What Gravity Is. Some Recent Considerations

Vic Christianto^{*} and Florentin Smarandache[†]

* Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org E-mail: admin@sciprint.org †Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu

It is well-known, that when it comes to discussions among physicists concerning the meaning and nature of gravitation, the room temperature can be so hot. Therefore, for the sake of clarity, it seems worth that all choices were put on a table, and we consider each choice's features and problems. The present article describes a non-exhaustive list of such gravitation theories for the purpose of inviting further and more clear discussions.

1 Introduction

The present article summarizes a non-exhaustive list of gravitation theories for the purpose of inviting further and more clear discussions. It is well-known, that when it comes to discussions among physicists concerning the meaning and nature of gravitation, the room temperature can be so hot. Therefore, for the sake of clarity, it seems worth that all choices were put on a table, and we consider each choice's features and problems. Of course, our purpose here is not to say the last word on this interesting issue.

2 Newtonian and non-relativistic approaches

Since the days after Newton physicists argued what is the meaning of "action at a distance" (Newton term) or "spooky action" (Einstein term). Is it really possible to imagine how an apple can move down to Earth without a medium whatso-ever?

Because of this difficulty, from the viewpoint of natural philosophy, some physicists maintained (for instance Euler with his impulsion gravity), that there should be "pervasive medium" which can make the attraction force possible. They call this medium "ether" though some would prefer this medium more like "fluid" instead of "solid". Euler himself seems to suggest that gravitation is some kind of "external force" acting on a body, instead of *intrinsic* force:

> "gravity of weight: It is a power by which all bodies are forced towards the centre of the Earth" [3].

But the Michelson-Morley experiment [37] opened the way for Einstein to postulate that ether hypothesis is not required at all in order to explain Lorentz's theorem, which was the beginning of Special Relativity. But of course, one can ask whether the Michelson-Morley experiment really excludes the so-called ether hypothesis. Some experiments after Michelson seem to indicate that "ether" is not excluded in the experiment setup, which means that there is Earth absolute motion [4, 5]. To accept that gravitation is external force instead of intrinsic force implies that there is distinction between gravitation and inertial forces, which also seem to indicate that inertial force can be modified externally via electromagnetic field [6].

The latter notion brings us to long-time discussions in various physics journals concerning the electromagnetic nature of gravitation, i.e. whether gravitation pulling force have the same properties just as electromagnetic field is described by Maxwell equations. Proponents of this view include Tajmar and de Matos [7, 8], Sweetser [9]. And recently Rabounski [10] also suggests similar approach.

Another version of Euler's hypothesis has emerged in modern way in the form of recognition that gravitation was carried by a boson field, and therefore gravitation is somehow related to low-temperature physics (superfluid as boson gas, superconductivity etc.). The obvious advantage of superfluidity is of course that it remains frictionless and invisible; these are main features required for true ether medium — i.e. no resistance will be felt by objects surrounded by the ether, just like the passenger will not feel anything inside the falling elevator. No wonder it is difficult to measure or detect the ether, as shown in Michelson-Morley experiment. The superfluid Bose gas view of gravitation has been discussed in a series of paper by Consoli et al. [11], and also Volovik [12].

Similarly, gravitation can also be associated to superconductivity, as shown by de Matos and Beck [29], and also in Podkletnov's rotating disc experiment. A few words on Podkletnov's experiment. Descartes conjectured that there is no gravitation without rotation motion [30]. And since rotation can be viewed as solution of Maxwell equations, one can say that there is no gravitation separated from electromagnetic field. But if we consider that equations describing superconductivity can be viewed as mere generalization of Maxwell equations (London field), then it seems we can find a modern version of Descartes' conjecture, i.e. *there is no gravitation without superconductivity rotation*. This seems to suggest the significance of Podkletnov's experiments [31, 32].

Vic Christianto and Florentin Smarandache. What Gravity Is. Some Recent Considerations

3 Relativistic gravitation theories

Now we will consider some alternative theories which agree with both Newton theory and Special Relativity, but differ either slightly or strongly to General Relativity. First of all, Einstein's own attempt to describe gravitation despite earlier gravitation theories (such as by Nordstrom [1]) has been inspired by his thought-experiment, called the "falling elevator" experiment. Subsequently he came up with conjecture that there is proper metric such that a passenger inside the elevator will not feel any pulling gravitation force. Therefore gravitation can be replaced by certain specific-chosen metric.

