
What-if Analysis for Data Warehouse Evolution

George Papastefanatos1, Panos Vassiliadis2, Alkis Simitsis3, and Yannis Vassiliou1

1 National Technical University of Athens, Dept. of Electr. and Comp. Eng., Athens, Hellas
{gpapas, yv}@dbnet.ece.ntua.gr

2 University of Ioannina, Dept. of Computer Science, Ioannina, Hellas
pvassil@cs.uoi.gr

3 IBM Almaden Research Center, San Jose, California, USA
asimits@us.ibm.com

Abstract. In this paper, we deal with the problem of performing what-if
analysis for changes that occur in the schema/structure of the data warehouse
sources. We abstract software modules, queries, reports and views as
(sequences of) queries in SQL enriched with functions. Queries and relations
are uniformly modeled as a graph that is annotated with policies for the
management of evolution events. Given a change at an element of the graph,
our method detects the parts of the graph that are affected by this change and
indicates the way they are tuned to respond to it.

1. Introduction

Data warehouses are complicated software environments where data stemming from
operational sources are extracted, transformed, cleansed and eventually loaded in fact
or dimension tables in the data warehouse. Once this task has been successfully
completed, further aggregations of the loaded data are also computed and stored in
data marts, reports, spreadsheets, and other formats. The whole environment involves
a very complicated architecture, where each module depends upon its data providers
to fulfill its task. This strong flavor of inter-module dependency makes the problem of
evolution very important in a data warehouse environment.

Figure 1 depicts a simplified version of an Extraction-Transformation-Loading
(ETL) process. Data are extracted from sources and they are transferred to the Data
Staging Area (DSA), where their contents and structure are modified; example
transformations include joins, addition of new attributes produced via functions, and
so on. Finally, the results are stored in the data warehouse (DW) either in fact or
dimension tables and materialized views. During the lifecycle of the DW it is possible
that several counterparts of the ETL process may be evolved. For instance, assume
that an attribute is deleted from the underlying database S1 or it is added to the source
relation S2. Such changes affect the entire workflow, possibly all the way to the
warehouse (tables T1 and T2), along with any reports over the warehouse tables
(abstracted as queries over view V3).

Research has extensively dealt with the problem of schema evolution, in object-
oriented databases [1, 11, 15], ER diagrams [22], data warehouses [6, 16, 17, 18] and

S
1
 Tmp

1

L
1
 L

2

Tmp
2

Join

S
2

T1

T
2

Add field

Load to DSA

 γ V3

Load to DSA

π

π Add field

Patch text

fields

Sources DW Data Staging Area (DSA)

Patch text
fields

Fig. 1: A simple ETL workflow

materialized views [2, 5, 7, 8]. However, to the best of our knowledge, there is no
global framework for the management of evolution in the described setting.

In this paper, we provide a general mechanism for performing what-if analysis [19]
for potential changes of data source configurations. We introduce a graph model that
uniformly models relations, queries, views, ETL activities, and their significant
properties (e.g., conditions). Apart from the simple task of capturing the semantics of
a database system, the graph model allows us to predict the impact of a change over
the system. We provide a framework for annotating the database graph with policies
concerning the behavior of nodes in the presence of hypothetical changes. In addition,
we provide a set of rules that dictate the proper actions, when additions, deletions or
updates are performed to relations, attributes, and conditions. (All the above concepts
are treated as first-class citizens in our model.) Assuming that a graph construct is
annotated with a policy for a particular event (e.g., an activity node is tuned to deny
deletions of its provider attributes), the proposed framework has the following
features: (a) it performs the identification of the affected subgraph; and (b) if the
policy is appropriate, it automates the readjustment of the graph to fit the new
semantics imposed by the change. Finally, we experimentally assess our proposal.

Outline. Section 2 presents the graph model for databases. Section 3 proposes a
framework of graph annotations and readjustment automation for database evolution.
Section 4 presents the results of a case study for our framework. Section 5 discusses
related work. Finally, Section 6 concludes and provides insights for future work.

