
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is a chiral 2d CFT? And what does it have to do with
extremal black holes?

Citation for published version:
Balasubramanian, V, de Boer, J, M. Sheikh-Jabbari, M & Simon, J 2010, 'What is a chiral 2d CFT? And
what does it have to do with extremal black holes?', Journal of High Energy Physics, vol. 2010, no. 2, 17.
https://doi.org/10.1007/JHEP02(2010)017

Digital Object Identifier (DOI):
10.1007/JHEP02(2010)017

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of High Energy Physics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1007/JHEP02(2010)017
https://doi.org/10.1007/JHEP02(2010)017
https://www.research.ed.ac.uk/en/publications/e1c65c84-a373-4187-94b8-431d7fda320b


ar
X

iv
:0

90
6.

32
72

v2
  [

he
p-

th
] 

 1
7 

D
ec

 2
00

9

arXiv:0906.3272

IPM/P-2009-022

UPR-T-1209

What is a chiral 2d CFT?

And what does it have to do with extremal black holes?

Vijay Balasubramanian1,a, Jan de Boer2,b, M.M. Sheikh-Jabbari3,c,d

and Joan Simón4,e,f

a David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
b Instituut voor Theoretische Fysica, Valckenierstraat 65,

1018XE Amsterdam, The Netherlands
c School of Physics, Institute for Research in Fundamental Sciences (IPM) ,

P.O.Box 19395-5531, Tehran, Iran
d The Abdus Salam ICTP, Strada Costiera 11, 34014, Trieste, ITALY

e School of Mathematics and Maxwell Institute for Mathematical Sciences,
King’s Buildings, Edinburgh EH9 3JZ, United Kingdom

f Kavli Institute for Theoretical Physics,
University of California, Santa Barbara CA 93106-4030, USA

Abstract

The near horizon limit of the extremal BTZ black hole is a “self-dual orbifold” of AdS3.
This geometry has a null circle on its boundary, and thus the dual field theory is a
Discrete Light Cone Quantized (DLCQ) two dimensional CFT. The same geometry
can be compactified to two dimensions giving AdS2 with a constant electric field. The
kinematics of the DLCQ show that in a consistent quantum theory of gravity in these
backgrounds there can be no dynamics in AdS2, which is consistent with older ideas
about instabilities in this space. We show how the necessary boundary conditions
eliminating AdS2 fluctuations can be implemented, leaving one copy of a Virasoro
algebra as the asymptotic symmetry group. Our considerations clarify some aspects of
the chiral CFTs appearing in proposed dual descriptions of the near-horizon degrees
of freedom of extremal black holes.
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1 Introduction

In the vicinity of their horizons, extremal black holes in many dimensions, both in flat and
anti-de Sitter spaces, contain an AdS2 component with a constant electric field1. Proposed
dualities between AdS2 space and a conformal quantum mechanics [2, 3, 4, 5, 6] or a chiral
1+1 dimensional conformal field theory (CFT) [5, 7] have been used to explain the statistical
degeneracy of extremal black holes. In [7, 8] it was shown the AdS2 geometry with a constant
electric field can be understood as the compactification of an orbifold of AdS3 with a null
boundary. Systematically applying the rules of the AdS/CFT correspondence then suggests
that the dual theory on the 1+1 dimensional boundary is a Discrete Light Cone Quantized
CFT [7, 8, 9, 6]. Because of the highly boosted kinematics of a DLCQ theory, only one chiral
sector of the 2d CFT survives. Such chiral theories thus seem to appear universally in the
dual descriptions of extremal black holes.

In this paper, we develop aspects of this DLCQ - extremal black hole correspondence.
The essential features can be understood by considering the extremal BTZ geometry, which
itself appears in the near-horizon geometry of many asymptotically flat or AdS black holes. It
is well known that the BTZ black holes are dual to thermal ensembles in a 1+1 dimensional
CFT. Thermal ensembles in a single chiral sector of this CFT are dual to the extremal
black holes and explain their statistical degeneracy. Taking a limit which focuses on the
vicinity of the BTZ horizon gives a locally AdS3 geometry that is a circle fibration over an
AdS2 base. From the three dimensional perspective this is precisely the self-dual orbifold
of [8, 10]. Dimensionally reducing over the circle fibre gives an AdS2 geometry with an
electric flux – precisely the spacetime appearing in [7]. As we will show in sections 2 and

1This statement is an actual theorem in four and five dimensions, under certain isometry assumptions

and for extremal black holes with finite area horizons [1].
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3, the same focusing limit applied to the CFT dual to BTZ effectively applies a DLCQ
procedure that isolates the chiral sector carrying the extremal black hole entropy. Thus,
one chiral set of Virasoro generators of the CFT is frozen in this limit, in the sense that
there are no physical states charged under them. It turns out that the same chiral sector
also contains the SL(2,R) isometries of the AdS2 geometry, while the surviving SL(2,R)
in the limiting chiral CFT appears as an enhancement of the U(1) symmetry of the circle
fibration. Specifically, we show that there exists a consistent set of boundary conditions
on the fluctuations of the near horizon extremal BTZ metric, as in the Brown-Henneaux
analysis [11], that enhances the U(1) isometry to an asymptotic chiral Virasoro algebra.
This is consistent with recent proposals that the description of extremal black holes in terms
of an AdS2 throat requires asymptotic boundary conditions eliminating AdS2 excitations
and enhancing a U(1) appearing in the geometry to a Virasoro symmetry [12, 13].