Now the questions are twofold: (a) whether the propermetric to replace gravitation shall have non-zero curvature or it can be flat-Minkowskian; (b) whether the formulation of General relativity is consistent enough with Mach principle from where GTR was inspired. These questions inspired heated debates for several decades, and Einstein himself (with colleagues) worked on to generalize his own gravitation theories, which implies that he did find that his theory is not complete. His work with Strauss, Bergmann, Pauli, etc. (Princeton School) aimed toward such a unified theory of gravitation and electromagnetism.

There are of course other proposals for relativistic gravitation theories, such as by Weyl, Whitehead etc. [1]. Meanwhile, R. Feynman and some of his disciples seem to be more flexible on whether gravitation shall be presented in the General-Relativity "language" or not.

Recently, there is also discussion in online forum over the question: (a) above, i.e. whether curvature of the metric surface is identical to the gravitation. While most physicists seem to agree with this proposition, there is other argument suggesting that it is also possible to conceive General Relativity even with zero curvature [13, 14].

Of course, discussion concerning relativistic gravitation theories will not be complete without mentioning the PVgravitation theory (Puthoff et al. [15]) and also Yilmaz theory [16], though Misner has discussed weaknesses of Yilmaz theory [17], and Yilmaz et al. have replied back [18]. Perhaps it would be worth to note here that General Relativity itself is also not without limitations, for instance it shall be modified to include galaxies' rotation curve, and also it is actually theory for one-body problem only [2], therefore it may be difficult to describe interaction between bodies in GTR.

Other possible approaches on relativistic gravitation theories are using the fact that the "falling-elevator" seems to suggest that it is possible to replace gravitation force with certain-chosen metric. And if we consider that one can find simplified representation of Maxwell equations with Special Relativity (Minkowski metric), then the next logical step of this "metrical" (some physicists prefer to call it "geometrodynamics") approach is to represent gravitation with yet another special relativistic but with extra-dimension(s). This was first conjectured in Kaluza-Klein theory [19]. Einstein himself considered this theory extensively with Strauss etc. [20]. There are also higher-dimensional gravitation theories with 6D, 8D and so forth.

In the same direction, recently these authors put forth a new proposition using Carmeli metric [21], which is essentially a "phase-space" relativity theory in 5-dimensions.

Another method to describe gravitation is using "torsion", which is essentially to introduce torsion into Einstein field equations. See also torsional theory developed by Hehl, Kiehn, Rapoport etc. cited in [21].

It seems worth to remark here, that relativistic gravitation does not necessarily exclude the possibility of "aether" hypothesis. B. Riemann extended this hypothesis by assuming (in 1853) that the gravitational aether is an incompressible fluid and normal matter represents "sinks" in this aether [34], while Einstein discussed this aether in his Leiden lecture *Ether and Relativity*.

A summary of contemporary developments in gravitation theories will not be complete without mentioning Quantum Gravity and Superstring theories. Both are still major topics of research in theoretical physics and consist of a wealth of exotic ideas, some or most of which are considered controversial or objectionable. The lack of experimental evidence in support of these proposals continues to stir a great deal of debate among physicists and makes it difficult to draw definite conclusions regarding their validity [38]. It is generally alleged that signals of quantum gravity and superstring theories may occur at energies ranging from the mid or far TeV scale all the way up to the Planck scale.

Loop Quantum Gravity (LQG) is the leading candidate for a quantum theory of gravitation. Its goal is to combine the principles of General Relativity and Quantum Field Theory in a consistent non-perturbative framework [39]. The features that distinguish LQG from other quantum gravity theories are: (a) background independence and (b) minimality of structures. Background independence means that the theory is free from having to choose an apriori background metric. In LQG one does not perturb around any given classical background geometry, rather arbitrary fluctuations are allowed, thus enabling the quantum "replica" of Einstein's viewpoint that gravity is geometry. Minimality means that the general covariance of General Relativity and the principles of canonical quantization are brought together without new concepts such as extra dimensions or extra symmetries. It is believed that LQG can unify all presently known interactions by implementing their common symmetry group, the four-dimensional diffeomorphism group, which is almost completely broken in perturbative approaches.

