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Communicated by Cesar E. Silva

A blender is a compact, invariant set on which a diffeo-
morphism has a certain behavior. This behavior forces
topologically “thin” sets to intersect in a robust way, pro-
ducing rich dynamics. The term “blender” describes its
function: to blend together stable and unstable manifolds.
Blenders have been used to construct diffeomorphisms
with surprising properties and have played an important
role in the classification of smooth dynamical systems.

One of the original applications of blenders is also
one of the more striking. A diffeomorphism 𝑔 of a
compact manifold is robustly transitive if there exists
a point 𝑥 whose orbit {𝑔𝑛(𝑥) ∶ 𝑛 ≥ 0} is dense in the
manifold, and moreover this property persists when 𝑔
is slightly perturbed. Until the 1990s there were no
known robustly transitive diffeomorphisms in the isotopy
class of the identity map on any manifold. Bonatti and
Díaz (Ann. of Math., 1996)1 used blenders to construct
robustly transitive diffeomorphisms as perturbations of
the identity map on certain 3-manifolds.

To construct a blender one typically starts with a proto-
blender ; an example is the map 𝑓 pictured in Figure 1.
The function 𝑓 maps each of the two rectangles, 𝑅1 and𝑅2, affinely onto the square 𝑆 and has the property that
the vertical projections of 𝑅1 and 𝑅2 onto the horizontal
direction overlap. Each rectangle contains a unique fixed
point for 𝑓.
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Figure 1. An example of a proto-blender. The map 𝑓 is
defined on the union of the two rectangles, 𝑅1 and 𝑅2,
in the square 𝑆; 𝑓 sends each 𝑅𝑖 onto the entire
square 𝑆 affinely, respecting the horizontal and
vertical directions, with the horizontal expansion
factor less than 2. Note that 𝑓 fixes a unique point in
each rectangle 𝑅𝑖.

The compact setΩ = ⋂𝑛≥0 𝑓−𝑛𝑆 is 𝑓-invariant,meaning𝑓(Ω) = Ω, and is characterized as the set of points in 𝑆 on
which 𝑓 can be iterated infinitely many times: 𝑥 ∈ Ω if and
only if 𝑓𝑛(𝑥) ∈ 𝑆 for all 𝑛 ≥ 0. Ω is a Cantor set, obtained
by intersecting all preimages 𝑓−𝑖(𝑆) of the square, which
nest in a regular pattern, as in Figure 2.

Any vertical line ℓ between the fixed points in𝑅1 and in𝑅2 will meet Ω. To prove this, it is enough to see that for
every 𝑖 the vertical projection of the set 𝑓−𝑖(𝑆) (consisting
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Figure 2. The invariant Cantor set Ω produced by the
proto-blender 𝑓 is the nested intersection of
preimages of 𝑆 under 𝑓. Any vertical line segment ℓ
close to the center of the square intersects Ω in at
least one point. The line segment can be replaced by
a segment with nearly vertical slope or even a
smooth curve nearly tangent to the vertical direction.

of 2𝑖 horizontal rectangles) onto the horizontal is an
interval. This can be checked inductively, observing that
the projection of 𝑓−𝑖−1(𝑆) is the union of two rescaled
copies of the projection of 𝑓−𝑖(𝑆), which overlap.

A more careful inspection of this proof reveals that
the intersection is robust in two senses: First, the line ℓ
can be replaced by a line whose slope is close to vertical
or even by a 𝐶1 curve whose tangent vectors are close
to vertical; second, the map 𝑓 can be replaced by any 𝐶1
map ̂𝑓 whose derivative is close to that of 𝑓. Such an ̂𝑓 is
called a perturbation of 𝑓.

The (topological) dimension of the Cantor set Ω is 0,
the dimension of ℓ is 1, the dimension of the square is 2,
and 0+1 < 2. From a topological point of view, one would
not expect these sets to intersect each other. But from a

Figure 3. (a) A transverse homoclinic intersection of
stable and unstable manifolds, first discovered by
Poincaré in his study of the 3-body problem. (b) A
horseshoe Λ produced by a pair of transverse hetero-
clinic points 𝑥 and 𝑦. Every point in the Cantor set Λ
can be approximated arbitrarily well both by a peri-
odic point and by a point whose orbit is dense in Λ.

metric point of view, the fractal set Ω, when viewed along
nearly vertical directions, appears to be 1-dimensional,
allowing Ω to intersect a vertical line robustly. If the
rectangles 𝑅1 and 𝑅2 had disjoint projections, the proto-
blender property would be destroyed.

