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ABSTRACT:

Interpretable and explainable machine learning have proven to be promising approaches to verify the quality of a data-driven model

in general as well as to obtain more information about the quality of certain observations in practise. In this paper, we use these

approaches for an application in the marine sciences to support the monitoring of whales. Whale population monitoring is an

important element of whale conservation, where the identification of whales plays an important role in this process, for example

to trace the migration of whales over time and space. Classical approaches use photographs and a manual mapping with special

focus on the shape of the whale flukes and their unique pigmentation. However, this is not feasible for comprehensive monitoring.

Machine learning methods, especially deep neural networks, have shown that they can efficiently solve the automatic observation

of a large number of whales. Despite their success for many different tasks such as identification, further potentials such as

interpretability and their benefits have not yet been exploited. Our main contribution is an analysis of interpretation tools, especially

occlusion sensitivity maps, and the question of how the gained insights can help a whale researcher. For our analysis, we use

images of humpback whale flukes provided by the Kaggle Challenge ”Humpback Whale Identification”. By means of spectral

cluster analysis of heatmaps, which indicate which parts of the image are important for a decision, we can show that the they can be

grouped in a meaningful way. Moreover, it appears that characteristics automatically determined by a neural network correspond to

those that are considered important by a whale expert.

1. INTRODUCTION

Interpretable and explainable machine learning has gained mo-

mentum in recent years, especially with regard to the develop-

ment of various methods for a better understanding of complex

processes in neural networks (Samek, Müller, 2019). However,

so far the potential of these methods for geo- and bioscientific

applications has hardly been considered. A strength of inter-

pretation tools, in combination with domain knowledge, is the

possibility to verify the quality of a learned machine model in

general and to get more information about the quality of certain

observations. This is the basis for creating reliable models for

practical use and for supporting the user in the application of

these models and providing additional information that cannot

be obtained by the machine learning model alone.

In the marine sciences, for example, a current problem is that

the whale population worldwide is threatened by years of com-

mercial whaling (Surma, Pitcher, 2015). In addition, adaptation

to ocean warming and the struggle for food in competition with

the fishing industry further affects the stability of the whale pop-

ulation. For this reason, many scientists control whale popula-

tions and monitor spatio-temporal migration to help protect the

whales. An indispensable basis for the monitoring of whales

is (re-)identification. They are identified by the shape of the

whale flukes and their unique pigmentation (Katona, White-

head, 1981). Especially three characteristics play a decisive role
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Figure 1. Important characteristics of a whale fluke.

for whale experts in the differentiation of the individual whales

(see Fig. 1):

Pigmentation-based surface features These characteristics

are the most obvious to the human eye, apart from large

disfiguring shape features. They can change significantly

in the first months, up to a couple years, of the whale’s

life, and in extremely cold water (Antarctica especially,

Greenland and the far North Atlantic to a lesser extent).

They can be partially obscured by substantial diatom

growth, characterized by a yellow-orange appearance of

the flukes.

Edge detection This characteristic is often the most reliable

and robust. The outer 20% of the tail can distort more and

change more over time, but the inner 80% and V-notch can

be very reliable during the lifetime of the whale. This is

hard to detect with the human eye, but has proven useful

for machine learning based detection.

Acquired scars The surface of the fluke will usually scar white
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on black and black on white. However, this is not always

the case and scars do not always persist in the way we

might expect them to. Specific scars will grow with the

whale, for example, killer whale rake marks that make par-

allel lines or barnacle marks that make circles. Lighting

can dramatically change the detectability of scarring.

To support the monitoring, whale researchers often use geo-

tagged photographs with recorded time and location to track

the activities of whales in the sea. So far, this work has mainly

been carried out by individual scientists who have manually

processed the given data. But a huge amount of data remained

unused, which led to attention being focused on machine learn-

ing (Schneider et al., 2019, Kniest et al., 2010). In recent

years, the use of deep neural networks became prevalent. In

2018, the Kaggle Challenge “Humpback Whale Identification”1

was launched with the goal to develop efficient large-scale al-

gorithms for the (re-)identification of individual whales based

on images showing their fluke. All three winning solutions are

based on neural networks 2 3 4.