The fundamental building blocks of String Theory (ST) are one-dimensional extended objects called strings [40, 41]. Unlike the "point particles" of Quantum Field Theories, strings interact in a way that is almost uniquely specified by mathematical self-consistency, forming an allegedly valid quantum theory of gravity. Since its launch as a dual res-

onance model (describing strongly interacting hadrons), ST has changed over the years to include a group of related superstring theories (SST) and a unifying picture known as the M-theory. SST is an attempt to bring all the particles and their fundamental interactions under one umbrella by modeling them as vibrations of super-symmetric strings.

In the early 1990s, it was shown that the various superstring theories were related by dualities, allowing physicists to map the description of an object in one superstring theory to the description of a different object in another superstring theory. These relationships imply that each of SST represents a different aspect of a single underlying theory, proposed by E. Witten and named M-theory. In a nut-shell, M-theory combines the five consistent ten-dimensional superstring theories with eleven-dimensional supergravity. A shared property of all these theories is the holographic principle, that is, the idea that a quantum theory of gravity has to be able to describe physics occurring within a volume by degrees of freedom that exist on the surface of that volume. Like any other quantum theory of gravity, the prevalent belief is that true testing of SST may be prohibitively expensive, requiring unprecedented engineering efforts on a large-system scale. Although SST is falsifiable in principle, many critics argue that it is un-testable for the foreseeable future, and so it should not be called science [38].

One needs to draw a distinction in terminology between string theories (ST) and alternative models that use the word "string". For example, Volovik talks about "cosmic strings" from the standpoint of condensed matter physics (topological defects, superfluidity, superconductivity, quantum fluids). Beck refers to "random strings" from the standpoint of statistical field theory and associated analytic methods (spacetime fluctuations, stochastic quantization, coupled map lattices). These are not quite the same as ST, which are based on "brane" structures that live on higher dimensional spacetime.

There are other contemporary methods to treat gravity, i.e. by using some advanced concepts such as group(s), topology and symmetries. The basic idea is that Nature seems to prefer symmetry, which lead to higher-dimensional gravitation theories, Yang-Mills gravity etc.

Furthermore, for the sake of clarity we have omitted here more advanced issues (sometimes they are called "fringe research"), such as faster-than-light (FTL) travel possibility, warpdrive, wormhole, cloaking theory (Greenleaf et al. [35]), antigravity (see for instance Naudin's experiment) etc. [36].

4 Wave mechanical method and diffraction hypothesis

The idea of linking gravitation with wave mechanics of Quantum Mechanics reminds us to the formal connection between Helmholtz equation and Schrödinger equation [22].

The use of (modified) Schrödinger equation has become so extensive since 1970s, started by Wheeler-DeWitt (despite the fact that the WDW equation lacks observation support). And recently Nottale uses his scale relativistic approach based on stochastic mechanics theory in order to generalize Schrödinger equation to describe wave mechanics of celestial bodies [23]. His scale-relativity method finds support from observations both in Solar system and also in exo-planets.

Interestingly, one can also find vortex solution of Schrödinger equation, and therefore it is worth to argue that the use of wave mechanics to describe celestial systems implies that there are vortex structure in the Solar system and beyond. This conjecture has also been explored by these authors in the preceding paper. [24] Furthermore, considering formal connection between Helmholtz equation and Schrödinger equation, then it seems also possible to find out vortex solutions of Maxwell equations [25, 26, 27]. Interestingly, experiments on plasmoid by Bostick et al. seem to vindicate the existence of these vortex structures [28].

What's more interesting in this method, perhaps, is that one can expect to to consider gravitation and wave mechanics (i.e. Quantum Mechanics) in equal footing. In other words, the quantum concepts such as ground state, excitation, and zero-point energy now can also find their relevance in gravitation too. This "classical" implications of Wave Mechanics has been considered by Ehrenfest and also Schrödinger himself.

In this regards, there is a recent theory proposed by Gulko [33], suggesting that matter absorbs from the background small amounts of energy and thus creates a zone of reduced energy, and in such way it attracts objects from zones of higher energy.

Another one, by Glenn E. Perry, says that gravity is diffraction (due to the changing energy density gradient) of matter or light as it travels through the aether [33].

