ω(n2/log2 n) to solve: the minimum vertex

cover problem; the maximum independent set problem; the perfect coloring problem.

Thus, even if each layer is allowed to take exponential time, the depth should be quadratically larger
than the graph diameter δG = O(n) to have a chance of finding the optimal solution. Perhaps
disappointingly, the above result suggests that it may not be always possible to exploit the distributed
decision making performed by GNNmp architectures to find solutions faster than classical (centralized)
computational paradigms.

4.3 IMPOSSIBILITY RESULTS FOR ESTIMATION PROBLEMS

Finally, I will consider problems that involve the computation or estimation of some real function
that takes as an input the graph and attributes. The following corollary concerns the computation of
two well-known graph invariants: the diameter δG and the girth. The latter is defined as the length of
the shortest cycle and is infinity if the graph has no cycles.

Corollary 4.5 (Repurposed from (Frischknecht et al., 2012)). There exists a graph G on which every
GNNn

mp of width w requires depth at least d = Ω(n/(w log n) + δG) to compute the graph diameter

δG and d = Ω(
√
n/(w log n) + δG) to approximate the graph diameter and girth within a factor of

3/2 and 2, respectively.

Term δG appears in the lower bounds because both estimation problems require global information.
Further, approximating the diameter within a 3/2 factor seems to be simpler than computing it. Yet, in
both cases, one cannot achieve this using a GNNn

mp whose capacity is constant. As a final remark,

the graphs giving rise to the lower bounds of Corollary 4.5 have constant diameter and Θ(n2) edges.
However, similar bounds can be derived also for graphs with O(n log n) edges (Abboud et al., 2016).
For the case of exact computation, the lower bound is explained in Appendix C.

5 EMPIRICAL EVIDENCE

This section aims to empirically test the connection between the capacity dw of a GNNmp, the number
of nodes n of its input, and its ability to solve a given task. In particular, I considered the problem of
4-cycle classification and tasked the neural network with classifying graphs based on whether they
contained a cycle of length four. Following the lower bound construction described in Appendix A, I
generated five distributions over graphs with n ∈ (8, 16, 24, 32, 44) nodes and an average diameter
of (4, 6, 8, 9, 11), respectively (this was achieved by setting p ∈ (6, 8, 10, 12, 14), see Figure 3a). For
each such distribution, I generated a training and test set consisting respectively of 1000 and 200
examples. Both sets were exactly balanced, i.e., any example graph from the training and test set had
exactly 50% chance of containing a 4-cycle.

The experiment aimed to evaluate how able were GNNmp of different capacities to attain high accuracy
on the test set. To this end, I performed grid search over the hyperparameters w ∈ (2, 10, 20) and

2Unless P=NP.

8

Published as a conference paper at ICLR 2020

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

ac
cu

ra
cy

n=8

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

ac
cu

ra
cy

n=16

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

ac
cu

ra
cy

n=24

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

ac
cu

ra
cy

n=32

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

in
g

ac
cu

ra
cy

n=40

(a) training accuracy of all trained networks

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

n=8

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0
te

st
 a

cc
ur

ac
y

n=16

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

n=24

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

n=32

0 100 200 300 400
depth * width

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

n=40

(b) test accuracy of all trained networks

0 100 200 300 400
depth * width

0.5

0.6

0.7

0.8

0.9

1.0

tra
in

in
g

ac
cu

ra
cy

n=8
n=16
n=24
n=32
n=40

0 100 200 300 400
depth * width

0

1

2

3

4
sa

m
pl

es
 in

co
rre

ct
ly

 c
la

ss
ifi

ed n=8
n=16
n=24
n=32
n=40

(c) best training accuracy

0 100 200 300 400
depth * width

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 a
cc

ur
ac

y

n=8
n=16
n=24
n=32
n=40

0 100 200 300 400
depth * width

0

1

2

3

4

sa
m

pl
es

 in
co

rre
ct

ly
 c

la
ss

ifi
ed n=8

n=16
n=24
n=32
n=40

(d) best test accuracy

Figure 1: Accuracy as a function of GNNmp capacity dw and n. (Best seen in color.)

d ∈ (5, 10, 20, 15). To reduce the dependence on the initial conditions and training length, for each
hyperparameter combination, I trained 4 networks independently (using Adam and learning rate
decay) for 4000 epochs. The GNNmp chosen was that proposed by Xu et al. (2018), with the addition
of residual connections—this network outperformed all others that I experimented with.