Despite their success in achieving a high accuracy for the identi-

fication of whales, the interpretability of neural networks poses

a considerable challenge. Generally, interpretation tools help

to understand the behavior of machine learning algorithms and

the obtained results. Such tools map an abstract concept, such

as the behavior of a neural network, into a domain which is

understandable by a human (Montavon et al., 2018). Many ap-

proaches utilize visual heatmaps, which indicate the saliency/-

sensitivity of the output by means of the input, attention of clas-

sifier models, or feature importance and relevance (Hohman et

al., 2018). These tools are extremely helpful, but have only

recently been used to derive new scientific knowledge and dis-

coveries, and to improve the learned model (Schramowski et

al., 2020, Roscher et al., 2020).

In this paper we apply Occlusion Sensitivity Maps (OSM),

(Zeiler, Fergus, 2014)) to a model that was developed for the

identification of whales. Our main contribution is the analysis

of the generated heatmaps and the question to what extent the

quality of the model and certain observations can be verified

with them and how the findings can help a whale researcher.

This also includes the research question of whether the iden-

tification of whales by a neural network uses the same image

characteristics as those considered important by whale experts.

We base our analysis on the approach presented by (Lapuschkin

et al., 2019), however, with focus on these specific objectives:

• Can interpretation tools help to determine the suitability

of images for identification? Suitability is influenced, for

example, by image quality, object pose and size, but also

by the presence of relevant features.

• Can interpretation tools help to determine the reliability

of the prediction of a neural network? Related to this is

the question whether the interpretation tools agree with the

statements of the neural network confidence scores or pos-

sibly supplement them.

1 https://www.kaggle.com/c/humpback-whale-

identification
2 1st place: https://github.com/earhian/Humpback-Whale-

Identification-1st-
3 2nd place: https://github.com/SeuTao/Humpback-Whale-

Identification-Challenge-2019_2nd_palce_solution
4 3rd place: https://github.com/pudae/kaggle-humpback

• Can interpretation tools help to make a statement about

temporally variable characteristics? The whale fluke

changes with age. As a result, distinctive features of a

fluke may no longer be present and thus, are not visualized

in the results of the interpretation tool.

These objectives are formulated from the perspective of whale

researchers, but also raise relevant questions from a machine

learning perspective, such as the usefulness of interpretation

tools to improve models. In general, the task of re-identification

of objects or living beings from images is a widespread topic in

photogrammetry and remote sensing and the approach and find-

ings presented in this paper can also be applied to similar tasks.

The paper is structured as follows. We start with the description

of the humpback whale data set and the identification model

used (Sec. 3). Afterwards, we will introduce the visualiza-

tion tools Gradient-weighted Class Activation Mapping (Grad-

CAM) and Occlusion Sensitivity Maps (OSM) that are used

in this paper. Furthermore, we shortly describe Spectral Clus-

tering, which we employ to group heatmaps (Sec. 4). Finally,

we present our results in Sec. 5, which include the comparison

between the tools Grad-Cam and OSM as well as a more de-

tailed analysis using Spectral Clustering of the resulting OSM

heatmaps.

2. INTERPRETABLE MACHINE LEARNING

Besides maximizing the accuracy of a learning algorithm, the

focus for an increasing number of applications is on the ex-

plainability of results in general and the explainability of model

behavior in particular. A prerequisite of explainability is inter-

pretability, which transforms complex aspects like the model

behaviour into a space that can be understood by humans. By

combining interpretable models and results with domain know-

ledge, explanations can be derived.