2. Graph-based modeling of ETL processes

In this section, we propose a graph modeling technique that uniformly covers
relational tables, views, ETL activities, database constraints, and SQL queries as first
class citizens. The proposed technique provides an overall picture not only for the
actual source database schema but also for the ETL workflow, since queries that
represent the functionality of the ETL activities are incorporated in the model.

The proposed modeling technique represents all the aforementioned database parts
as a directed graph G=(V,E). The nodes of the graph represent the entities of our
model, where the edges represent the relationships among these entities. Preliminary
versions of this model have been presented in our previous work [9, 10].

The constructs that we consider are classified as elementary, including relations,
conditions and queries/views and composite, including ETL activities and ETL
processes. Composite elements are combinations of elementary ones.

Relations, R. Each relation R(Ω1,Ω2,…,Ωn) in the database schema can be either a
table or a file (it can be considered as an external table). A relation is represented as a
directed graph, which comprises: (a) a relation node, R, representing the relation
schema; (b) n attribute nodes, Ωi∈Ω, i=1..n, one for each of the attributes; and (c) n
schema relationships, ES, directing from the relation node towards the attribute nodes,
indicating that the attribute belongs to the relation.

Conditions, C. Conditions refer both to selection conditions of queries and views,
and constraints of the database schema. We consider three classes of atomic
conditions that are composed through the appropriate usage of an operator op
belonging to the set of classic binary operators, Op (e.g., <, >, =, ≤, ≥, !=, IN, EXISTS,
ANY): (a) Ω op constant; (b) Ω op Ω’; and (c) Ω op Q. (Ω, Ω’ are attributes of the
underlying relations and Q is a query). A condition node is used for the representation
of the condition. The node is tagged with the respective operator and it is connected to
the operand nodes of the conjunct clause through the respective operand
relationships, O. Composite conditions are easily constructed by tagging the condition
node with a Boolean operator (e.g., AND or OR) and the respective edges, to the
conditions composing the composite condition.

Queries, Q. The graph representation of a Select - Project - Join - Group By (SPJG)
query involves a query node representing the query and attribute nodes corresponding
to the schema of the query. Thus, the query graph is a directed graph connecting the
query node with all its schema attributes, through schema relationships. In order to
represent the relationship between the query graph and the underlying relations, the
query is resolved into its essential parts: SELECT, FROM, WHERE, GROUP BY, HAVING,
and ORDER BY, each of which is eventually mapped to a subgraph.

Select part. Each query is assumed to own a schema that comprises the attributes
appearing in the SELECT clause, either with their original or alias names. In this
context, the SELECT part of the query maps the respective attributes of the involved
relations to the attributes of the query schema through map-select relationships, EM,
directing from the query attributes towards the relation attributes.

From part. The FROM clause of a query can be regarded as the relationship
between the query and the relations involved in this query. Thus, the relations
included in the FROM part are combined with the query node through from
relationships, EF, directing from the query node towards the relation nodes.

Where and Having parts. We assume the WHERE and/or HAVING clauses of a query
in conjunctive normal form. Thus, we introduce two directed edges, namely where
relationships, Ew, and having relationships, EH, both starting from a query node
towards an operator node corresponding to the conjunction of the highest level.

Group and Order By part. For the representation of aggregate queries, two special
purpose nodes are employed: (a) a new node denoted as GB∈GB, to capture the set of
attributes acting as the aggregators; and (b) one node per aggregate function labeled
with the name of the employed aggregate function; e.g., COUNT, SUM, MIN. For the
aggregators, we use edges directing from the query node towards the GB node that are
labeled <group-by>, indicating group-by relationships, EG. The GB node is connected

Fig. 2. Graph of an example aggregate query annotated with policies [10]

with each of the aggregators through an edge tagged also as <group-by>, directing
from the GB node towards the respective attributes. These edges are additionally
tagged according to the order of the aggregators; we use an identifier i to represent
the i-th aggregator. Moreover, for every aggregated attribute in the query schema,
there exists an edge directing from this attribute towards the aggregate function node
as well as an edge from the function node towards the respective relation attribute.
Both edges are labeled <map-select> and belong to EM, as these relationships
indicate the mapping of the query attribute to the corresponding relation attribute
through the aggregate function node. The representation of the ORDER BY clause of
the query is performed similarly, whereas nested queries and functions used in queries
are also incorporated in our model [21].