It is important to stress that empirically verifying lower bounds for neural networks is challenging,
because it involves searching over the space of all possible networks in order to find the ones that
perform the best. For this reason, an experiment such as the one described above cannot be used
to verify3 the tightness of the bounds: we can never be certain whether the results obtained are the
best possible or whether the optimization resulted in a local minimum. In that view, the following
results should be interpreted in a qualitative sense. The question that I will ask is: to which extend do
the trends uncovered match those predicted by the theory? More specifically, does the ability of a
network to detect 4-cycles depend on the relation between dw and n?

To answer this question, Figure 1 depicts the training and test accuracy as a function of the capacity
dw for all the 240 networks trained (5 distributions × 3 widths × 4 depths × 4 iterations). The
accuracy of the best performing networks with the smallest capacity is shown in Figures 1c and 1d. It
is important to stress that, based on Weisfeiler-Lehman analyses, anonymous GNNmp cannot solve
the considered task. However, as it seen in the figures, the impossibility is annulled when using
node ids4. Indeed, even small neural networks could consistently classify all test examples perfectly
(i.e., achieving 100% test accuracy) when n ≤ 16. Moreover, as the theoretical results predicted,
there is a strong correlation between the test accuracy, dw and n (recall that Corollary 4.1 predicts

dw = Ω̃(
√
n)). Figure 1d shows that networks of the same capacity were consistently less accurate

on the test set as n increased (even though the cycle length remained 4 in all experiments). It is also

3This evaluation paradigm, however, can be used to invalidate the theoretical results if one finds that GNNmp

of small depth and width can solve all lower bound problem instances.
4The considered graphs featured the same node set (with different edges) and a one-hot encoding of the

node-ids was used as input features.

9

Published as a conference paper at ICLR 2020

0 1000 2000 3000 4000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

tr
a
in

in
g
 a

c
c
u
ra

c
y

0 1000 2000 3000 4000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

te
s
t

a
c
c
u
ra

c
y

anonymous degree random unique id unique id

(a) effect of anonymity

0 1 2 3 4
depth/ critical

0

1

2

3

4

w
id
th
/

cr
iti
ca

l

0.5

0.6

0.7

0.8

0.9

1.0

(b) depth vs width

Figure 2: (a) GNNs are significantly more powerful when given discriminative node attributes. (b) Test
accuracy indicated by color as a function of normalized depth and width. Points in highlighted areas
correspond to networks with super-critical capacity, whereas the diagonal line separates networks
that more deep than wide. (For improved visibility, points are slightly perturbed. Best seen in color.)

striking to observe that even the most powerful networks considered could not achieve a test accuracy
above 95% for n > 16; for n = 40 their best accuracy was below 80%.

Effect of anonymity. Figure 2a plots example training and test curves for GNNmp trained with
four different node attributes: no attributes (anonymous), a one-hot encoding of the node degrees
(degree), a one-hot encoding of node ids (unique id), and a one-hot encoding of node ids that changed
across graphs (random unique id). It can be clearly observed that there is a direct correlation between
accuracy and the type of attributes used. With non- or partially-discriminative attributes, the network
could not detect cycles even in the training set. The cycle detection problem was solved exactly
with unique ids, but when the latter were inconsistently assigned, the network could not learn to
generalize.

Exchangeability of depth and width. Figure 2b examines further the relationship between depth,
width, and test accuracy. This time, networks were separated depending on their depth and width
normalized by the square root of the “critical capacity”. For each n, the critical capacity is the
minimum dw of a network that was able to solve the task on a graph of n nodes—here, solving
amounts to a test accuracy above 95%. In this way, a network of depth d and width w tested on

n nodes corresponds to a point positioned at x = d/
√

critical, y = w/
√

critical and no network
positioned at xy < 1 can solve the task (non-highlighted region in the bottom left corner). As seen,
there is a crisp phase transition between the regime of under- and super-critical capacity: almost every
network meeting the condition dw ≥ critical was able to solve the task, irrespective of whether the
depth or width was larger. Note that, the exchangeability of depth and width cannot be guaranteed by

the proposed theory which asserts that the condition dw = Ω̃(
√
n) is necessary—but not sufficient.

