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Abstract. In this paper, we deal with the problem of performing what-if 
analysis for changes that occur in the schema/structure of the data warehouse 
sources. We abstract software modules, queries, reports and views as 
(sequences of) queries in SQL enriched with functions. Queries and relations 
are uniformly modeled as a graph that is annotated with policies for the 
management of evolution events. Given a change at an element of the graph, 
our method detects the parts of the graph that are affected by this change and 
indicates the way they are tuned to respond to it.  

1. Introduction 

Data warehouses are complicated software environments where data stemming from 
operational sources are extracted, transformed, cleansed and eventually loaded in fact 
or dimension tables in the data warehouse. Once this task has been successfully 
completed, further aggregations of the loaded data are also computed and stored in 
data marts, reports, spreadsheets, and other formats. The whole environment involves 
a very complicated architecture, where each module depends upon its data providers 
to fulfill its task. This strong flavor of inter-module dependency makes the problem of 
evolution very important in a data warehouse environment.  

Figure 1 depicts a simplified version of an Extraction-Transformation-Loading 
(ETL) process. Data are extracted from sources and they are transferred to the Data 
Staging Area (DSA), where their contents and structure are modified; example 
transformations include joins, addition of new attributes produced via functions, and 
so on. Finally, the results are stored in the data warehouse (DW) either in fact or 
dimension tables and materialized views. During the lifecycle of the DW it is possible 
that several counterparts of the ETL process may be evolved. For instance, assume 
that an attribute is deleted from the underlying database S1 or it is added to the source 
relation S2. Such changes affect the entire workflow, possibly all the way to the 
warehouse (tables T1 and T2), along with any reports over the warehouse tables 
(abstracted as queries over view V3).  

Research has extensively dealt with the problem of schema evolution, in object-
oriented databases [ 1,  11,  15], ER diagrams [ 22], data warehouses [ 6,  16,  17,  18] and 
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Fig. 1: A simple ETL workflow 

materialized views [ 2,  5,  7,  8]. However, to the best of our knowledge, there is no 
global framework for the management of evolution in the described setting. 

In this paper, we provide a general mechanism for performing what-if analysis [ 19] 
for potential changes of data source configurations. We introduce a graph model that 
uniformly models relations, queries, views, ETL activities, and their significant 
properties (e.g., conditions). Apart from the simple task of capturing the semantics of 
a database system, the graph model allows us to predict the impact of a change over 
the system. We provide a framework for annotating the database graph with policies 
concerning the behavior of nodes in the presence of hypothetical changes. In addition, 
we provide a set of rules that dictate the proper actions, when additions, deletions or 
updates are performed to relations, attributes, and conditions. (All the above concepts 
are treated as first-class citizens in our model.)  Assuming that a graph construct is 
annotated with a policy for a particular event (e.g., an activity node is tuned to deny 
deletions of its provider attributes), the proposed framework has the following 
features: (a) it performs the identification of the affected subgraph; and (b) if the 
policy is appropriate, it automates the readjustment of the graph to fit the new 
semantics imposed by the change. Finally, we experimentally assess our proposal. 

Outline. Section 2 presents the graph model for databases. Section 3 proposes a 
framework of graph annotations and readjustment automation for database evolution. 
Section 4 presents the results of a case study for our framework. Section 5 discusses 
related work. Finally, Section 6 concludes and provides insights for future work.  

2. Graph-based modeling of ETL processes 

In this section, we propose a graph modeling technique that uniformly covers 
relational tables, views, ETL activities, database constraints, and SQL queries as first 
class citizens. The proposed technique provides an overall picture not only for the 
actual source database schema but also for the ETL workflow, since queries that 
represent the functionality of the ETL activities are incorporated in the model.  

The proposed modeling technique represents all the aforementioned database parts 
as a directed graph G=(V,E). The nodes of the graph represent the entities of our 
model, where the edges represent the relationships among these entities. Preliminary 
versions of this model have been presented in our previous work [ 9, 10]. 



The constructs that we consider are classified as elementary, including relations, 
conditions and queries/views and composite, including ETL activities and ETL 
processes. Composite elements are combinations of elementary ones. 