Views, V. Views are considered either as queries or relations (materialized views),
thus, V ⊆ R∪Q.

Figure 2 depicts the proposed graph representation for an example aggregate query.
Q: SELECT EMP.Emp# as Emp#, Sum(WORKS.Hours) as T_Hours

 FROM EMP, WORKS
 WHERE EMP.Emp#=WORKS.Emp#

 GROUP BY EMP.Emp#

As far as modification queries are concerned, their behavior with respect to
adaptation to changes in the database schema can be captured by SELECT queries. For
lack of space, we simply mention that (a) INSERT statements can be dealt as simple
SELECT queries and (b) DELETE and UPDATE statements can also be treated as
SELECT queries, possibly comprising a WHERE clause.

ETL activities, A. An ETL activity is modeled as a sequence of SQL views. An
ETL activity necessarily comprises: (a) one (or more) input view(s), populating the
input of the activity with data coming from another activity or a relation; (b) an output
view, over which the following activity will be defined; and (c) a sequence of views
defined over the input and/or previous, internal activity views.

ETL summary, S. An ETL summary is a directed acyclic graph Gs=(Vs,Es)

which acts as a zoomed-out variant of the full graph G [20]. Vs comprises of activities,
relations and views that participate in an ETL process. Es comprises the edges that
connect the providers and consumers. Conversely, to the overall graph where edges
denote dependency, edges in the ETL summary denote data provision. The graph of
the ETL summary can be topologically sorted and therefore, execution priorities can
be assigned to activities. Figure 1 depicts an ETL summary.

Components. A component is a sub-graph of the graph in one of the following
patterns: (a) a relation with its attributes and all its constraints, (b) a query with all its
attributes, functions and operands. Modules are disjoint and they are connected
through edges concerning foreign keys, map-select, where, and so on.

3. Adapting ETL workflows for evolution of sources

In this section, we formulate a set of rules that allow the identification of the impact
of changes to an ETL workflow and propose an automated way to respond to these
changes. Evolution changes may affect the software used in an ETL workflow (like
queries, stored procedures, and triggers) in two ways: (a) syntactically, a change may
evoke a compilation or execution failure during the execution of a piece of code; and
(b) semantically, a change may have an effect on the semantics of the software used.

The proposed rules annotate the graph representing the ETL workflow with actions
that should be taken when a change event occurs. The combination of events and
annotations determines the policy to be followed for the handling of a potential
change. The annotated graph is stored in a metadata repository and it is accessed from
a what-if analysis module. This module notifies the designer or the administrator on
the effect of a potential change and the extent to which the modification to the
existing code can be fully automated, in order to adapt to the change. To alleviate the
designer from the burden of manually annotating all graph constructs, a simple
extension of SQL with clauses concerning the evolution of important constructs is
proposed in the long version of this paper [21].

3.1 The general framework for schema evolution

The main mechanism towards handling schema evolution is the annotation of the
constructs of the graph (i.e., nodes and edges) with elements that facilitate what-if
analysis. Each such construct is enriched with policies that allow the designer to
specify the behavior of the annotated construct whenever events that alter the
database graph occur. The combination of an event with a policy determined by the
designer/administrator triggers the execution of the appropriate action that either
blocks the event or reshapes the graph to adapt to the proposed change.

The space of potential events comprises the Cartesian product of two subspaces.
The space of hypothetical actions (addition, deletion, and modification) over graph
constructs sustaining evolution changes (relations, attributes, and conditions). For
each of the above events, the administrator annotates graph constructs affected by the
event with policies that dictate the way they will regulate the change.