The empirical results however do agree with the hypothesis that, for 4-cycle classification, depth and
width are indeed exchangeable.

6 CONCLUSION

This work studied the expressive power of graph neural networks falling within the message-passing
framework. Two results were derived. First, sufficient conditions were provided such that GNNmp

can compute any function computable by a Turing machine with the same connected graph as input.
Second, it was discovered that the product of a GNNmp’s depth and width plays a prominent role in
determining whether the network can solve various graph-theoretic problems. Specifically, it was

shown that GNNn
mp with dw = Ω̃(nδ) and δ ∈ [0.5, 2] cannot solve a range of decision, optimization,

and estimation problems involving graphs. Overall, the proposed results demonstrate that the power
of graph neural networks depends critically on their capacity and illustrate the importance of using
discriminative node attributes.

Acknowledgements. I thank the Swiss National Science Foundation for supporting this work in the
context of the project “Deep Learning for Graph-Structured Data” (grant number PZ00P2 179981).

10

Published as a conference paper at ICLR 2020

REFERENCES

Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for distributed
distance computations, even in sparse networks. In International Symposium on Distributed
Computing, pp. 29–42. Springer, 2016.

Dana Angluin. Local and global properties in networks of processors (extended abstract). In
Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80, pp.
82–93, New York, NY, USA, 1980. ACM. ISBN 0-89791-017-6. doi: 10.1145/800141.804655.
URL http://doi.acm.org/10.1145/800141.804655.

Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On the power of color
refinement. In International Symposium on Fundamentals of Computation Theory, pp. 339–350.
Springer, 2015.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Mincut pooling in graph neural
networks. arXiv preprint arXiv:1907.00481, 2019.

Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower bounds for the
congest model. arXiv preprint arXiv:1705.05646, 2017.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. arXiv preprint arXiv:1905.12560,
2019.

Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power of
graph neural networks in learning graph topology. arXiv preprint arXiv:1907.05008, 2019.

Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique model. In
Proceedings of the 2014 ACM symposium on Principles of distributed computing, pp. 367–376.
ACM, 2014.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision. arXiv preprint
arXiv:1606.04434, 2016.

Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity theory for local distributed
computing. Journal of the ACM (JACM), 60(5):35, 2013.

Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their diameter
in sublinear time. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pp. 1150–1162. Society for Industrial and Applied Mathematics, 2012.

11

http://doi.acm.org/10.1145/800141.804655

Published as a conference paper at ICLR 2020

Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In International
Symposium on Distributed Computing, pp. 1–15. Springer, 2013.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. Edgenets:edge varying graph neural networks,
2020.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity of set
intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. arXiv
preprint arXiv:1905.04943, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems, pp.
6348–6358, 2017.

Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.
In International Symposium on Mathematical Foundations of Computer Science, pp. 319–330.
Springer, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Janne H Korhonen and Joel Rybicki. Deterministic subgraph detection in broadcast congest. In
21st International Conference on Principles of Distributed Systems (OPODIS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In Advances in Neural Information Processing Systems, pp.
539–548, 2018.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. In International Conference on Learning Representations (ICLR),
2019.

Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–201,
1992.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems
30, pp. 6231–6239. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7203-the-expressive-power-of-neural-networks-a-view-from-the-width.

pdf.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multi-
scale deep graph convolutional networks. arXiv preprint arXiv:1906.02174, 2019.

12

http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf

Published as a conference paper at ICLR 2020

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. arXiv preprint arXiv:1905.11136, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. arXiv preprint arXiv:1901.09342, 2019b.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609, 2019.

Moni Naor and Larry J. Stockmeyer. What can be computed locally? In STOC, 1993.

J Pedro Neto, Hava T Siegelmann, J Félix Costa, and CP Suárez Araujo. Turing universality of neural
nets (revisited). In International Conference on Computer Aided Systems Theory, pp. 361–366.
Springer, 1997.

D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied
Mathematics, 2000. doi: 10.1137/1.9780898719772.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. arXiv preprint arXiv:1901.03429, 2019.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Panduran-
gan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of distributed
approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. In Advances in Neural Information Processing Systems, 2019.

Jochen Seidel. Anonymous distributed computing: computability, randomization and checkability.
PhD thesis, ETH Zurich, 2015.