This type of picture is embedded in a variety of smooth
dynamical systems, where it is a robust mechanism for
chaos. The search for robust mechanisms for chaotic dy-
namics has a long history, tracing back to Henri Poincaré’s
discovery of chaotic motion in the three-body problem
of celestial mechanics. Figure 3(a) depicts the mechanism
behind Poincaré’s discovery, a local diffeomorphism of
the plane with a saddle fixed point 𝑝 and another point𝑥 whose orbit converges to 𝑝 both under forward and
backward iterations (that is, under both the map and
its inverse). Meeting at 𝑝 are two smooth curves 𝑊𝑠(𝑝)
and𝑊𝑢(𝑝), the stable and unstable manifolds at 𝑝, respec-
tively. 𝑊𝑠(𝑝) is the set of points whose forward orbit
converges to 𝑝, and 𝑊𝑢(𝑝) is the set of points whose
backward orbit converges to 𝑝.

In Figure 3(a), the intersection of 𝑊𝑠(𝑝) and 𝑊𝑢(𝑝) is
transverse at 𝑥: the tangent directions to𝑊𝑠(𝑝) and𝑊𝑢(𝑝)
at 𝑥 span the set of all directions emanating from 𝑥—the
tangent space at 𝑥 to the ambient manifold, in this case
the plane. The point 𝑥 is called a transverse homoclinic
point for 𝑝. In Figure 3(b) a slight variation is depicted:
here there are two periodic saddles, 𝑝 and 𝑞, such that𝑊𝑠(𝑝) and 𝑊𝑢(𝑞) intersect transversely at a point 𝑥, and𝑊𝑢(𝑝) and 𝑊𝑠(𝑞) intersect transversely at another point𝑦. The points 𝑥 and 𝑦 are called transverse heteroclinic
points, and they are arranged in a transverse heteroclinic
cycle.

In the classification of the so-called Axiom A diffeo-
morphisms, carried out by Stephen Smale in the 1960s,
transverse homoclinic and heteroclinic points play a cen-
tral role. Any transverse homoclinic point or heteroclinic
cycle for a diffeomorphism is contained in a special Can-
tor setΛ called a horseshoe, an invariant compact set with
strongly chaotic (or unpredictable) dynamical properties
(see [2] for a discussion). Two notable properties of a
horseshoe Λ are:
(1) Every point in Λ can be approximated arbitrarily

well by a periodic point in Λ.
(2) There is a point in Λ whose orbit is dense in Λ.
Horseshoes and periodic saddles are both examples

of hyperbolic sets: a compact invariant set Λ for a diffeo-
morphism 𝑔 is hyperbolic if at every point in Λ there are
transverse stableandunstablemanifolds𝑊𝑠(𝑥)and𝑊𝑢(𝑥)
with 𝑔(𝑊𝑠(𝑥)) = 𝑊𝑠(𝑔(𝑥)) and 𝑔(𝑊𝑢(𝑥)) = 𝑊𝑢(𝑔(𝑥)). For
a large class of diffeomorphisms known as Axiom A sys-
tems, Smale proved that the set of recurrent points can
be decomposed into a disjoint union of finitely many
hyperbolic sets on which (1) and (2) above hold. This
theory relies on the most basic property of transverse in-
tersections, first investigated by René Thom: robustness.
A transverse intersection of submanifolds cannot be de-
stroyed by a small perturbation of the manifolds; in the
dynamical setting, a transverse intersection of stable and
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Figure 4. (a) Transverse cycle. (b) Nontransverse
cycle.

unstable manifolds of two saddles cannot be destroyed
by perturbing the diffeomorphism.

ClassifyingAxiomA systemswas just the beginning. To
illustrate the limitations of the existing theory, Abraham
and Smale constructed diffeomorphisms that are robustly
nonhyperbolic. These examples opened up the door for
understanding a broader class of dynamics, and blenders
have turned out to be a key player in this emerging
classification.

Before constructingblenders and robustnonhyperbolic
dynamics, we first illustrate (nonrobust) dynamics of
nonhyperbolic type. To do so, let’s return to our example
of twoperiodic saddles𝑝 and𝑞, but this time in dimension3, where saddle points can have stable and unstable
manifolds of dimension either 1 or 2. Suppose 𝑝 and 𝑞
are two fixed points in dimension 3 whose stable and
unstable manifolds intersect. If, as in Figure 4(a), the
stable manifolds of 𝑝 and 𝑞 have the same dimension,
then both intersections can be transverse,1 producing a
horseshoe.