In recent years, various instruments have been proposed which

approach interpretability in different ways. (Samek, Müller,

2019) distinguish between four different approaches. The first

approach is the usage of surrogates, where complex models

such as neural network (NN) models are approximated by sim-

pler ones which are interpretable. One of the most well known

ones in this category is Local Interpretable Model-Agnostic ex-

planations (LIME) described by (Ribeiro et al., 2016). This

model samples around an input in feature space and approx-

imates the predictions by fitting a local surrogate model. In

this way, it helps to understand why the model makes a certain

prediction for a specific input. The second approach analyses

the model’s change regarding pertubations of the input, that

means, it analysis the sensitivity of a model. OSM (Rajaraman

et al., 2018), which is the main focus of this paper, belongs to

this group. The third group are propagation-based approaches,

which exploit the internal structure of the model. A well-known

representative of this group is layer-wise relevance propagation

(Bach et al., 2015) which redistributes the prediction backwards

and assigns a relevance to each input element (e.g., a pixel). An-

other approach belonging to this group is deconvolution (Zeiler,

Fergus, 2014). The last group are meta-explanations, which are

also used in this paper. Here, several interpretations are ana-

lyzed together to get insights about the general behavior of the

learned model. Spectral relevance analysis uses visualization

tools to produce sets of heatmaps, which are further analyzed

by clustering (Lapuschkin et al., 2019). For further details, in-

cluding specific types of interpretation and further realization,
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Figure 2. Two samples from the Kaggle Challenge ’Humpback

Whale Identification’ showing two different whale individuals.

The re-identification of whales states a challenge due to low

inter-class variations.

we refer to recent surveys (Adadi, Berrada, 2018, Gilpin et al.,

2018, Guidotti et al., 2018).

3. HUMPBACK WHALE DATA AND

IDENTIFICATION MODEL

3.1 Image Data

In this work, we use a set of humpback whale images from

the Kaggle Challenge “Humpback Whale Identification”. More

specifically, we process their tails, the so-called flukes (see

Fig. 2). The data set consists of more than 67.000 images, in

which 10.008 different whales, i.e., 10.008 different classes,

are represented. An image of size u × v is represented as

a vector x of length (u · v). The images are splitted into a

training set Xtrain = {x1, . . . ,xN} (∼ 51.200 images) and a

test set Xtest = {x1, . . . ,xT } (∼ 16.000 images). The num-

ber of images per set is given by N and T , respectively. The

set Xc = {x1, . . . ,xR} describes a subset that includes R im-

ages for one specific class c. For our experiments, we restrict

ourselves to use images in the training set Xtrain, because the test

set Xtest does not provide reference information, as it is gener-

ally the case for Kaggle challenges.

3.2 Whale Identification Framework

For our study, we use the second winner solution3 of the Kaggle

Challenge, which is in our view best suited with regard to its

documentation and the application of interpretation tools. The

basic structure of the first2 and third4 winner solutions is based

on a keypoint detection, which cannot be easily analysed with

interpretation tools. Furthermore, the achieved accuracies of all

solutions do not differ significantly.

For pre-processing, the framework applies two steps to the raw

image. First, the chosen framework automatically performs im-

age cropping in order to reduce the image content to the fluke of

the whale. The cropped images are resized to an uniform size of

256 px× 512 px. This is also helpful in that the heatmaps gen-

erated by the interpretation tool focus on the essential image

content, namely the fluke. In the second step, the framework

performs z-normalization on the input images, by centering the

data by subtracting the mean from every pixel and dividing it

by the standard deviation (Cheadle et al., 2003).

The architecture is based on ResNet-101 (He et al., 2016), a

deep neural network with 101 layers composed of multiple

3-layer blocks, where each block contains several convolu-

tional, normalization, and pooling operations. Moreover, skip-

connections are employed so that the gradients can flow back-

wards while skipping several layers. The optimization of the

parameters is done by minimizing a weighted sum of three

losses: triplet loss (Weinberger, Saul, 2009), ArcFace loss

(Deng et al., 2019), and focal loss (Lin et al., 2017). For each

input image, we receive a score snc for each class c. If we

sort the scores in descending order, we consider the five classes

with the highest scores. We call them top b with b = {1, . . . , 5}.