We can remark here that Perry's Diffraction hypothesis reminds us to possible production of energy from physical vacuum via a small fluctuation in it due to a quantum indeterminancy (such a small oscillation of the background can be suggested in any case because the indeterminancy principle). On the average the background vacuum does not radiate its energy is constant. On the other hand, it experiences small oscillation. If an engine built on particles or field interacts with the small oscillation of the vacuum, or at least "senses the oscillation, there is a chance to get energy from them. Because the physical vacuum is eternal capacity of energy, it is easy to imagine some possible techniques to be discovered in the future to extract this energy.

Nonetheless, diffraction of gravity is not a "new hot topic" at all. Such ideas were already proposed in the 1920's by the founders of relativity. They however left those ideas, even unpublished but only mentioned in memoirs and letters. The main reason was that (perhaps) almost infinitely small energy which can be extracted from such background per second. (In the mean time, there are other vaious proposals suggesting that it is possible to 'extract' energy from gravitation field).

Vic Christianto and Florentin Smarandache. What Gravity Is. Some Recent Considerations

About Glenn Perry and his theory. There is a drawback that that matter he called "aether" was not properly determined by him. In such a way like that, everything can be "proven". To produce any calculation for practical purpose, we should have exact data on the subject of this calculation, and compare it with actual experiments.

On the other hand, such an idea could be put into another field — the field of Quantum Mechanics. That is, to study diffraction not gravitational radiation (gravitational waves which is so weak that not discovered yet), but waves of the field of the gravitational force — in particular those can be seismic-like waves travelling in the cork of the Earth (we mean not the earthquakes) but in the gravitational field of the planet. These seismic-like oscillations (waves) of the gravitational force are known to science, and they aren't weak: everyone who experienced an earthquake knows this fact.

Other hint from wave aspect of this planet is known in the form of Schumann resonance, that the Earth produces vibration at very-low frequency, which seems to support the idea that planetary mass vibrates too, just as hypothesized in Wave Mechanics (de Broglie's hypothesis). Nonetheless, there are plenty of things to study on the large-scale implications of the Wave Mechanics.

5 Concluding remarks

The present article summarizes a non-exhaustive list of gravitation theories for the purpose of inviting further and more clear discussions. Of course, our purpose here is not to say the last word on this interesting issue. For the sake of clarity, some advanced subjects have been omitted, such as fasterthan-light (FTL) travel possibility, warpdrive, wormhole, cloaking theory (Greenleaf et al.), antigravity etc. As to the gravitation research in the near future, it seems that there are multiple directions which one can pursue, with which we're not so sure. The only thing that we can be sure is that everything changes (Heraclitus of Ephesus), including how we define "what the question is" (Wheeler's phrase), and also what we mean with "metric", "time", and "space". Einstein himself once remarked that 'distance' itself is merely an illusion.

Acknowledgment

The first writer wishes to thank to Prof. T. Van Flandern for sending his *Meta Research Bulletin* around 8 years ago. Both writers wish to thank to Dr. J. Sarfatti and P. Zielinski and others for stimulating discussions concerning the meaning of curvature in General Relativity. Special thanks to D. Rabounski for his remarks on Glenn Perry diffraction theory; and to E. Goldfain for summary of Loop Quantum gravity and Superstring. Previous discussions with Profs. M. Pitkanen, D. Rapoport, A. Povolotsky, Yoshio Kishi, and others are acknowledged. At the time of writing this paper, P. LaViolette has just released a new book discussing antigravity research.