Relations, R. Each relation R(Ω1,Ω2,…,Ωn) in the database schema can be either a 
table or a file (it can be considered as an external table). A relation is represented as a 
directed graph, which comprises: (a) a relation node, R, representing the relation 
schema; (b) n attribute nodes, Ωi∈Ω, i=1..n, one for each of the attributes; and (c) n 
schema relationships, ES, directing from the relation node towards the attribute nodes, 
indicating that the attribute belongs to the relation.  

Conditions, C. Conditions refer both to selection conditions of queries and views, 
and constraints of the database schema. We consider three classes of atomic 
conditions that are composed through the appropriate usage of an operator op 
belonging to the set of classic binary operators, Op (e.g., <, >, =, ≤, ≥, !=, IN, EXISTS, 
ANY): (a) Ω op constant; (b) Ω op Ω’; and (c) Ω op Q. (Ω, Ω’ are attributes of the 
underlying relations and Q is a query). A condition node is used for the representation 
of the condition. The node is tagged with the respective operator and it is connected to 
the operand nodes of the conjunct clause through the respective operand 
relationships, O. Composite conditions are easily constructed by tagging the condition 
node with a Boolean operator (e.g., AND or OR) and the respective edges, to the 
conditions composing the composite condition.  

Queries, Q. The graph representation of a Select - Project - Join - Group By (SPJG) 
query involves a query node representing the query and attribute nodes corresponding 
to the schema of the query. Thus, the query graph is a directed graph connecting the 
query node with all its schema attributes, through schema relationships. In order to 
represent the relationship between the query graph and the underlying relations, the 
query is resolved into its essential parts: SELECT, FROM, WHERE, GROUP BY, HAVING, 
and ORDER BY, each of which is eventually mapped to a subgraph.  

Select part. Each query is assumed to own a schema that comprises the attributes 
appearing in the SELECT clause, either with their original or alias names. In this 
context, the SELECT part of the query maps the respective attributes of the involved 
relations to the attributes of the query schema through map-select relationships, EM, 
directing from the query attributes towards the relation attributes. 

From part. The FROM clause of a query can be regarded as the relationship 
between the query and the relations involved in this query. Thus, the relations 
included in the FROM part are combined with the query node through from 
relationships, EF, directing from the query node towards the relation nodes. 

Where and Having parts. We assume the WHERE and/or HAVING clauses of a query 
in conjunctive normal form. Thus, we introduce two directed edges, namely where 
relationships, Ew, and having relationships, EH, both starting from a query node 
towards an operator node corresponding to the conjunction of the highest level. 

Group and Order By part. For the representation of aggregate queries, two special 
purpose nodes are employed: (a) a new node denoted as GB∈GB, to capture the set of 
attributes acting as the aggregators; and (b) one node per aggregate function labeled 
with the name of the employed aggregate function; e.g., COUNT, SUM, MIN. For the 
aggregators, we use edges directing from the query node towards the GB node that are 
labeled <group-by>, indicating group-by relationships, EG. The GB node is connected 



 

Fig. 2. Graph of an example aggregate query annotated with policies [ 10] 

with each of the aggregators through an edge tagged also as <group-by>, directing 
from the GB node towards the respective attributes. These edges are additionally 
tagged according to the order of the aggregators; we use an identifier i to represent 
the i-th aggregator. Moreover, for every aggregated attribute in the query schema, 
there exists an edge directing from this attribute towards the aggregate function node 
as well as an edge from the function node towards the respective relation attribute. 
Both edges are labeled <map-select> and belong to EM, as these relationships 
indicate the mapping of the query attribute to the corresponding relation attribute 
through the aggregate function node. The representation of the ORDER BY clause of 
the query is performed similarly, whereas nested queries and functions used in queries 
are also incorporated in our model [ 21]. 

Views, V. Views are considered either as queries or relations (materialized views), 
thus, V ⊆ R∪Q. 

Figure 2 depicts the proposed graph representation for an example aggregate query. 
Q:  SELECT EMP.Emp# as Emp#, Sum(WORKS.Hours) as T_Hours 

   FROM   EMP, WORKS 
   WHERE EMP.Emp#=WORKS.Emp# 

            GROUP BY EMP.Emp# 

As far as modification queries are concerned, their behavior with respect to 
adaptation to changes in the database schema can be captured by SELECT queries. For 
lack of space, we simply mention that (a) INSERT statements can be dealt as simple 
SELECT queries and (b) DELETE and UPDATE statements can also be treated as 
SELECT queries, possibly comprising a WHERE clause. 