Usually in the AdS/CFT duality, the isometries of spacetime are realized in the dual as
global symmetries which then organize the representations of physical states. The surprise
here is that the SL(2,R) symmetry inherited in the CFT from the spacetime isometries acts
trivially on the space of physical states. This has two implications. First, the chiral duals to
the near-horizon geometry of extremal black holes are incapable of describing non-extremal
excitations. Second, even after the addition of an electric field to AdS2, 2d quantum gravity
with this asymptotics has no dynamics. This is consistent with the idea that finite energy
excitations in AdS2 destroy its asymptotic structure [14]. These two points are related to the
fact that non-extremal black holes do not have AdS2 throats. Similarly, in the classic setting
of the D1-D5-string, extremal black holes arise from chiral excitations, and non-extremality
requires excitations of both left and right movers.

The self-dual orbifold and AdS2 with a flux also appear in the near horizon limit of the
extremal Kerr black hole in four dimensions [12] suggesting the appearance of a chiral CFT
dual. However, in this setting (as in [15, 16, 17]) the near-horizon AdS geometries appear
in a “warped” way, with their metric multiplied by a function of another angular direction
in the overall spacetime. We suggest that reduction over this additional direction can give
rise to an effective three dimensional gravity with a negative cosmological constant with the
self-dual orbifold as a solution. The dual description of this space as a chiral 2d CFT then
explains the statistical degeneracy of Kerr.

Note added: In the last stage of preparation of this article two papers appeared on the
arXiv [18] arguing that there is no dynamics in the chiral 2d CFT proposed to be dual to
the near horizon extremal Kerr geometry, in agreement with our results.

2 Near horizon extremal BTZ is dual to DLCQ of a 2d CFT

BTZ black holes are three dimensional, asymptotically AdS3 spacetimes with metric [19]

ds2 = −(r2 − r2
+)(r2 − r2

−)

r2ℓ2
dt2 +

ℓ2r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2(dφ− r+r−

ℓr2
dt)2 . (2.1)
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They have ADM angular momentum and mass

J

2
=
r+r−
ℓ2

, M =
r2
+ + r2

−
ℓ2

(2.2)

given in terms of two parameters: the inner and outer horizons r±. These are locally AdS3

spacetimes, differing from global AdS3 by a quotient under a discrete identification. This is
the origin of the periodicity in φ in (2.1), i.e. φ ∼ φ+ 2π. Regularity of the metric requires
|J | ≤ M . The BTZ black holes also appear as components in the near-horizon geometry
of black holes in many dimensions with both vanishing and negative cosmological constants
(e.g. see [20]). The extremal BTZ black holes (M = J) have coincident inner and outer
horizons

M = J =⇒ r+ = r− ≡ rh . (2.3)

Globally, the generator of the discrete quotient of AdS3 giving rise to the extremal black hole
lies in a different conjugacy class from the generator giving rise to the non-extremal black
hole [21].

According to the AdS/CFT correspondence, quantum gravity in AdS3 is dual to a 2d
conformal field theory (CFT) with equal left and right central charges c [11]

c =
3ℓ

2G3
, (2.4)

where G3 is Newton’s constant in three dimensions. The BTZ black holes are thermal states
in this CFT having left and right-moving temperatures

TR =
1

4π

r+ − r−
ℓ

, TL =
1

4π

r+ + r−
ℓ

, (2.5)

with energy and angular momentum:

L0 −
c

24
= M − J, L̄0 −

c

24
= M + J. (2.6)

(In our conventions M and J are both dimensionless; their natural units are given by the
AdS3 radius ℓ.) In the extremal (M = J) black hole the right-movers are in the ground
state2

L0 =
c

24
; TR = 0 (2.7)

while the left moving temperature TL = 1
2π

rh
ℓ

and L̄0 are arbitrary. The extremal BTZ
entropy (and that of higher dimensional black holes of which it is the near horizon limit) is

2In theories with supersymmetry these are indeed the obvious ground states in the RR sector. This

condition can even correspond to ground states in the NS sector, because in many examples the quantum

numbers L0 and L̄0 are not exactly identical to the standard CFT quantum numbers but can e.g. receive

contributions from gauge fields which make them spectral flow invariant, in which case this condition really

implies that the states have to be chiral primary. Although we have no proof that L0 = c/24 always implies

that the states have to be ground states of some sort, we will continue to refer to these states as ground

states and hope that this will not cause any confusion.
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accounted for by the statistical degeneracy of such a chiral CFT sector with L̄0−c/24 = 2M ,
at least when L̄0 ≫ c/24.

We will see that the chiral sector that is responsible for the extremal entropy can be
isolated by taking a near-horizon limit of the extremal BTZ black hole [7]. It is convenient
to do this in another set of coordinates [22]

û = t/ℓ− φ , v̂ = t/ℓ+ φ, r2 − r2
+ = ℓ2e2ρ , (2.8)

in which the metric takes the form 3

ds2 = r2
+ dû

2 + ℓ2 dρ2 − ℓ2e2ρ dû dv̂ . (2.10)

The variables û, v̂ have a periodicity

{û, v̂} ∼ {û− 2π, v̂ + 2π} . (2.11)

On the cylindrical boundary of AdS3 (ρ→ ∞), dû and dv̂ become null directions. Thus the
two chiral Virasoro algebras of the dual conformal field theory are associated to asymptotic
reparameterizations û→ f(û) and v̂ → g(v̂).

Since the horizon is located at ρ→ −∞, we take the near horizon limit

ρ = ρ0 + r, u = û
r+
ℓ
, v =

e2ρ0ℓ

r+
v̂, {u, v} ∼ {u− 2π

r+
ℓ
, v + 2π

ℓ

r+
e2ρ0} (ρ0 → −∞)

(2.12)
while keeping r, u, v and r+ fixed.4 (See [7] for the first discussion of this limit.) The
resulting metric, which describes the geometry in the vicinity of the extremal horizon,

ds2 = ℓ2(du2 + dr2 − e2r du dv) (2.13)

is identical in form to (2.10) but there is a crucial difference. In the ρ0 → −∞ limit, the
identification (2.11) becomes

{u, v} ∼ {u− 2π
r+
ℓ
, v} . (2.14)

Thus, the boundary of (2.13) (r → ∞) is a “null cylinder” – it has a metric conformal to
du dv, the standard lightcone metric on a cylinder, but has a compact null direction (u).
The periodicity of u encodes the temperature of the left-moving thermal state that gave the
original extremal BTZ black hole its statistical degeneracy.