Algorithm Propagate changeS (PS)
Input: an ETL summary S over a
graph Go=(Vo,Eo) and an event e
Output: a graph Gn=(Vn,En)
Variables: a set of events E, and an
affected node A
Begin
 dps(S, Go, Gn, {e}, A)
End

dps(S, Gn, Go, E, A) {
 I = Ins_by_policy(affected(E))
 D = Del_by_policy(affected(E))
 Gn = Go – D ∪ I
 E = E–{e}∪action(affected(E))
 if consumer(A)≠nil
 for each consumer(A)
 dps(S,Gn,Go,E,consumer(A))
}

Fig. 3. Algorithm Propagate changeS (PS)

Three kinds of policies are defined: (a) propagate the change, meaning that the
graph must be reshaped to adjust to the new semantics incurred by the event; (b) block
the change, meaning that we want to retain the old semantics of the graph and the
hypothetical event must be blocked or, at least, constrained, through some rewriting
that preserves the old semantics [8, 14]; and (c) prompt the administrator to
interactively decide what will eventually happen. For the case of blocking, the
specific method that can be used is orthogonal to our approach, which can be
performed using any available method [8, 14].

Our framework prescribes the reaction of the parts of the system affected by a
hypothetical schema change based on their annotation with policies. The mechanism
that determines the reaction to a change is formally described by the algorithm
Propagate changeS (PS) in Figure 3. Given an ETL summary S over a graph Go and
an event e, PS produces a new ETL summary Gn, which has absorbed the changes.

Example. Consider the simple example query SELECT * FROM EMP as part of an
ETL activity. Assume that provider relation EMP is extended with a new attribute
PHONE. There are two possibilities:
- The * notation signifies the request for any attribute present in the schema of

relation EMP. In this case, the * shortcut can be treated as “return all the attributes
that EMP has, independently of which these attributes are”. Then, the query must
also retrieve the new attribute PHONE.

- The * notation acts as a macro for the particular attributes that the relation EMP
originally had. In this case, the addition to relation EMP should not be further
propagated to the query.

A naïve solution to a modification of the sources; e.g., addition of an attribute,
would be that an impact prediction system must trace all queries and views that are
potentially affected and ask the designer to decide upon which of them must be
modified to incorporate the extra attribute. We can do better by extending the current
modeling. For each element affected by the addition, we annotate its respective graph
construct (i.e., node, edges) with the policies mentioned before. According to the
policy defined on each construct the respective action is taken to correct the query.

Therefore, for the example event of an attribute addition, the policies defined on
the query and the actions taken according to each policy are:
- Propagate attribute addition. When an attribute is added to a relation appearing in

Fig. 4: Propagating addition of attribute PHONE

the FROM clause of the query, this addition should be reflected to the SELECT
clause of the query.

- Block attribute addition. The query is immune to the change: an addition to the
relation is ignored. In our example, the second case is assumed, i.e., the SELECT *
clause must be rewritten to SELECT A1,…,An without the newly added attribute.

- Prompt. In this case (default, for reasons of backwards compatibility), the designer
or the administrator must handle the impact of the change manually; similarly to
the way that currently happens in database systems.

The graph of the query SELECT * FROM EMP is shown in Figure 4. The annotation
of the FROM edge as propagating addition indicates that the addition of PHONE node
will be propagated to the query and the new attribute is included in the SELECT
clause of the query. If a FROM edge is not tagged with this additional information,
then a default case is assumed and the designer/administrator is prompted to decide.

4. Case Study

We have evaluated the effectiveness of our setting via the reverse engineering of real-
world ETL processes, extracted from an application of the Greek public sector. We
have monitored the changes that took place to the sources of the studied data
warehouse. In total, we have studied a set of 7 ETL processes, which operate on the
data warehouse. These processes extract information out of a set of 7 source tables,
namely S1 to S7 and 3 lookup tables, namely L1 to L3, and load it to 9 tables, namely
T1 to T9, stored in the data warehouse. The aforementioned scenarios comprise a total
number of 53 activities.

Table 1 illustrates the changes that occurred on the schemata of the source and
lookup tables, such as renaming source tables, renaming attributes of source tables,
adding and deleting attributes from source tables, modifying the domain of attributes
and lastly changing the primary key of lookup tables. After the application of these
changes to the sources of the ETL process, each affected activity was properly
readjusted (i.e., rewriting of queries belonging to activities) in order to adapt to the
changes. For each event, we counted: (a) the number of activities affected both
semantically and syntactically, (b) the number of activities, that have automatically
been adjusted by our framework (propagate or block policies) as opposed to those (c)
that required administrator’s intervention (i.e., a prompt policy).