But quite another thing happens if the dimensions of
the stable manifolds do not match up: the intersection
between the 2-dimensional manifolds may be transverse,
but the other, between 1-dimensional manifolds, is never
transverse and thus cannot be robust. In the case depicted
in Figure 4(b), the orbit of the point 𝑥 accumulates
on 𝑞 in the past and on 𝑝 in the future. The point𝑥 cannot be contained in a hyperbolic set, because𝑊𝑠(𝑝) and 𝑊𝑠(𝑞) have different dimensions. On the
other hand, this nonhyperbolicity is not robust, because
this nontransverse intersection is easily destroyed by
perturbation.

To obtain a robustly nonhyperbolic example, we will
replace the point 𝑞 in Figure 4(b) by a cube𝑄 containing a
special type of horseshoe Λ called a blender. To produceΛ, we use the proto-blender 𝑓∶ 𝑅1∪𝑅2 → 𝑆 of Figure 1. The
map 𝑓 has only expanding directions and is not injective;
indeed, it has precisely two inverse branches, 𝑓−11 ∶ 𝑆 → 𝑅1
and 𝑓−12 ∶ 𝑆 → 𝑅2. In dimension three, we can embed these
inverse branches into a local diffeomorphism by adding a
third, expanded direction, as detailed in Figure 5, where

1The intersections are generically transverse in this case, a conse-
quence of the Kupka-Smale Theorem.

the cube 𝑄 is stretched and folded across itself by a local
diffeomorphism 𝑔.

The horseshoe Λ in Figure 5 is precisely the set of
points whose orbits remain in the future and in the past
in𝑄. The set𝑊𝑢(Λ) of points in the cube that accumulate
on Λ in the past is the cartesian product of the Cantor setΩ with segments parallel to the third, expanded direction.𝑊𝑢(Λ) is the analogue of the unstable manifold of a
saddle, but it is a fractal object rather than a smooth
submanifold.

The set Λ is an example of a blender, and its main
geometric property is that any vertical curve crossing 𝑄
close enough to the center intersects 𝑊𝑢(Λ). In other
words, this blender is a horseshoe whose unstable set
behaves like a surface even though its topological dimen-
sion is one. This property is robust. While the definition
of blender is still evolving as new constructions arise, a
working definition is: A blender is a compact hyperbolic
set whose unstable set has dimension strictly less than one
would predict by looking at its intersection with families of
submanifolds.

Figure 6 illustrates robust nonhyperbolic dynamics
produced by combining Figure 4(b) with a blender. The
connection between the stable manifold of 𝑝 and 𝑊𝑢(Λ)
cannot be destroyed by perturbation, and the transverse
intersection between the unstable manifold of 𝑝 and the
stable manifold of a point 𝑧 ∈ Λ is also robust. The orbit
of the point 𝑧 is contained in a compact invariant set with

Figure 5. Constructing a blender, a type of horseshoe
with a proto-blender built into its contracting
directions. In the cube 𝑄 the local diffeomorphism 𝑔
contracts the segments in the axial directions parallel
to the front face (the 𝑥𝑧-plane), elongates the cube
into the third axial direction (the 𝑦-axis), and then
folds this elongated piece across the original cube 𝑄,
as pictured. Each slice of 𝑄∩𝑔(𝑄) parallel to the𝑥𝑧-plane resembles exactly the picture of 𝑅1 ∪𝑅2 in
the square 𝑆. The restriction of 𝑔−1 to these
rectangles in this slice is just a copy of the
proto-blender 𝑓 from Figure 1, whose image is
another 𝑥𝑧-slice of 𝑄.
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Figure 6. Replacing the periodic point 𝑞 in Figure 4(b)
with a cube 𝑄 containing the blender of Figure 5. The
orbits of the points 𝑥 and 𝑦 accumulate both on the
saddle 𝑝 and the blender horseshoe Λ, producing an
invariant subset of the dynamics with complicated,
nonhyperbolic behavior.

complicated dynamics, in particular satisfying property
(1) above.

Blenders are not just a tool to produce robust non-
hyperbolic dynamics; they are in fact one of the two
conjectured mechanisms responsible for robust non-
hyperbolicity, the other being homoclinic tangencies.
This is because, in contrast to the original Abraham-
Smale construction, blenders appear in a natural way in
local bifurcations. Indeed, whenever a diffeomorphism
has two saddles 𝑝 and 𝑞 with different stable dimensions
and they are dynamically related as in Figure 4(b), there
is a perturbation that produces a blender.
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