ETL activities, A. An ETL activity is modeled as a sequence of SQL views. An 
ETL activity necessarily comprises: (a) one (or more) input view(s), populating the 
input of the activity with data coming from another activity or a relation; (b) an output 
view, over which the following activity will be defined; and (c) a sequence of views 
defined over the input and/or previous, internal activity views. 

ETL summary, S. An ETL summary is a directed acyclic graph Gs=(Vs,Es) 



which acts as a zoomed-out variant of the full graph G [ 20]. Vs comprises of activities, 
relations and views that participate in an ETL process. Es comprises the edges that 
connect the providers and consumers. Conversely, to the overall graph where edges 
denote dependency, edges in the ETL summary denote data provision. The graph of 
the ETL summary can be topologically sorted and therefore, execution priorities can 
be assigned to activities. Figure 1 depicts an ETL summary. 

Components. A component is a sub-graph of the graph in one of the following 
patterns: (a) a relation with its attributes and all its constraints, (b) a query with all its 
attributes, functions and operands. Modules are disjoint and they are connected 
through edges concerning foreign keys, map-select, where, and so on.  

3. Adapting ETL workflows for evolution of sources 

In this section, we formulate a set of rules that allow the identification of the impact 
of changes to an ETL workflow and propose an automated way to respond to these 
changes. Evolution changes may affect the software used in an ETL workflow (like 
queries, stored procedures, and triggers) in two ways: (a) syntactically, a change may 
evoke a compilation or execution failure during the execution of a piece of code; and 
(b) semantically, a change may have an effect on the semantics of the software used.  

The proposed rules annotate the graph representing the ETL workflow with actions 
that should be taken when a change event occurs. The combination of events and 
annotations determines the policy to be followed for the handling of a potential 
change. The annotated graph is stored in a metadata repository and it is accessed from 
a what-if analysis module. This module notifies the designer or the administrator on 
the effect of a potential change and the extent to which the modification to the 
existing code can be fully automated, in order to adapt to the change. To alleviate the 
designer from the burden of manually annotating all graph constructs, a simple 
extension of SQL with clauses concerning the evolution of important constructs is 
proposed in the long version of this paper [ 21]. 

3.1 The general framework for schema evolution 

The main mechanism towards handling schema evolution is the annotation of the 
constructs of the graph (i.e., nodes and edges) with elements that facilitate what-if 
analysis. Each such construct is enriched with policies that allow the designer to 
specify the behavior of the annotated construct whenever events that alter the 
database graph occur. The combination of an event with a policy determined by the 
designer/administrator triggers the execution of the appropriate action that either 
blocks the event or reshapes the graph to adapt to the proposed change. 

The space of potential events comprises the Cartesian product of two subspaces. 
The space of hypothetical actions (addition, deletion, and modification) over graph 
constructs sustaining evolution changes (relations, attributes, and conditions). For 
each of the above events, the administrator annotates graph constructs affected by the 
event with policies that dictate the way they will regulate the change.  



Algorithm Propagate changeS (PS) 
Input: an ETL summary S over a 
graph Go=(Vo,Eo) and an event e 
Output: a graph Gn=(Vn,En) 
Variables: a set of events E, and an 
affected node A  
Begin 
  dps(S, Go, Gn, {e}, A) 
End 

dps(S, Gn, Go, E, A) { 
  I = Ins_by_policy(affected(E)) 
  D = Del_by_policy(affected(E)) 
  Gn = Go – D ∪ I 
  E = E–{e}∪action(affected(E)) 
  if consumer(A)≠nil  
    for each consumer(A) 
      dps(S,Gn,Go,E,consumer(A)) 
} 

Fig. 3. Algorithm Propagate changeS (PS) 

Three kinds of policies are defined: (a) propagate the change, meaning that the 
graph must be reshaped to adjust to the new semantics incurred by the event; (b) block 
the change, meaning that we want to retain the old semantics of the graph and the 
hypothetical event must be blocked or, at least, constrained, through some rewriting 
that preserves the old semantics [ 8,  14]; and (c) prompt the administrator to 
interactively decide what will eventually happen. For the case of blocking, the 
specific method that can be used is orthogonal to our approach, which can be 
performed using any available method [ 8,  14]. 