Younjoo Seo, Andreas Loukas, and Nathanael Peraudin. Discriminative structural graph classification.
arXiv preprint arXiv:1905.13422, 2019.

Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR), 45(2):24, 2013.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

A GRAPH THEORY DEFINITIONS

The main graph-theoretic terms encountered in this work are:

• k-cycle detection: a k-cycle is a subraph of G consisting of k nodes, each with degree two. The
k-cycle detection problem entails determining if G contains a k-cycle.

• Hamiltonian cycle: a cycle of length n

• (minimum) spanning tree: a spanning tree is a tree subgraph of G consisting of n nodes. The
minimum spanning tree problem entails finding the spanning tree of G of minimum weight
(the weight of a tree is equal to the sum of its edge weights).

• (minimum) cut: a cut is a subgraph of G that when deleted leaves G disconnected. The minimum
cut problem entails finding the cut of minimum weight (the weight of a cut is equal to the
sum of its edge weights).

• s-t cut: a subgraph of G such that removing all subgraph edges from G will leave the nodes s and
t of G disconnected.

• (shortest) path: a simple path is subgraph of G where all nodes have degree 2 except from the two
endpoint nodes whose degree is one. The shortest path problem entails finding the simple
path of minimum weight that connects two given nodes (the weight of a path is equal to the
sum of its edge weights).

13

Published as a conference paper at ICLR 2020

• (maximum) independent set: an independent set is a set of nodes in a graph no two of which are
adjacent. The maximum independent set problem entails finding the independent set of
maximum cardinality.

• (minimum) vertex cover: a vertex cover of G is a set of nodes such that each edge of G is incident
to at least one node in the set. The minimum vertex cover problem entails finding the vertex
cover of minimum cardinality.

• (perfect) coloring: a coloring of G is a labeling of the nodes with distinct colors such that no two
adjacent nodes are colored using same color. The perfect coloring problem entails finding a
coloring with the smallest number of colors.

• diameter: the diameter δG of G equals the length of the longest shortest path.

• girth: the girth of G equals the length of the shortest cycle. It is infinity if no cycles are present.

B DEFERRED PROOFS

B.1 PROOF OF THEOREM 3.1

The claim is proven by expressing the state of node vi in the two models in the same form. It is not
difficult to see that for each layer of the GNNn

mp one has

x
(l)
i = UPℓ

(

∑

vj∈N
∗

i

m
(ℓ)
i←j

)

(by definition)

= UPℓ

(

∑

vj∈N
∗

i

MSGℓ

(

x
(ℓ−1)
i , x

(ℓ−1)
j , vi, vj , ai←j

))

(substituted m
(ℓ)
i←j)

= AGGℓ

({(

x
(ℓ−1)
i , x

(ℓ−1)
j , vi, vj , ai←j

)

: vj ∈ N ∗i
})

, (from (Xu et al., 2018, Lemma 5))

where AGGℓ is an aggregation function, i.e., a map from the set of multisets onto some vector space.
In the last step, I used a result of Xu et al. Xu et al. (2018) stating that each aggregation function
can be decomposed as an element-wise function over each element of the multiset, followed by
summation of all elements, and then a final function.

Similarly, one may write:

s
(ℓ)
i = ALG

1
ℓ

({(

s
(ℓ−1)
i←j , ai←j

)

: vj ∈ N ∗i
}

, vi

)

(by definition)

= ALG
1
ℓ

({(

ALG
2
ℓ−1

(

s
(ℓ−1)
j , vj

)

, ai←j

)

: vj ∈ N ∗i
}

, vi

)

(substituted s
(ℓ−1)
i←j)

= ALGℓ

({(

s
(ℓ−1)
j , vi, vj , ai←j

)

: vj ∈ N ∗i
})

,

with the last step following by restructuring the input and defining ALGℓ as the Turning machine that
simulates the action of both ALG

2
ℓ and ALG

1
ℓ−1.

Since one may encode any vector into a string and vice versa, w.l.o.g. one may assume that the state
of each node in LOCAL is encoded as a vector xi. Then, to complete the proof, one still needs to
demonstrate that the functions

AGG ({(xi, xj , vi, vj , ai←j) : vj ∈ N ∗i }) and ALG ({(xj , vi, vj , ai←j) : vj ∈ N ∗i })
are equivalent (in the interest of brevity the layer/round indices have been dropped). If this holds then
each layer of GNNn

mp is equivalent to a round of LOCAL and the claim follows.