For example, top 2 represents the class with the second highest

score. In general, we denote as reference assignment the one of

the top b that matches the reference. The top 1 prediction cor-

responds to the network’s class prediction for the input image

xn. We denote the case that the top 1 prediction from the neural

network corresponds to the reference class for the input image

as correct assignment. We train the model with pre-processed

images xn ∈ Xtrain, while ensuring the reproducibility of the

specified accuracies from the challenge.

4. HEATMAP ANALYSIS

4.1 Heatmapping

4.1.1 Gradient-weighted Class Activation Mapping

(Grad-CAM) Grad-CAM is a method for visually interpret-

ing deep networks via gradient-based localization (Selvaraju

et al., 2017). The idea is to highlight the regions in an image,

which are important for predicting a particular output. For this,

the gradient for a confidence score of class c with respect to the

activations in a chosen convolutional layer is computed, and

pooled to derive importance weights for each neuron. In com-

bination with the activations in the respective layer it results in

heatmap with a size corresponding to the activation map. One

exemplary result is presented in Fig. 3. Note, (Selvaraju et al.,

2017) point out that deeper layers provide more interpretable

results than shallower layers. Moreover, we observed that the

resolution of the heatmap is crucial for good interpretability.

The underlying resolution of Grad-CAM results corresponds to

the spatial resolution of the used activation map.

Figure 3. Grad-CAM results for selected feature map resulting

of the fourth residual block of the ResNet101 network.

4.1.2 Occlusion Sensitivity Map (OSM) OSM is a strategy

developed by (Zeiler, Fergus, 2014) to evaluate the sensitivity

of a trained model to partial occlusions in an image. The use of

OSM helps to identify whether the trained model classifies the

input based on task-specific features or whether the surround-

ing context is included in the classification. Moreover, it shows

which regions make a positive contribution to the score and

which make a negative one. If the heatmap outcome is a high

absolute value at a given pixel position, it can be concluded

that changing this pixel would have a significant effect on the

classification result. This provides understanding of the learned

behaviour of the model, based on the underlying task.

For a given image, different patches are masked. This is done

by using a patch, which is moved over the image with a select-

able stride. Two parameters, namely patch size p and stride,

are chosen by the user, where the choice influences the result in

terms of precision and smoothness. In the area occluded by the

patch around position u, the pixel-wise scores of the classifier

for each class are compared to the obtained scores after a part

of the image was occluded. The difference ∆scu is given by

∆scu = sc - s̃cu (1)
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Figure 4. Occlusion sensitivity map as an overlay over an

example image of the humpback whale identification data set,

which shows an image of class 2155. The result is computed for

a patch size p = 5px. Pixels colored green illustrate regions

whose overlap reduces the confidence score of class c, and

which are therefore important for the classification of class c.

Purple pixels indicate regions whose coverage increases the

score, i.e. these regions point towards other classes. These areas

can confuse the network during the classification process if these

areas are located in the object.

where the original predicted score for each class is denoted by

sc and the predicted score based on occlusion is given by s̃cu.

Performed for the whole image, it results in an occlusion sens-

itivity heatmap.

Figure 4 shows an example of OSM, where green and purple

colored areas show the most sensitive pixels towards occlusion.

If green areas are covered, this leads to a significant drop of

the score of the correct class c. We call those areas positive

sensitive. If purple colored areas are covered, the score of the

correct class c increases, i.e. these regions point towards other

classes and an occlusion helps predicting the correct class. We

denote those pixels negative sensitive. The white colored areas

indicate no measured influence on the classification.

Varying patch size and stride allows for flexibility in the gen-

eration of OSM results. It leads to a variable smoothing of the

map and therefore, a varying precision. This allows to capture

features of different sizes in the image. However, depending on

the selected parameters, this leads to an increased runtime.