Rewriting the radial coordinate as y = e2r gives

ds2 =
ℓ2

4

(

−y2 dv2 +
dy2

y2

)

+ ℓ2
(

du− 1

2
y dv

)2

. (2.15)

3For later use note that a generic BTZ metric in the û, v̂, ρ coordinate system takes the form [22]

ds2 = ℓ2
[

L+dû2 + L−dv̂2 + dρ2 − (e2ρ + L+L−e−2ρ)dûdv̂
]

. (2.9)

where L± = 1

4ℓ2
(r+ ± r−)2. Recalling (2.5), L+ = (2πTL)2, L− = (2πTR)2.

4Despite the resemblance of the limit (2.12) and the coordinate changes one makes in taking the Penrose

limit, (2.12) is not a Penrose limit, as the geometry we obtain after the limit is not a plane-wave.
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This is an S1 fibration over AdS2 which arises as a discrete identification of AdS3. The
generator of this discrete group sits inside the SL(2,R)L subgroup of the initial SL(2,R)L×
SL(2,R)R isometry group of AdS3 [7, 8]. To be precise, the parametrization of SL(2,R) (i.e.
AdS3) that is relevant for the metric (2.15) is

G =

(

1 0
v
2

1

) ( √
y

√
y

−1
2
√
y

1
2
√
y

) (

eu 0
0 e−u

)

, (2.16)

in terms of which the metric (2.15) is

ds2 =
ℓ2

2
tr(G−1 dG)2 (2.17)

Under u → u− 2πr+/ℓ, G is identified by the right action of

(

e−2πr+/ℓ 0
0 e2πr+/ℓ

)

. (2.18)

The isometry group is SL(2,R)R ×U(1)L, the first factor corresponding to the isometries of
the AdS2 base.5 On the boundary of the spacetime these isometries act to reparameterize
the non-compact coordinate v. In fact, this geometry is precisely the self-dual orbifold of
Coussaert and Henneaux [10]. The present coordinate system covers only part of the global
spacetime described in [8, 10].

Since (2.13) is asymptotically locally AdS3, we expect the dual field theory to still be a two
dimensional conformal field theory, but defined on a boundary null cylinder. To understand
what that means, we can follow [8] and regulate the CFT by cutting off the self-dual orbifold
at a fixed, large radius. Following the usual AdS/CFT reasoning, this implements a UV
cutoff in the field theory. We will remove the cutoff by sending r → ∞. At any fixed r, the
metric (2.13) is conformal to

ds2 = du2 − e2r du dv (2.19)

Now consider a standard cylinder with its usual Cartesian metric ds2 = −dt20 + dφ2
0 and

{φ0, t0} ∼ {φ0 − β, t0}. We will use coordinates

u1 = t0 − φ0 ; t1 = 2t0 =⇒ ds2 = du2
1 − du1 dt1 ; {u1, t1} ∼ {u1 + β, t1} . (2.20)

We now boost the cylinder with a rapidity 2γ (ũ1 = e2γu1) and then reparameterize the
boosted cylinder so that the identification is still occurring at fixed t1. The metric then
becomes

ds2 = e−4γ
(

dũ2
1 − e2γdũ1 dt1

)

; {ũ1, t1} ∼ {ũ1 + βe2γ, t1} (2.21)

Rescaling the coordinates as ũ1 → e−2γ ũ1 and t1 → e−2γt1 gives the metric

ds2 = dũ2
1 − e2γdũ1 dt1 ; {ũ1, t1} ∼ {ũ1 + β, t1} . (2.22)

5Strictly speaking, these SL(2, R) transformations include U(1) gauge transformations compensating the

transformation of the gauge field on AdS2.
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Thus, metrics on fixed r surfaces of the near-horizon BTZ metric (2.19) are conformal to a
boosted cylinder. As r → ∞ the boost becomes infinite, precisely realizing the procedure
defined by Seiberg [23] for realizing the Discrete Light Cone Quantization (DLCQ) of a field
theory. In Sec. 3 we will show that following the usual kinematics of DLCQ, only one chiral
sector of the CFT dual to AdS3 will survive at finite energies.

We can also see the latter by directly examining the near-horizon limit (2.12). Acting in
the CFT dual to AdS3, the near horizon limit of the extremal BTZ black hole focuses in on
energies so low that they lie below the black hole mass gap, thus eliminating all non-extremal
dynamics [7] (also see [6]). This will isolate one chiral sector (the left-movers), since non-
extremal, finite energy excitations necessarily involve excitations of the right-movers also.
Explicitly, the infinite rescaling in the coordinate v̂ relates translations as

∂v ∼ e−2ρ0 ∂v̂ . (2.23)

Thus, recalling the ∂v̂ is the right-moving Hamiltonian in the CFT dual to AdS3, any finite-
energy right-moving excitation, i.e. any excitation |s〉 with ∂v̂|s〉 = (L0 − c/24)|s〉 6= 0, will
be infinitely blue shifted in the Hamiltonian ∂v that is well defined in the ρ0 → −∞ limit.
In other words, we should only be keeping the states satisfying

∂v̂|s〉 = (L0 − c/24)|s〉 = 0 (2.24)

which are the ground states in the right-moving sector.