I first note that, since its input is a multiset, ALGl is also an aggregation function. To demon-
strate equivalence, one thus needs to show that, despite not having identical inputs, each of the
two aggregation functions can be used to replace the other. For the forward direction, it suffices to
show that for every aggregation function AGG there exists ALG with the same output. Indeed, one
may always construct ALG = AGG ◦ g, where g takes as input {(xj , vi, vj , ai←j) : vj ∈ N ∗i },
identifies xi (by searching for vi, vi) and appends it to each element of the multiset yielding
{(xi, xj , vi, vj , ai←j) : vj ∈ N ∗i }. The backward direction can also be proven with an elementary
construction: given ALG, one sets AGG = ALG ◦ h, where h deletes xi from each element of the
multiset.

14

Published as a conference paper at ICLR 2020

B.2 PROOF OF COROLLARY 3.1

In the LOCAL model the reasoning is elementary (Linial, 1992; Fraigniaud et al., 2013; Seidel, 2015):
suppose that the graph is represented by a set of edges and further consider that ALGl amounts to a
union operation. Then in d = δG rounds, the state of each node will contain the entire graph. The
function ALG

1
d can then be used to make the final computation. This argument also trivially holds for

node/edge attributes. The universality of GNNn
mp then follows by the equivalence of LOCAL and

GNNn
mp.

B.3 PROOF OF THEOREM 4.1

First note that, since the GNNn
mp and LOCAL models are equivalent, if no further memory/width

restrictions are placed, an impossibility for one implies also an impossibility for the other. It can also
be seen in Theorem 3.1 that there is a one to one mapping between the internal state of each node at

each level between the two models (i.e., variables x
(l)
i and s

(l)
i). As such, impossibility results that

rely on restrictions w.r.t. state size (in terms of bits) also transfer between the models.

To proceed, I demonstrate that a depth lower bound in the CONGEST model (i.e., in the LOCAL
model with bounded message size) also implies the existence of a depth lower bound in the LOCAL
model with a bounded state size—with this result in place, the proof of the main claim follows
directly. As in the statement of the theorem, one starts by assuming that P cannot be solved in less
than d rounds when messages are bounded to be at most b bits. Then, for the sake of contradiction, it
is supposed that there exists an algorithm A ∈ LOCAL that can solve P in less than d rounds with a
state of at most c bits, but unbounded message size. I argue that the existence of this algorithm also
implies the existence of a second algorithm A′ whose messages are bounded by c + log2 n: since

each message s
(l)
j←i is the output of a universal Turing machine ALG

2
l that takes as input the tuple

(s
(l)
i , vi), algorithm A′ directly sends the input and relies on the universality of ALG

1
l+1 to simulate

the action of ALG
2
l . The message size bound follows by adding the size c of the state with that of

representing the node id (log2 n bits suffice for unique node ids). This line of reasoning leads to a
contradiction when c ≤ b− log2 n, as it implies that there exists an algorithm (namely A′) that can
solve P in less than d rounds while using messages of at most b bits. Hence, no algorithm whose
state is less than b− log2 n bits can solve P in LOCAL, and the width of GNNn

mp has to be at least

(b− log2 n)/p.

C AN EXPLANATION OF THE LOWER BOUNDS FOR CYCLE DETECTION AND

DIAMETER ESTIMATION

A common technique for obtaining lower bounds in the CONGEST model is by reduction to the
set-disjointness problem in two-player communication complexity: Suppose that Alice and Bob are
each given some secret string (sa and sb) of q bits. The two players use the string to construct a set
by selecting the elements from the base set {1, 2, . . . , q} for which the corresponding bit is one. It is
known that Alice and Bob cannot determine whether their sets are disjoint or not without exchanging
at least Ω(q) bits (Kalyanasundaram & Schintger, 1992; Chor & Goldreich, 1988).

The reduction involves constructing a graph that is partially known by each player. Usually, Alice
and Bob start knowing half of the graph (red and green induced subgraphs in Figure 3). The players
then use their secret string to control some aspect of their private topology (subgraphs annotated in
dark gray). Let the resulting graph be G(sa, sb) and denote by cut the number of edges connecting
the subgraphs controlled by Alice and Bob. To derive a lower bound for some problem P , one needs
to prove that a solution for P in G(sa, sb) would also reveal whether the two sets are disjoint or not.
Since each player can exchange at most O(b · cut) bits per round, at least Ω(q/(b · cut)) rounds are
needed in total in CONGEST. By Theorem 4.1, one then obtains a d = Ω(q/(w log n · cut)) depth
lower bound for GNNn

mp.