4.2 Cluster Analysis

In order to make general statements about the interpretations

results of the entire data set, we perform a clustering of the ob-

tained heatmaps per image. In doing so, we follow the basic

idea of (Lapuschkin et al., 2019). We use the method of Spec-

tral Clustering (SC), where a data set is clustered based on a new

representation of the data, which is based on a similarity meas-

ure (Meila et al., 2016). The similarities are used as weights in a

so-called weight matrix W , from which a graph Laplacian mat-

rix L is obtained. The SC method uses the eigendecomposition

of L to determine the clusters using k-means.

The data set consists of N samples z1, . . . , zN , representing

the heatmaps for each training sample xn. For a faster runtime

and more stable computations, we reduce the dimensions of the

data points by a 4× 4 max pooling operation. Thus, the length

of a vectorized heatmap change from 131072 to 8192. We nor-

malize the data to a range of [0, 1]. Afterwards, we perform

principal component analysis on the normalized data to reduce

the dimensions of the data to 1000. A weight matrix W is con-

structed from a similarity graph, where for the determination of

the similarities we use the Gaussian similarity function based

on the Euclidean distance Wnm = exp(−‖zn − zm‖2/2σ2).
The kernel scale is set to σ = 0.2 and chosen by an evaluation

of eigenvalues obtained from the weight matrix W . A suitable

kernel scale is indicated by a significantly different eigenvalues

and clear eigengaps.

We compute an eigendecomposition of the normalized graph

Laplacian Lsym = I − D
−1/2

WD
−1/2, (Ng et al., 2002). Here,

D is a diagonal matrix, where a diagonal entry is the sum of

the weights in the graph for a heatmap zn. Note, in SC one

uses the eigenvectors UK := [u1, . . . ,uK ] for the smallest K
eigenvalues when aiming for K clusters. In a further step, the

rows of UK are normalized by Qnm = unm/
(
∑

k u
2
nk

)1/2
to

norm 1 and organised in a matrix Q. The K-dimensional vec-

tor yn corresponding to the n-th row of Q, for n = 1, . . . , N ,

gives a new representation for xn that enhances the cluster-

properties in the data (Von Luxburg, 2007). Using the k-means

algorithm (Hartigan, Wong, 1979) the data are then divided

into K clusters {C1, . . . , CK} based on the vectors yn, n =
1, . . . , N .

5. RESULTS

5.1 Experiment 1: Comparison OSM to Grad-CAM

This experiment shows a comparison of OSM and Grad-CAM

heatmaps. The results support our key claims: (i) The visu-

alization tools provide interpretable results. (ii) The features

identified by the network are similar to the features that whale

experts consider important. The experiment is based on the data

set explained in Sec. 3.1. As an example, we consider results

for set X261 of four images representing class 261, as illustrated

in Fig. 5. The images are classified by the neural network de-

scribed in Sec. 3.2. Both visualization tools, OSM and Grad-

CAM, are applied to the model. The results of OSM are calcu-

lated for patch size p = 5 and p = 35 and a stride of 1, result-

ing in a heatmap of size 256 px×512 px. Previous experiments

have shown that deeper layers are more interpretable (Selvaraju

et al., 2017). Therefore, we visualize the resulting feature maps

of the fourth residual block (denoted as layer 4) of the model.

Using OSM, the variation of patch size p and stride allows flex-

ibility in generating results. Changing the parameters causes

different characteristics in the image to be highlighted and dis-

played at different resolutions. Depending on the class mapped,

either trailing edge, pigmentations, or the total fluke are high-

lighted as positive sensitive by OSM. For the class shown in

Fig. 5, with p = 5 the white pigmentations on the fluke are

shown as positive sensitive and thus, as important feature that

the network uses for the prediction of class 261. With p = 35
the trailing edge is highlighted as positive sensitive as well, but

not as distinctive as the pigmentation. In contrast, Grad-CAM

highlights the notch at the right tip of the fluke, where OSM

does not consider these areas as influential.