We can also directly follow how the near-horizon limit (2.12) acts on the left and right
moving Virasoro generators of the CFT dual to AdS3. These generators are

Ln −
c

24
δn,0 = einv̂

∂

∂v̂
, L̄n −

c̄

24
δn,0 = einû

∂

∂û
. (2.25)

As ρ0 → −∞ in the near-horizon limit (2.12), it is evident that L̄n are essentially unchanged
while the Ln annihilate all the finite energy states because of the condition (2.24).

3 DLCQ of a 2d CFT is a chiral CFT

In the previous section we reviewed how the near-horizon geometry of extremal BTZ is dual
to the DLCQ of a 2d CFT. We now examine how such theories are quantized. Consider a
2d CFT on a cylinder

ds2 = −dt2 + dφ2 = −du′ dv′ ; u′ = t− φ, v′ = t+ φ (3.1)

where φ is a circle with radius R. Here

{φ, t} ∼ {φ+ 2πR, t} ; {u′, v′} ∼ {u′ − 2πR, v′ + 2πR} (3.2)

Let P u′ and P v′ denote momentum operators in the v′ and u′ directions respectively. Their
eigenvalues

P v′ =
(

h+ n− c

24

) 1

R
, P u′ =

(

h− c

24

) 1

R
, n ∈ Z (3.3)
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are given in terms of the quantized momentum n along the S1, the 2d central charge c and
an arbitrary value of h with h ≥ 0 and h + n ≥ 0. These are related to the eigenvalues of
the standard operators L0, L̄0 used in radial quantization on the plane by L̄0 = h + n and
L0 = h. We will assume that the 2d CFT is non-singular, and therefore that the spectrum
is discrete.

Following Seiberg [23], consider a boost with rapidity γ

u′ → eγu′, v′ → e−γv′ . (3.4)

The boost leaves metric (3.1) invariant.6 However the identifications are now

{u′, v′} ∼ {u′ − 2πReγ , v′ + 2πRe−γ} . (3.5)

We want to match the boundary structure appearing in the boundary of the near horizon
geometry with the DLCQ of the starting boundary cylinder. To do so, consider the limit γ →
∞ with Reγ fixed. This describes a null cylinder geometry with metric ds2 = −du′ dv′ and
u′ a compact null direction. The same infinite boost was presented in different coordinates
in (2.20) – (2.22). However, notice that since v′ → e−γv′ = e−γ(t + φ) and 0 ≤ φ ≤ 2π R,
as γ → ∞ any finite changes in v′ come from changes in t. Thus, in the limit, dv′ ∝ dt
and ds2 = −du′ dv′ ≈ −e−γdu′ dt which is conformal to the dominant piece of the metric in
(2.22).

More explicitly, the periodicities of the boundary coordinates under the limit γ → ∞
with R− ≡ Reγ fixed are
(

φ
t

)

∼
(

φ
t

)

+

(

2πR
0

)

− infinite boost →
(

u′

v′

)

∼
(

u′

v′

)

+

(

2πR−
2πR−e

−2γ

)

(3.6)

We can now identify {u′, v′} with the lightcone boundary coordinates of AdS3 in (2.12) via
u′ = u(ℓ/r+)R− and v′ = v(r+/ℓ)R−. Then, comparing (2.12) and (3.6), it is evident that
the action of the near horizon limit on u, v precisely reproduces the identifications induced
by the infinite boost in DLCQ. Thus, from this perspective also, the dual to the near-horizon
geometry of the extremal BTZ black hole should be the DLCQ of the 1+1 dimensional CFT
dual to AdS3.

Because of the kinematics of the DLCQ boosts,

P v′ =
(

h+ n− c

24

) e−γ

R
, P u′ =

(

h− c

24

) eγ

R
. (3.7)

Keeping P u′ (momentum along v′) finite in the γ → ∞ limit requires h = c/24. This leads
to

P v′ = n · e
−γ

R
=

n

R−
. (3.8)

Thus the DLCQ limit (3.7) freezes the right moving sector. Equivalently, it generates an
infinite energy gap in this sector, while the gap in the left-moving sector (whose energy is

6In our previous analysis the cylinder in coordinates (2.20) was boosted but also reparameterized – this

is why the metric transformed to (2.21).
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measured by P v′) is kept finite. All physical finite energy states in this limit only carry
momentum along the compact null direction u′. Therefore, the DLCQ γ → ∞ limit defines
a Hilbert space H

H = {|anything〉L ⊗ |c/24〉R} . (3.9)

It is worth noting that the extremal D1-D5-p black hole (whose near horizon limit is
the BTZ black hole) is precisely dual to states of this form with the right movers in the RR
ground state, and the left movers in a highly excited state the statistical degeneracy of which
explains the black hole entropy [24].

Since the spectrum of the DLCQ theory is chiral we might wonder what remains in this
limit of the Virasoro algebra of the CFT we started with. Denoting the right moving Virasoro
generators by Lm, all states Lm | c/24〉 (m < 0) have infinite energy in the DLCQ limit, since
their action always changes the right-moving energy. Explicitly, consider the generators

Lq ∼ eiqv
′ ∂

∂v′
, L̄p ∼ eipu

′ ∂

∂u′
, (3.10)

with L0 − c/24, L̄0 − c/24 being generators of translations along v′ and u′ respectively. After
the boost (3.4) the quantization conditions for p, q become:

q =
k

Re−γ
=

k

R−
e2γ , p = m · 1

Reγ
=

m

R−
, k,m ∈ Z. (3.11)

Thus, there is a single copy of the Virasoro algebra, generated by L̄p, which survives the
limit. This is acting on the left movers, as expected from the spectrum defining the Hilbert
space of the theory. Notice the generators of this algebra are acting on the compact direction
of the DLCQ null cylinder.