The two examples in Figure 3 illustrate the graphs G(sa, sb) giving rise to the lower bounds for even
k-cycle detection and diameter estimation. To reduce occlusion, only a subset of the edges are shown.

15

Published as a conference paper at ICLR 2020

p2

2 p

1

2p

2p

1

Alice

Bob

(a) 10-cycle lower bound graph

1

2

q

Alice Bob

1

2

q

(b) diameter lower bound graph

Figure 3: Examples of graphs giving rise to lower bounds.

(a) In the construction of Korhonen & Rybicki (2018), each player starts from a complete
bipartite graph of p =

√
q nodes (nodes annotated in dark grey) with nodes numbered from

1 to 2p. The nodes with the same id are connected yielding a cut of size 2p. Each player
then uses its secret (there are as many bits as bipartite edges) to decide which of the bipartite
edges will be deleted (corresponding to zero bits). Remaining edges are substituted by a
path of length k/2− 1. This happens in a way that ensures that G(sa, sb) contains a cycle
of length k (half known by Alice and half by Bob) if and only if the two sets are disjoint:
the cycle will pass through nodes t and p+ t of each player to signify that the t-th bits of
sa and sb are both one. It can then be shown that n = Θ(p2) from which it follows that:
CONGEST requires at least d = Ω(q/(b · cut)) = Ω(n/(b · p)) = Ω(

√
n/b) bits to decide

if there is a cycle of length k; and GNNn
mp has to have d = Ω(

√
n/(w log n)) depth to do

the same.

(b) In the construction of Abboud et al. (2016), each string consists of q = Ω(n) bits. The
strings are used to encode the connectivity of subgraphs annotated in dark gray: an edge
exists between the red nodes i and q if and only if the i-th bit of sa is one (and similarly for
green). Due to the graph construction, the cut between Alice and Bob has O(log q) edges.
Moreover, About et al. proved that G(sa, sb) has diameter at least five if and only if the sets

defined by sa and sb are disjoint. This implies that d = Ω(n/(w log2 n)) depth is necessary
to compute the graph diameter in GNNn

mp.

D THE COST OF ANONYMITY

There is a striking difference between the power of anonymous networks and those in which nodes
have the ability to uniquely identify each other, e.g., based on ids or discriminative attributes (see the
survey by Suomela (2013)).

To illustrate this phenomenon, I consider a thought experiment where a node is tasked with recon-
structing the graph topology in the LOCAL model. In the left, Figure 4 depicts the red node’s
knowledge after two rounds (equivalent to a GNNn

mp having d = 2) when each node has a unique
identifier (color). At the end of the first round, each node is aware of its neighbors and after two
rounds the entire graph has been successfully reconstructed in red’s memory.

In the right subfigure, nodes do not possess ids (as in the analysis of (Xu et al., 2018; Morris et al.,
2019)) and thus cannot distinguish which of their neighbors are themselves adjacent. As such, the red
node cannot tell whether the graph contains cycles: after two rounds there are at least two plausible
topologies that could explain its observations.

16

Published as a conference paper at ICLR 2020

knowledge knowledge

(a) nodes can identify each other

knowledge knowledge

or

(b) nodes cannot identify each other (WL test).

Figure 4: Toy example of message exchange from the perspective of the red node. The arrows show where each
received message comes from and the message content is shown in light gray boxes. Red’s knowledge of the
graph topology is depicted at the bottom.

17

	Introduction
	Main results
	Discussion

	The graph neural network computational model
	Sufficient conditions for Turing universality
	The LOCAL computational model
	Turing universality

	Impossibility results as a function of depth and width
	Impossibility results for decision problems
	Impossibility results for optimization problems
	Impossibility results for estimation problems

	Empirical evidence
	Conclusion
	Graph theory definitions
	Deferred Proofs
	Proof of Theorem 3.1
	Proof of Corollary 3.1
	Proof of Theorem 4.1

	An explanation of the lower bounds for cycle detection and diameter estimation
	The cost of anonymity