In the following, we examine both tools in terms of the features

considered important by the whale expert. OSM delivers a res-

ult that includes the relevance of all image areas and thus all

characteristics, as the heatmap visualizes the influence of indi-

vidual image regions on the score. Different patch sizes result

in OSM results with varying degrees of smoothing. In con-

trast, Grad-CAM gives us information about a specific layer. In

general, different layers are related to different areas in the im-

age and often these can be associated with properties that are

considered important also by a whale expert. Due to the visu-

alization of individual layers rather than the summary of the

model, we cannot easily assess the specific importance of the

highlighted feature with regard to the classification decision.

Besides the visual results, we compare the spatial resolution

additionally to the runtime of both methods. The spatial resol-

ution of the resulting heatmap varies depending on the setting
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Original images

Occlusion sensitivity maps with patch size p = 5

Occlusion sensitivity maps with patch size p = 35

Grad-Cam heatmaps illustrating layer 4

Figure 5. Visual comparison between OSM and Grad-CAM results using images representing class 261. OSM is calculated for patch

size p = 5 and p = 35. Green colored areas represent pixels that have a positive influence on the class shown. Purple pixels are

indications of other classes. The white colored areas have no influence on the classification according to OSM. The selected layer to

be visualized in the approach of Grad-CAM is Layer 4. For a better visualization, we overlayed the heatmap with the original image.

for the stride. For Grad-CAM, the resolution is equal to the

size of the visualized feature map. The choice of the resolu-

tion is of central importance, as it determines the visibility of

the features given by the whale expert and thus, the interpretab-

ility of the resulting heatmaps. Besides the different outputs,

which allow different statements about the importance of im-

age regions, the procedures also differ in terms of the duration.

Regarding the runtime, Grad-CAM needs around 30 second to

compute one heatmap of size 256 px×512 px. In contrast, OSM

needs 30 minutes for a stride of one. A higher stride would re-

duce the runtime. For the calculation, we use an Intel Core

i7-6850K 3.60 GHz processor and a Geforce GTX 1080Ti with

11 GB RAM.

To answer the question how the gained insights of the heatmaps

can help a whale researcher, we refer to our prior knowledge

that certain characteristics on the whale fluke change over time,

such as the area of the trailing edge near the fluke tips. If a

long period of time passed between two images of the same

whale, there is a risk that the network will not be able to match

them correctly. With this knowledge the recently photographed

whales could be compared manually to whales already exist-

ing in the database. Since it is not possible to compare all

whales manually, the following opportunity can help the whale

expert to reduce the selection. A possibility could be that the

expert selects whales whose local characteristics, which change

with time, are similar to the whale of interest. These could

be whales, for example, which also show characteristic fea-

tures in the area of the trailing edge near the fluke tips, as here

changes over time are likely. In this case, the features detected

by the visualization tools in combination with domain know-

ledge from the whale expert provide information about the reli-

ability of recognizing a whale in the future.

For both methods, we could not observe that the model pays

attention to artifacts or surrounding objects except water, the

latter is due to the fact that in the pre-processing chain the irrel-

evant part of the image has been cut away for the most part.

5.2 Experiment 2: Clustering analysis of OSM heatmaps

For this experiment, we use images from the training set Xtrain,

which are classified by the neural network described in Sec. 3.2.

We apply the visualization tool OSM to the model and receive

one heatmap per top b predictions per image with b = 1, . . . , 5.

To put more focus on fine-grained structures and promote more

distinct clustering, we use the results for p = 5 only.

Following (Lapuschkin et al., 2019), the goal of this experiment

is to find a clustering of heatmaps that highlights and separates

different features in the images. In combination with the de-

tection rate of the model associated with certain heatmaps, the

quality of different clusters and thus the quality of certain im-

ages can be determined. This is done by applying SC (Sec. 4.2)

analysis on the previously calculated occlusion sensitivity heat-

maps. We consider heatmaps assigned to correct assignments

within the top 5 predictions.