Activities (53) Source Name Event Type
Affected Autom. adjusted Prompt %

S1 Rename 14 14 0 100%
 Rename Attributes 14 14 0 100%
 Add Attributes 34 31 3 91%
 Delete Attributes 19 18 1 95%
 Modify Attributes 18 18 0 100%

S4 Rename 4 4 0 100%
 Rename Attributes 4 4 0 100%
 Add Attributes 19 15 4 79%
 Delete Attributes 14 12 2 86%
 Modify Attributes 6 6 0 100%

S2 Rename 1 1 0 100%
 Rename Attributes 1 1 0 100%
 Add Attributes 4 4 0 100%
 Delete Attributes 4 3 1 75%

S3 Rename 1 1 0 100%
 Rename Attributes 1 1 0 100%

S5 Modify Attributes 3 3 0 100%
S6 NO_CHANGES 0 0 0 -
S7 Rename 1 1 0 100%
 Rename Attributes 1 1 0 100%

L1 NO_CHANGES 0 0 0 -
L2 Add Attributes 1 0 1 0%
L3 Add Attributes 9 0 9 0%
 Change PK 9 0 9 0%

Table 1: Analytic results

0

10

20

30

40

50

60

5 5 5 7 7 12 12

scenario size

A

ct
iv

it
ie

s

Affected
Adopted

0

2

4

6

8

10

12

14

16

1 2 3 4 5

complexity

#
ac

ti
vi

tie
s

Affected

Adopted

(a) (b)

Fig. 5: Evaluation of our method

Figure 5a depicts the correlation between the average number of affected activities
versus automatically adapted activities w.r.t. the total number of activities contained
in ETL scenarios. For ETL processes comprising a small number of activities most
affected activities are successfully adjusted to evolution changes. For longest ETL
processes, the number of automatically adjusted activities increases proportionally to
the number of affected activities. Furthermore, Table 1 shows that our framework can
successfully handle and propagate evolution events to most activities, by annotating
the queries included in them with policies. Activities requiring administrator’s
intervention are mainly activities executing complex joins, e.g., with lookup tables,
for which the administrator must decide upon the proper rewriting. Figure 5b presents

the average amount of automatically adapted activities w.r.t. the complexity of
activities. Complexity refers to the functionality of each activity; e.g., the type of
transformation it performs or the types of queries it contains. In general, our
framework handles efficiently simple activities. More complex activities, e.g.,
pivoting activities, are also adequately adjusted by our approach to evolution changes.

5. Related Work

Evolution. Related research work has studied in the past the problem of database
schema evolution. A survey on schema versioning and evolution is presented in [13],
whereas a categorization of the overall issues regarding evolution and change in data
management is presented in [12]. The problem of view adaptation after redefinition is
mainly investigated in [2, 5, 7], where changes in views definition are invoked by the
user and rewriting is used to keep the view consistent with the data sources. In [6], the
authors discuss versioning of star schemata, where histories of the schema are
retained and queries are chronologically adjusted to ask the correct schema. The
warehouse adaptation for SPJ views is studied in [2]. Also, the view synchronization
problem considers that views become invalid after schema changes in the underlying
base relations [8]. Our work in this paper builds mostly on the results of [8], by
extending it to incorporate attribute additions and the treatment of conditions. The
treatment of attribute deletions in [8] is quite elaborate; we confine to a restricted
version to avoid overcomplicating both the size of requested metadata and the
language extensions. Still, the [8] tags for deletions may be taken into consideration in
our method. Finally, the algorithms for rewriting views when the schemas of their
source data change (e.g., [2, 5]), are orthogonal to our approach. Thus, our approach
can be extended in the presence of new results on such algorithms.

Model mappings. Model management provides a generic framework for managing
model relationships, comprising three fundamental operators: match, diff, and merge
[3, 4]. Our proposal assigns semantics to the match operator for the case of model
evolution, where the source and target models of the mapping are the original and
resulting database graph, respectively, after evolution management has taken place. A
similar framework for the management of evolution has been proposed [14]. Still, the
model of [14] is more restrictive, in the sense that it is intended towards retaining the
original semantics of the queries. Our work is a larger framework that allows the
restructuring of the database graph (i.e., model) either towards keeping the original
semantics or towards its readjustment to the new semantics.