Summary: The DLCQ of a non-singular 2d CFT freezes the right moving sector to its
ground states | c/24〉 while keeping the full left moving sector. Hence, the DLCQ limit gives
a chiral 2d CFT with the same central charge as the original one. Applied to the BTZ
black hole (Sec. 2), we learn that the near-horizon geometry of extremal BTZ is dual to one
chiral sector of the 2d CFT with central charge c = 3ℓ/2G3 that is dual to AdS3 gravity. The
surviving chiral sector is in the state in which it was placed to realize the dual to an extremal
black hole, namely a thermal state at a temperature TL = TDLCQ = R−/(2π), corresponding
to the left-moving thermal state | c/24〉⊗| T = R−/2π〉 in the Hilbert space of the CFT dual
to AdS3.

4 Asymptotic symmetries and the chiral Virasoro algebra

In the AdS/CFT correspondence, the isometries of spacetime manifest themselves as global
symmetries of the dual field theory, and physical states are organized in representations of
the isometry group. For this reason, various authors [8, 25, 26] have considered how the
physical states of fields in the near-horizon BTZ geometry (2.13) or (2.15) transform under
the SL(2,R) × U(1) isometry group. Now recall that the DLCQ analysis of the dual field
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theory in the previous section showed that the physical states of this theory must live in
a chiral CFT. It would have been natural to expect that the SL(2,R) isometries provide
the global part of the associated Virasoro algebra. The surprise is that this is not the
case. Specifically, the SL(2,R) isometries are associated to reparameterizations of the non-
compact coordinate v on the boundary, while the physical states only carry momentum along
the compact null direction u on which only the U(1) part of the isometry group acts. Thus,
AdS/CFT is telling us that physical states cannot be charged under the SL(2,R) isometry
group associated to the AdS2 base in (2.15).

Why would a consistent quantum theory of gravity around the near-horizon BTZ back-
ground (2.15) require the absence of excitations in the AdS2 base of this geometry? Perhaps
because any such fluctuations would cause the space to “fragment” leading to the appearance
of multiple boundaries to the spacetime [14]. In the next section we will compactify (2.15)
and examine its stability to excitations in the AdS2 base. Below we will simply accept the
lesson from the analysis of the dual DLCQ field theory and implement boundary conditions
for the spacetime that preserve only the predicted spectrum.

Boundary conditions: To this end, we will follow the asymptotic symmetry group analysis
of Brown and Henneaux [11] by identifying the boundary conditions for “allowed” metric
fluctuations close to the spacetime boundary. First recall the Brown-Henneaux boundary
conditions for AdS3. In the û, v̂, r coordinates [22], where the background AdS3 metric takes
the form ds2 = ℓ2(dr

2

r2
− 2r2dûdv̂) these boundary conditions at large r are [11]

δgûû ∼ δgv̂v̂ ∼ δgûv̂ ∼ O(1), δgrr ∼ O(
1

r4
), δgrû ∼ δgrv̂ ∼ O(

1

r3
) . (4.1)

Order one fluctuations in δgûû, δgv̂v̂ correspond to normalizable modes in the dual 2d CFT
and these may be chosen arbitrarily. For example, writing a generic BTZ black hole in the
û, v̂ coordinates, the constant parts of gûû and gv̂v̂ determine the ADM mass and angular
momentum of the black hole (2.9). Thus, order O(1) fluctuations in δgûû, δgv̂v̂ correspond
to changing the mass and angular momentum in the dual 2d CFT. A general deformation of
δgûû, δgv̂v̂ would be non-extremal and would thus excite both chiral sectors of the dual CFT.
By contrast, we want to restrict to extremal excitations. Recalling the form of BTZ metric
(2.9), one may easily observe that imposing the extremality condition L0 = c/24 requires a
more stringent boundary condition on the variations in gv̂v̂. The arguments of Sec. 2 and 3
for taking the DLCQ limit and in particular (3.7) then suggest that we should replace the
boundary condition on gv̂v̂ by

δgv̂v̂ ∼ O(
1

r2
) . (4.2)

The remainder of the Brown-Henneaux boundary conditions in (4.1) can be kept intact.
Further analysis shows that these are forming a set of consistent boundary conditions. In
fact this set is equivalent to choosing a subset of (4.1) that preserve the null nature of the
non-compact coordinate v (up to transformations which are trivial at large r).

Asymptotic Symmetry Group: The asymptotic symmetry group (ASG) of a space-
time is the set of symmetry transformations (diffeomorphisms) which preserve the boundary
conditions modulo the set of diffeomorphisms the generators of which vanish (reduce to a
boundary integral) after implementation of the boundary conditions. Equipped with the

9



above boundary conditions we can compute the ASG for the case of the near horizon ex-
tremal BTZ or the self-dual orbifold of AdS3. We seek diffeomorphisms (vector fields ζ)
whose action on the metric (Lie derivative Lζg) generates metric fluctuations compatible
with the above boundary conditions. More mathematically, if gαβ = g0

αβ + δgαβ, where g0
αβ

stands for the asymptotic metric, then one is looking for vector fields ζ satisfying

(Lζg)αβ ∼ δgαβ , (4.3)

where the symbol ∼ stands for same order of magnitude in the large r expansion sense.