In order to decide on a suitable number of clusters, we ana-

lyzed whether we can identify gaps in the eigenspectrum of the

graph Laplacian. As can be seen in Fig. 6, the eigenvalues ex-

hibit large gaps for the first few eigenvalues. Contrary to our

expectations, with a small number the resulting clusters are not

meaningful for our research question, since the clusters contain

mixed characteristics of heatmaps. Due to the generally very

similar content of the images, a separation by a few clusters is

very challenging. Therefore we decided to use many, and more

fine-grained clusters, whereby optionally several clusters can be
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regrouped afterwards. We have seen that the choice of K = 30
leads to visually distinguishable and meaningful clusters which

support our research question.

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Figure 6. The 60 smallest eigenvalues from the Spectral

Clustering analysis based on the calculated occlusion sensitivity

heatmaps.

As seen in Fig. 7, with the approach we are able to find mean-

ingful clusters. The figure shows images which are assigned

to three different clusters. Fig. 7 a) includes heatmaps, where

the area of the entire fluke is predominantly colored green and

therefore is positive sensitive. The rest of the image is very

bright and weak colored. This could be an indicator of the shape

of the fluke. Fig. 7 b) includes predominantly images where the

network considers the pigmentation near the fluke tips as im-

portant according to the OSM results. The lower right corner

of each image indicates a purple coloration. This could be an

indicator for a color change. For the last cluster in Fig. 7 c)

one does not observe any striking coloration of the entire im-

age. The regions of the whale fluke are not positive sensitive

to the class presented. The background varies between a light

green and light purple coloration. No specific features are high-

lighted in these images. Thus, clusters like c) are not informat-

ive enough to answer the research question. Cluster a) and b)

are positive examples that some of the clusters indicate charac-

teristics of the whale that are important to the whale researcher,

such as different kinds of pigmentations, the trailing edge, or

the total area of the fluke.

Cluster relation scores

For each original input image the five highest scored classes are

analysed with OSM. The upper figure in Fig. 8 shows for each

cluster the relative proportion of correct assignments using the

top five scored classes in relation to the total number of heat-

maps assigned to that cluster. It can be observed that essentially

the highest scored class (top 1) already gives the correct assign-

ment. The bottom figure in Fig. 8 shows for the correct class

the mean of the predicted score and standard deviation from the

neural network, taken over all OSM heatmaps within a cluster.

For the bottom figure in Fig. 8 a decreasing trend is also vis-

ible. The clusters that contain a high proportion of correct as-

signments from the top five scores have also higher average

scores. The neural network’s predictions for images corres-

ponding to these heatmaps are therefore more reliable. The

cluster’s standard deviations are relatively large. Certain classes

have no distinctive features, so that only small regions are high-

lighted in the heatmap. However, in some cases, the presence of

these small regions is sufficient to represent the respective class.

Therefore, heatmaps assigned to a cluster with a low mean score

can also have a high score. For instance, cluster 28 contains a

heatmap assigned to a score of 71.02%. In fact, small inter-

class variations can cause the heatmaps to appear similar, but

the scores can differ significantly from each other. As a con-

sequence of the similar appearance, the images are assigned to

the same cluster. However, this results in an increased standard

deviation.

Reliability analysis

In order to draw conclusions about the quality and reliability

of the heatmaps, we consider outliers in clusters with contra-

dicting mean scores. Furthermore, we examine the heatmaps in

specific clusters and the corresponsing predictions of the neural

network. For this, we consider the clusters from Fig. 8. In

cluster 1, more than 90% of its heatmaps belong to a top 1 pre-

diction of the neural network. Additional heatmaps belong to

a top 2 prediction, i.e., the one with the second highest score.

The scores of the top 2 predictions in this cluster are signific-

antly smaller than the top 1 predictions, where the lowest top 2

prediction has a score of 50.20%. In cluster 29, which is char-

acterized by a low mean score, 50% of all images have similar

low scores for all classes, which is an indicator that the pho-

tographed whale is identified as a new whale which is not yet

in the database. If there are no images of a whale to be iden-

tified in the database, identification by the neural network is

not possible, which can be determined by low scores for all

classes. This is also reflected in the appearance of the heat-

maps of OSM, which do not capture essential characteristics of

a whale. Several other clusters with a lower mean score have

the same properties as cluster 29.