Submitted on May 02, 2008 / Accepted on June 19, 2008

References

- 1. http://en.wikipedia.org/wiki/Classical_theories_of_gravitation
- 2. Millis M. New ways of thinking inertia and gravity. http://www.spinningdisk.org/article0.htm
- 3. Lamprecht J. Euler's impulsion gravity. *Meta Research Bulletin*, 1998, v. 7, no. 3.
- 4. Consoli M. and Constanzo E. Flat space picture of gravitation vs General Relativity. arXiv: 0710.5613.
- 5. Consoli M. Modern Michelson-Morley experiment and gravitation induced anisotropy of *c*. arXiv: gr-qc/0306105.
- Haisch B. and Rueda A. Geometrodynamics, inertia, and quantum vacuum. arXiv: gr-qc/0106075.
- 7. De Matos C. J. and Tajmar M. Gravitational Poynting vector. arXiv: gr-qc/0107014.
- De Matos C. J. and Tajmar M. Coupling of gravitation and electromagnetism in the weak field approximation. arXiv: gr-qc/ 0003011.
- Sweetser D. Classical unified field theory. http://world.std.com/ ~sweetser/arch/unified_field.2001.09.01/unified_field.html
- 10. Rabounski D. A theory of gravity like electrodynamics. *Progress in Physics*, 2005, v. 2.
- Consoli M. Gravitational forces from Bose-Einstein condensate. arXiv: hep-ph/0002098.
- Volovik G. Superfluid analogies of cosmological phenomena. arXiv: gr-qc/0005091.
- 13. Brown P.M. Einstein gravitational field. arXiv: physics/ 0204044.
- 14. Luminet J.-P. http://luth2.obspm.fr/~luminet/etopo.html
- Puthoff H. PV representation of general relativity. arXiv: gr-qc/ 9909037.
- 16. http://en.wikipedia.org/wiki/Yilmaz_theory_of_gravitation
- 17. Misner C. W. Yilmaz cancels Newton. arXiv: gr-qc/9504050.
- Alley C. O., et al. Refutation of Misner's claims. arXiv: gr-qc/ 9506082.
- Kol B. and Smolkin M. Non-relativistic gravitation: from Newton to Einstein and back. arXiv: 0712.4116; [19a] http://en.wikipedia.org/wiki/Scalar_theories_of_gravitation
- Huang X.B. Unification of gravitation, gauge field, and dark energy. arXiv: hep-th/0410266
- Christianto V. and Smarandache F. Kaluza-Klein-Carmeli metric from Quaternion-Clifford Space, Lorentz force, and some observables. *Progress in Physics*, 2008, v. 4.
- 22. Lu L. J., Greeleaf J. F., and Recami E. arXiv: physics/9610012.
- 23. Celerier M. N. and Nottale L. Generalized macro Schrödinger equation from scale relativity. arXiv: gr-qc/0505012.

- 24. Smarandache F. and Christianto V. Schrödinger equation and the quantization of celestial systems. *Progress in Physics*, 2006, v. 2.
- 25. Sowa A. Nonlinear Maxwell theory and electrons in two dimensions. arXiv: cond-mat/9904204.
- 26. Bialinycki-Birula I. and Bialinycki-Birula Z. arXiv: physics/0305012.
- 27. Bialinycki-Birula I. arXiv: physics/0309112.
- Bostick W. Experimental study of plasmoids. *Phys. Rev.*, 1957, v. 106, 404–412; http://en.wikipedia.org/wiki/Plasmoid
- 29. de Matos G. J. and Beck C. arXiv: 0707.1797.
- Snelders H. A. M. Huygens and Newton's theory of gravitation. Notes and Records of the Royal Society of London, 1989, v. 43, no. 2.
- 31. Solomon B. An introduction to gravity modification: a guide to using Laithwaite's and Podkletnov's experiments and the physics of forces for empirical results. http://www. libreriauniversitaria.it/an-introduction-to-gravity-modification/ book/9781599429922
- 32. http://en.wikipedia.org/wiki/Eugene_Podkletnov
- Perry G. E. Gravity as diffraction proof and consequences. *Infinite Energy*, 2008, v. 14, no. 79, 25–38.
- 34. http://en.wikipedia.org/wiki/Mechanical_explanations_of_ gravitation
- 35. http://plus.maths.org/latestnews/jan-apr07/cloaking/index.html
- Sato R. Physicist use levitation to solve a sticky problem. http://www.dailygalaxy.com/my_weblog/2007/08/physicistsuse-.html; [36a] http://www.zamandayolculuk.com/cetinbal/ wwormholew.htm
- 37. Pavlovic M. http://users.net.yu/~mrp/chapter5.html
- 38. http://discovermagazine.com/2006/feb/dialogue-woit
- 39. See e.g.: Smolin L. Three roads to quantum gravity. Basic Books, New York, 2001.
- 40. See e.g.: Green M. Superstring theory in new physics for the twenty-first century. Cambridge University Press, 2006.
- 41. 't Hooft G. Introduction to string theory. http://www.phys.uu.nl/ ~thooft/lectures/stringnotes.pdf