Since our boundary conditions are closely related but more restrictive than those of
Brown-Henneaux [11], we can use their explicit analysis of the generators of the asymptotic
symmetry group and simply impose the additional constraint on δgvv (4.2) on them. The
allowed diffeomorphisms are

ζu = 2f(u) +
1

2r2
g′′(v) + O(r−4) (4.4a)

ζv = 2g(v) +
1

2r2
f ′′(u) + O(r−4), (4.4b)

ζr = −r (f ′(u) + g′(v)) + O(r−1) (4.4c)

g′′′(v) = 0 =⇒ g = A+B v + C v2 . (4.5)

Here, the connection to the Brown-Henneaux diffeomorphisms is made explicit: the diffeo-
morphisms generated by ζ = ζα∂α of (4.4) are exactly those of Brown-Henneaux [11] and
the constraint δgvv = O( 1

r2
) is implemented by (4.5). One set of allowed diffeomorphisms

is specified by a periodic function f(u) = f(u + 2π). The analysis of generators of these
diffeomorphisms follows directly from those of Brown and Henneaux and they lead to a chi-
ral Virasoro algebra at central charge c = 3ℓ/2G3 (2.4). 7 The remaining three parameter
family of diffeomorphisms in (4.5) describes the SL(2,R) isometries of the self-dual orbifold.

The isometries of the original extremal black holes were just a U(1)×U(1). In that case
a Brown-Henneaux analysis with the extremal constraint would have also yielded (4.4) with
the constraint g′′′ = 0. However, in the original geometry g has to be a periodic function
which restricts the solutions to the constraint to g = A only. The process of taking the near
horizon limit led to an identification in u alone, and thus, g need not be periodic, allowing
the three parameter solution above. The isometry generators that appear in this way, are
not simply related to the SL(2,R) generated by L0, L±1 (2.25).

5 AdS2 quantum gravity and dual chiral CFTs

Consider the two-dimensional Einstein-Maxwell-Dilaton theory with a negative cosmological
constant:

S =
ℓ

8G3

∫

d2x
√−g

[

eψ(R +
2

ℓ2
) − ℓ2

4
e3ψFµνF

µν

]

(5.1)

7Our analysis here suggests that the Left and Right CFT’s introduced in [27] may be identical. This

point deserves further investigation.
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where Fµν is the U(1) field strength. This action has an AdS2 solution with curvature
R = − 8

ℓ2
, constant ψ and constant electric flux :

ds2 = − ℓ
2

r2
(−dt2 + dr2), Ftr =

2Q

r2
, e−ψ = Q . (5.2)

This action may be obtained from the dimensional reduction of the 3d Einstein-Hilbert
action with 3d Newton constant G3 and cosmological constant −1/ℓ2 via restriction to the
massless sector of the Kaluza-Klein tower. 8 Likewise the reduction of the near-horizon BTZ
geometry (2.15) to two dimensions is precisely (5.2). The radius of the extremal BTZ horizon
becomes ℓQ. The action (5.1) has another two parameter family of solutions in which ψ is
not a constant [7] – these lift to generic BTZ black holes.

Because of this connection between two and three dimensions, we expect that quantum
gravity around the background (5.2) is dual to a subsector of the DLCQ chiral CFT that
is developed in Sec. 2 and 3, and is only fully consistent when embedded in string theory
with all the resulting additional degrees of freedom. The electric field strength Q is related
to the DLCQ compactification scale R− in (3.6) while the central charge is related to the 2d
Newton constant: c = 3ℓ/(2G3) = 3/(4πG2).

Quantum gravity in the AdS2 background (5.2) was explored in [25] from the perspective
of the spacetime conformal field theory, and in [26] from the perspective of the boundary
stress tensor. Both of the papers consider spectra including states charged under the SL(2,R)
isometry group of AdS2, and analyze a Virasoro algebra which includes this SL(2,R). How-
ever, as shown in previous sections, a consistent quantum theory of gravity in this background
should not have any states charged under the isometry group. The reason for this is that
excitations supported in AdS2 back-react strongly and can modify the asymptotic structure
of the spacetime [14].

To see this, let us write the two dimensional metric in a gauge in which the metric is
conformally flat

ds2 = e2φ(σ+ ,σ−) dσ+dσ− , 0 ≤ σ± ≤ π , (5.3)

and consider the variation of the action (5.1) with respect to the 2d metric. We find

∇+∇+e
ψ = 8πG2T++ (5.4)

and similarly for the −− component. If we regard (5.1) as arising from compactification of a
three dimensional theory, besides the contributions from ψ and the gauge field, we can also
include all contributions of massive Kaluza-Klein modes in T++. We may now follow the
discussion in section 2.2 of [14] (see Eqs. (2.16) and (2.17) there). Integrating (5.4) against
e−2φdσ+, we obtain

e−2φ∂+e
ψ|σ+=0 − e−2φ∂+e

ψ|σ+=π = −8πG2

∫

dσ+e−2φT++ (5.5)

8An analysis of Schwinger pair creation of charged particles in AdS2 in the presence of a constant electric

field was performed in [28]. A bound between the mass of particle excitations and the background electric

field was derived to ensure the stability of these backgrounds. This bound is satisfied in supersymmetric

AdS2 × S2 spacetimes and is also saturated for the two dimensional vacuum solution discussed here.
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and similarly for T−−. Assuming a null energy condition (T++ ≥ 0), any state with non-
vanishing T++ requires at least one of the two terms on the left hand side of this equation
to be non-zero. Since e−2φ vanishes quadratically near the boundary of AdS2, this implies
that eψ must diverge at one of the AdS2 boundaries. This is inconsistent with the constant
value e−ψ = Q in (5.2), which is related from the three dimensional point of view to the com-
pactification radius. This shows that preserving the boundary conditions requires T++ = 0
and a similar argument requires T−− = 0. Thus perturbations cannot have any dependence
on σ+, σ−, as their back-reaction would destroy the boundary of the geometry. The back-
ground geometry (5.2) has an SL(2,R) isometry, and if perturbations do not depend on
σ+, σ−, then the perturbation cannot break the SL(2,R) symmetry either. In other words,
all degrees of freedom transform trivially under SL(2,R), in agreement with the analysis in
previous section.9