A small percentage of heatmaps in cluster 29 belong to the top-

1 score, but are not classified correctly, i.e., the network could

not correctly identify the whales. Visually, these heatmaps are

similar to those for new whales. Overall, no heatmaps in this

cluster belong to correctly identified whales. In general, we ob-

serve that clusters with a low mean score have less correct iden-

tifications. Heatmaps that have a top-1 score and are assigned

to these clusters are often identified as new whales.

Based on the observed aspects, we conclude that heatmaps as-

signed to clusters with low mean score, tend to be incorrectly

classified by the neural network. We suggest that whale re-

searchers do not to trust these predictions but to check the im-

ages manually afterwards instead. One reason for the assign-

ment of a heatmap to one of those clusters could be the low vis-

ibility of sufficient features. The information that a prediction

is assigned to one of these clusters could result in a proposal for

the whale researcher to take additional pictures of that whale.

6. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we applied the two visualization tools Gradient-

weighted Class Activation Mapping and Occlusion Sensitivity

Map to a given neural network to gain insights into which fea-

tures are relevant for the decision of the network in the con-

text of whale identification. Our experiments show that both in-

terpretation tools highlight similar image characteristics as the

whale expert is focusing on. By means of a cluster analysis

of the interpretation results of occlusion sensitivity maps, we

could show that characteristics can be grouped in a meaning-

ful way. These automatically determined characteristics cor-

respond to those that are also considered important by a whale

expert. However, in contrast to the whale expert, some inter-

pretation tools like the occlusion sensitivity maps indicate that
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a) Heatmaps of cluster 1 b) Heatmaps of cluster 2 c) Heatmaps of cluster 29

Figure 7. Spectral Clustering analysis is applied to the OSM heatmaps to identify different prediction characteristics within the

analyzed data. Three exemplary prediction characteristics are shown. a) Detect total fluke as positive sensitive. b) Detect

pigmentations near the fluke tips as positive sensitive. c) Nothing specific is detected positive sensitive. No distinctive features are

found.

the network usually focuses on only one type of characteristic,

such as parts of the fluke. The whale expert, on the other hand,

usually looks at all the features together.

We were able to show a relationship between heatmaps obtained

from an interpretation tool and scores obtained from a neural

network. Through cluster analysis we could identify clusters of

heatmaps that are not suitable for the identification of whales.

Even if the network gives a high score, an assignment to such a

cluster indicates a misclassification by the network. These as-

signments can be used to make recommendations to the whale

researcher that it is useful to take another photo of the whale to

better identify the visible features and thus improve the iden-

tification results. Thus, we consider the score and the output

from the heatmap analysis as complementary measures for the

reliability of the result.

In future work, the newly gained information from the cluster

analysis could be used to improve the network. This informa-

tion could be fed as additional information into the training of

the neural network, as suggested by (von Rueden et al., 2020).

Another research approach is the comparison of different in-

terpretation tools. In preliminary analyses we could show that

Gradient-weighted Class Activation Mapping considers differ-

ent characteristics in different layers as important, which is

more in accordance with the perception of the whale researcher.

Thus, a combination of several layer-based Gradient-weighted

Class Activation Mapping heatmaps could provide a more com-

prehensive statement than occlusion sensitivity maps.

We also want to encourage further research in this new yet

promising area. Interpretable and explainable machine learning

can be applied in many places in photogrammetry and remote

sensing where questions about the reliability of models and ob-

servations are relevant, and further insights besides the obvious

ones from the model are of interest.
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Figure 8. The figure on the top shows the proportion of correct class assignments within a cluster using the five highest scored classes,

where the clusters are in descending order of that proportion. In the bottom figure the mean score as well as the standard deviation of

the scores for the images of cluster k are plotted, where the clusters are in the same order as above.
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