Our framework prescribes the reaction of the parts of the system affected by a 
hypothetical schema change based on their annotation with policies. The mechanism 
that determines the reaction to a change is formally described by the algorithm 
Propagate changeS (PS) in Figure 3. Given an ETL summary S over a graph Go and 
an event e, PS produces a new ETL summary Gn, which has absorbed the changes. 

Example. Consider the simple example query SELECT * FROM EMP as part of an 
ETL activity. Assume that provider relation EMP is extended with a new attribute 
PHONE. There are two possibilities: 
- The * notation signifies the request for any attribute present in the schema of 

relation EMP. In this case, the * shortcut can be treated as “return all the attributes 
that EMP has, independently of which these attributes are”. Then, the query must 
also retrieve the new attribute PHONE. 

- The * notation acts as a macro for the particular attributes that the relation EMP 
originally had. In this case, the addition to relation EMP should not be further 
propagated to the query. 

A naïve solution to a modification of the sources; e.g., addition of an attribute, 
would be that an impact prediction system must trace all queries and views that are 
potentially affected and ask the designer to decide upon which of them must be 
modified to incorporate the extra attribute. We can do better by extending the current 
modeling. For each element affected by the addition, we annotate its respective graph 
construct (i.e., node, edges) with the policies mentioned before. According to the 
policy defined on each construct the respective action is taken to correct the query.  

Therefore, for the example event of an attribute addition, the policies defined on 
the query and the actions taken according to each policy are:  
- Propagate attribute addition. When an attribute is added to a relation appearing in 



 

Fig. 4:  Propagating addition of attribute PHONE 

the FROM clause of the query, this addition should be reflected to the SELECT 
clause of the query.  

- Block attribute addition. The query is immune to the change: an addition to the 
relation is ignored. In our example, the second case is assumed, i.e., the SELECT * 
clause must be rewritten to SELECT A1,…,An without the newly added attribute.  

- Prompt. In this case (default, for reasons of backwards compatibility), the designer 
or the administrator must handle the impact of the change manually; similarly to 
the way that currently happens in database systems. 

The graph of the query SELECT * FROM EMP is shown in Figure 4. The annotation 
of the FROM edge as propagating addition indicates that the addition of PHONE node 
will be propagated to the query and the new attribute is included in the SELECT 
clause of the query. If a FROM edge is not tagged with this additional information, 
then a default case is assumed and the designer/administrator is prompted to decide. 

4. Case Study 

We have evaluated the effectiveness of our setting via the reverse engineering of real-
world ETL processes, extracted from an application of the Greek public sector. We 
have monitored the changes that took place to the sources of the studied data 
warehouse. In total, we have studied a set of 7 ETL processes, which operate on the 
data warehouse. These processes extract information out of a set of 7 source tables, 
namely S1 to S7 and 3 lookup tables, namely L1 to L3, and load it to 9 tables, namely 
T1 to T9, stored in the data warehouse. The aforementioned scenarios comprise a total 
number of 53 activities. 

Table 1 illustrates the changes that occurred on the schemata of the source and 
lookup tables, such as renaming source tables, renaming attributes of source tables, 
adding and deleting attributes from source tables, modifying the domain of attributes 
and lastly changing the primary key of lookup tables. After the application of these 
changes to the sources of the ETL process, each affected activity was properly 
readjusted (i.e., rewriting of queries belonging to activities) in order to adapt to the 
changes. For each event, we counted: (a) the number of activities affected both 
semantically and syntactically, (b) the number of activities, that have automatically 
been adjusted by our framework (propagate or block policies) as opposed to those (c) 
that required administrator’s intervention (i.e., a prompt policy). 