This argument used the fact that AdS2 has two disconnected boundaries. In Sec. 2
the analysis of the CFT dual was carried out in coordinates that only intersected a single
boundary, but it was shown in [8] that, globally, the self-dual orbifold geometry has two
boundaries, each of which is a null cylinder carrying a DLCQ of a CFT. To see this, transform
the coordinates in (2.15) as

y = cos τ cosh z + sinh z ; v =
sin τ cosh z

cos τ cosh z + sinh z
, (5.6)

so that the self-dual orbifold metric becomes

ds2 =
ℓ2

4

(

− cosh2 z dτ 2 + dz2
)

+ ℓ2 (du+ A′)
2

(5.7)

where A′ is a gauge field with constant field strength in global AdS2. This is the global
self-dual orbifold of [8]. The entire range of v is covered by a finite range of global time τ .
Thus each patch of the form (2.15) intersects one boundary of the global spacetime at either
z = ±∞.

In view of this, both the near-horizon limit of extremal BTZ (2.13) and the 3d uplift of
(5.2) can be regarded globally as dual to two DLCQ CFTs, each giving rise to one chiral theory
(see [8, 6] for discussion). From this perspective we can presumably view the description of
the self-dual orbifold as a thermal state in a single CFT as emerging from tracing over the
Hilbert space living in one of the boundaries. This is in analogy with the usual treatment
of the eternal BTZ black hole as either an entangled state in two CFTs defined on the two
boundaries of the geodesically complete spacetime, or as a thermal state in a single CFT
[31]. The statistical degeneracy of the thermal state in the chiral CFT dual to the spacetime
(2.15) then measures the area of the familiar Poincare horizon of this coordinate patch (see
[3] for a similar perspective). One difference between BTZ and the self-dual orbifold is that
while the BTZ boundaries are causally disconnected, a light ray can travel between the

9The fact that AdS2 “fragments” in this way has led to the suggestion [14] that the dual of a one-

dimensional conformal field theory should involve a sum over tree-like geometries with many different asymp-

totic AdS2 boundaries. While some partial progress has been made in developing this picture [29, 30], it

is still unclear whether this is the right way to think about AdS2, or whether it eventually will lead to

connection with the fuzzball proposal, and we will not further pursue this possibility in this paper.
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two boundaries of the global self-dual orbifold [8]. The possible interactions that this seeds
between the two boundaries have not been studied.

In this global context there is another piece of evidence that the AdS2 base of the self-
dual orbifold cannot be consistently excited. It was shown in [26] that the most general
solution of the dimensional reduction of 3d gravity with a negative cosmological constant in
a particular gauge can be put in the form

gµνdx
µdxν = dη2 − 1

4
(h0(t)e

2η/L + h1(t)e
−2η/L)2dt2. (5.8)

At the boundary η → ∞, the boundary metric is determined by h0(t). One can choose
a coordinate t such that h0 = 1. The subleading behavior is determined by h1(t). The
diffeomorphisms that preserve this gauge and leave h0 unchanged were determined by [26].
However it turns out that while these are normalizable deformations of the boundary at
η → +∞, they are not normalizable deformations at the other boundary η → −∞ – i.e.
they change h1. In fact, there are no deformations at all which both preserve the gauge and
are normalizable at both boundaries, except the isometries. This again suggests that it is
not possible to deform AdS2 without disrupting the spacetime boundary.

6 Extremal Kerr black hole and its dual chiral CFT

The extremal 4d Kerr black hole is given by

ds2 = − ∆

R2

(

dt̂− a sin2 θdφ̂
)2

+
sin2 θ

R2

(

(r̂2 + a2)dφ̂− adt̂
)2

+
R2

∆
dr̂2 +R2dθ2 , (6.1)

where
R2 = r̂2 + a2 cos2 θ, ∆ = (r̂ − a)2 . (6.2)

Its ADM mass and angular momentum are function of the horizon size a

M = a, J =
a2

G4
. (6.3)

In the quantum theory, J is quantized (to half integers) in units of ~. This black hole has
zero Hawking temperature and its Bekenstein-Hawking entropy is

SBH =
2πM2

~G4

=
2π

~
J . (6.4)

In the near horizon ǫ→ 0 limit

r̂ = a+ ǫ r, t̂ =
2at

ǫ
, φ̂ = φ+

t

ǫ
, (6.5)

while keeping the un-hatted parameters and coordinates fixed, we obtain the near horizon
extremal Kerr (NHEK) geometry [32, 12]

ds2 = 2G4J Ω(θ)2

[

−r2dt2 +
dr2

r2
+ dθ2 + Λ(θ)2 (dϕ+ rdt)2

]

, (6.6)
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where ϕ ∈ [0, 2π], 0 ≤ θ ≤ π and

Ω(θ)2 =
1 + cos2 θ

2
, Λ(θ) =

2 sin θ

1 + cos2 θ
. (6.7)

This metric at a given θ has the form of a warped circle fibration over AdS2 in which the
fiber radius depends on the angle θ. If Λ and Ω were constants this would be precisely the
self-dual orbifold of (2.15) times a circle. Indeed, as emphasized in [12], constant θ slices look
like squashed self-dual orbifolds. The coordinates in (6.6) cover only part of the spacetime,
with a boundary at r → ∞ – globally, like the self-dual orbifold, there are two boundaries.
One sees similar squashed geometries with AdS2 and AdS3 factors in decoupling limits of
near-extremal black holes in anti-de Sitter space [15, 16, 17]. (Also see [33, 34, 35].)