6. Conclusions and future work

In this paper, we have discussed the problem of performing what-if analysis for
changes that occur in the schema/structure of the data warehouse sources. We have
modeled software modules, queries, reports and views as (sequences of) queries in
SQL extended with functions. Queries and relations have uniformly been modeled as
a graph that is annotated with policies for the management of evolution events. We

have presented an algorithm that detects the parts of the graph that are affected by a
given change and highlights the way they are tuned to respond to it. Finally, we have
evaluated our approach over cases extracted from real world scenarios.

Future work may be directed towards many goals, with patterns of evolution
sequences being the most prominent one.

References
1. J. Banerjee et al. Semantics and implementation of schema evolution in object-oriented

databases. In SIGMOD, 1987.
2. Z. Bellahsene. Schema evolution in data warehouses. In Knowledge and Information

Systems 4(2), 2002.
3. P. Bernstein, A. Levy, R. Pottinger. A Vision for Management of Complex Models. In

SIGMOD Record 29(4), 2000.
4. P. Bernstein, E. Rahm. Data Warehouse Scenarios for Model Management. In ER, 2000.
5. A. Gupta, I. S. Mumick, J. Rao, K. A. Ross. Adapting materialized views after

redefinitions: Techniques and a performance study. In Information Systems (26), 2001.
6. M. Golfarelli, J. Lechtenbörger, S. Rizzi, G. Vossen, Schema Versioning in Data

Warehouses, ECDM 2004, Pages 415 – 428.
7. M. Mohania, D. Dong. Algorithms for adapting materialized views in data warehouses. In

CODAS, 1996.
8. A. Nica, A. J. Lee, E. A. Rundensteiner. The CSV algorithm for view synchronization in

evolvable large-scale information systems. In EDBT, 1998.
9. G. Papastefanatos, P. Vassiliadis, Y. Vassiliou. Adaptive Query Formulation to Handle

Database Evolution. In CAiSE Forum, 2006.
10. G. Papastefanatos, K. Kyzirakos, P. Vassiliadis, Y. Vassiliou. Hecataeus: A Framework

for Representing SQL Constructs as Graphs. In EMMSAD, 2005.
11. Y.G. Ra, E.A. Rundensteiner. A transparent object-oriented schema change approach

using view evolution. In ICDE, 1995.
12. J.F. Roddick et al. Evolution and Change in Data Management - Issues and Directions. In

SIGMOD Record 29(1), 2000.
13. J.F. Roddick. A survey of schema versioning Issues for database systems. In Information

Software Technology 37(7), 1995.
14. Y. Velegrakis, R.J. Miller, L. Popa. Preserving mapping consistency under schema

changes. In VLDB J. 13(3), 2004.
15. R. Zicari. A framework for schema update in an object-oriented database system. In ICDE, 1991.
16. M. Blaschka, C. Sapia, G. Höfling. On Schema Evolution in Multidimensional Databases.

In DaWaK, 1999.
17. C. Kaas, T. B. Pedersen, B. Rasmussen. Schema Evolution for Stars and Snowflakes. In

ICEIS, 2004.
18. M. Bouzeghoub, Z. Kedad: A Logical Model for Data Warehouse Design and Evolution.

In DaWaK, 2000.
19. M. Golfarelli, S. Rizzi, A. Proli: Designing what-if analysis: towards a methodology. In

DOLAP, 2006.
20. A. Simitsis, P. Vassiliadis, M. Terrovitis, S. Skiadopoulos: Graph-Based Modeling of ETL

Activities with Multi-level Transformations and Updates. In DaWaK 2005.
21. G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou: What-if Analysis for Data

Warehouse Evolution (Extended Version). Working Draft April 2007,
url: www.dbnet.ece.ntua.gr/~gpapas/Publications/ DataWarehouseEvolution-Extended.pdf

22. C.T. Liu, P.K. Chrysanthis, S.K. Chang. Database schema evolution through the
specification and maintenance of changes on entities and relationships. In ER, 1994.