 



Activities (53) Source Name Event Type 
Affected Autom. adjusted Prompt % 

S1 Rename  14 14 0 100% 
 Rename Attributes 14 14 0 100% 
 Add Attributes 34 31 3 91% 
 Delete Attributes 19 18 1 95% 
 Modify Attributes 18 18 0 100% 

S4 Rename 4 4 0 100% 
 Rename Attributes 4 4 0 100% 
 Add Attributes 19 15 4 79% 
 Delete Attributes 14 12 2 86% 
 Modify Attributes 6 6 0 100% 

S2 Rename 1 1 0 100% 
 Rename Attributes 1 1 0 100% 
 Add Attributes 4 4 0 100% 
 Delete Attributes 4 3 1 75% 

S3 Rename 1 1 0 100% 
 Rename Attributes 1 1 0 100% 

S5 Modify Attributes 3 3 0 100% 
S6 NO_CHANGES 0 0 0 - 
S7 Rename 1 1 0 100% 
 Rename Attributes 1 1 0 100% 

L1 NO_CHANGES 0 0 0 - 
L2 Add Attributes 1 0 1 0% 
L3 Add Attributes 9 0 9 0% 
 Change PK 9 0 9 0% 

Table 1: Analytic results 
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Fig. 5: Evaluation of our method 

Figure 5a depicts the correlation between the average number of affected activities 
versus automatically adapted activities w.r.t. the total number of activities contained 
in ETL scenarios. For ETL processes comprising a small number of activities most 
affected activities are successfully adjusted to evolution changes. For longest ETL 
processes, the number of automatically adjusted activities increases proportionally to 
the number of affected activities. Furthermore, Table 1 shows that our framework can 
successfully handle and propagate evolution events to most activities, by annotating 
the queries included in them with policies. Activities requiring administrator’s 
intervention are mainly activities executing complex joins, e.g., with lookup tables, 
for which the administrator must decide upon the proper rewriting. Figure 5b presents 



the average amount of automatically adapted activities w.r.t. the complexity of 
activities. Complexity refers to the functionality of each activity; e.g., the type of 
transformation it performs or the types of queries it contains. In general, our 
framework handles efficiently simple activities. More complex activities, e.g., 
pivoting activities, are also adequately adjusted by our approach to evolution changes. 

5. Related Work 

Evolution. Related research work has studied in the past the problem of database 
schema evolution. A survey on schema versioning and evolution is presented in [ 13], 
whereas a categorization of the overall issues regarding evolution and change in data 
management is presented in [ 12]. The problem of view adaptation after redefinition is 
mainly investigated in [ 2,  5,  7], where changes in views definition are invoked by the 
user and rewriting is used to keep the view consistent with the data sources. In [ 6], the 
authors discuss versioning of star schemata, where histories of the schema are 
retained and queries are chronologically adjusted to ask the correct schema. The 
warehouse adaptation for SPJ views is studied in [ 2]. Also, the view synchronization 
problem considers that views become invalid after schema changes in the underlying 
base relations [ 8]. Our work in this paper builds mostly on the results of [ 8], by 
extending it to incorporate attribute additions and the treatment of conditions. The 
treatment of attribute deletions in [ 8] is quite elaborate; we confine to a restricted 
version to avoid overcomplicating both the size of requested metadata and the 
language extensions. Still, the [ 8] tags for deletions may be taken into consideration in 
our method. Finally, the algorithms for rewriting views when the schemas of their 
source data change (e.g., [ 2,  5]), are orthogonal to our approach. Thus, our approach 
can be extended in the presence of new results on such algorithms.  

Model mappings. Model management provides a generic framework for managing 
model relationships, comprising three fundamental operators: match, diff, and merge 
[ 3, 4]. Our proposal assigns semantics to the match operator for the case of model 
evolution, where the source and target models of the mapping are the original and 
resulting database graph, respectively, after evolution management has taken place. A 
similar framework for the management of evolution has been proposed [ 14]. Still, the 
model of [ 14] is more restrictive, in the sense that it is intended towards retaining the 
original semantics of the queries. Our work is a larger framework that allows the 
restructuring of the database graph (i.e., model) either towards keeping the original 
semantics or towards its readjustment to the new semantics.  

6. Conclusions and future work 

In this paper, we have discussed the problem of performing what-if analysis for 
changes that occur in the schema/structure of the data warehouse sources. We have 
modeled software modules, queries, reports and views as (sequences of) queries in 
SQL extended with functions. Queries and relations have uniformly been modeled as 
a graph that is annotated with policies for the management of evolution events. We 



have presented an algorithm that detects the parts of the graph that are affected by a 
given change and highlights the way they are tuned to respond to it. Finally, we have 
evaluated our approach over cases extracted from real world scenarios.  

Future work may be directed towards many goals, with patterns of evolution 
sequences being the most prominent one. 
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