The Kerr black hole is invariant under time and angular φ̂ translations. This isometry
group is enhanced to SL(2,R) × U(1) in the near horizon, just as in the self-dual orbifold.
The U(1) is generated by ∂ϕ, whereas the SL(2,R) acts both on the AdS2 subspace and
along the fiber to preserve the form of dϕ+ rdt [12].

In [12], the asymptotic symmetry group preserving certain boundary conditions for the
fluctuations of the NHEK was calculated. The corresponding diffeomorphisms they found
were of the form

ζλ = λ(ϕ)∂ϕ − rλ(ϕ)′∂r . (6.8)

These generate a chiral Virasoro algebra. In [12] it was proposed that this Virasoro algebra
should be understood as the symmetry group of a chiral 2d CFT dual to quantum gravity
around the near horizon Kerr geometry. The central charge of this chiral CFT was computed
to be

cExt. Kerr = 12J . (6.9)

The NHEK is then associated with a thermal state of the chiral 2d CFT at tempera-
ture TNHEK = 1/2π. Upon applying the Cardy formula for the entropy of 2d CFTs, the
Bekenstein-Hawking entropy of the extremal Kerr black hole (6.4) is reproduced. The con-
sistency of the boundary conditions proposed in [12] required the vanishing of the charge of
the U(1)τ ∈ SL(2,R), i.e.

ER = 0 (6.10)

in the notation used in [12], for all physical states. Thus, like for the self-dual orbifold, there
are no physical excitations of the AdS2 factor in the geometry. The ER = 0 condition acts
like the restriction to extremality in the BTZ black hole that we studied in Sec. 2.

The analogies between the Kerr-CFT construction [12] and the analysis of the self-dual
orbifold in previous sections suggests that chiral CFT of [12] is the DLCQ of an ordinary two
dimensional conformal field theory. Ideally, we would like to find a consistent Kaluza-Klein
reduction of gravity in the NHEK geometry to the three-dimensional self-dual orbifold. As a
first step, we make a connection between the NHEK geometry and 3d gravity with a negative
cosmological constant. For the NHEK geometry we consider then the four dimensional metric
reduction ansatz:

ds2 = L2 Ω2
[

−∂σβ(t, σ)
(

−dt2 + dσ2
)

+ dθ2 + Λ2 (dϕ+ β(t, σ)dt)2] , (6.11)
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where Ω2 = (1 + cos2 θ)/2 and Λ = 2 sin θ/(1 + cos2 θ). The equation of motion derived
for β using this ansatz and the four dimensional Einstein equation without a cosmological
constant is identical to the equation of motion obtained from the three-dimensional ansatz

ds2 =
ℓ2

4

[

−∂σβ(t, σ)
(

−dt2 + dσ2
)

+ (dϕ+ β(t, σ)dt)2] . (6.12)

and Einstein’s equation with a cosmological constant

R3µν +
2

ℓ2
g3µν = 0. (6.13)

Here R3 is the Ricci tensor computed for the 3d metric. Although this obviously does not
show that there should exist a Kaluza-Klein reduction from four to three dimensions which
reduces the NHEK geometry to the self-dual orbifold of AdS3, it does show that the two
theories share some dynamics.

We can also derive the central charge derived in [12] from the 4d NHEK geometry, by
matching parameters with the three-dimensional reduction ansatz. To do this, note first that
the above 3d equation of motion can be obtained from the Lagrangian

L3 =
√

− det g3(R3 +
2

ℓ2
) , (6.14)

which describes 3d gravity in the presence of a negative cosmological constant. The 3d New-
ton constant is then computed by integrating over the compact direction θ in our reduction
ansatz

1

G3
=

2L2
∫ π

0
dθ Ω2Λ

G4 ℓ
=

4L2

G4 ℓ
. (6.15)

Thus the 3d action is

S3 =
1

16πG3

∫

d3x L3 , (6.16)

Note that its vacuum solution is an AdS3 with radius RAdS = ℓ. Since L2 = 2G4J , using the
Brown-Henneaux formula for the central charge, we have

c =
3RAdS

2G3

= 12J . (6.17)

This matches (6.9). We earlier showed that the AdS3 central charge also matches the central
charge of the chiral CFT that is dual to self-dual orbifold.

This suggests the proposed chiral 2d CFT dual to extremal Kerr [12] is the DLCQ of a
2d CFT with the following identifications: (a) The DLCQ compactification radius R− is an
arbitrary physical scale and has been set equal to one in the Kerr/CFT analysis [12], (b)
The ER = 0 condition in [12] is mapped to L0 = c/24 DLCQ condition, (c) The extremal
Kerr ADM angular momentum J is equal to the light-cone momentum P+ of the DLCQ
description.

One should note that identifying the chiral 2d CFT duals proposed for extremal black
holes [12, 13] as the DLCQ of a 2d CFT also explains why we can use Cardy’s formula to

15



count the number of states. If we only knew that the states had to form representations of a
single Virasoro algebra, we would not be able to use modular invariance, and unitarity alone
does not determine the asymptotic growth of the number of states. Still, there are to our
knowledge no general statements about the asymptotic growth of the number of states of
the form |c/24〉R ⊗ |anything〉 in an arbitrary CFT. If the left-movers are Ramond ground
states, and it is a theory with supersymmetry, one can estimate the number of states of this
form using the elliptic genus and its modular properties [36], and it would be interesting to
establish similar results for more general CFT’s.

While our results have provided some evidence that DLCQ of a CFT is dual to the
near-horizon extremal Kerr, it would have been more satisfactory to have a consistent and
complete reduction of 4d gravity with NHEK boundary conditions [12] to 3d gravity with a
cosmological constant. In a similar setting where squashed AdS3 factors appear in a decou-
pling limit of R-charged black holes in AdS4 and AdS5, progress towards such a reduction
has been made [15, 16, 17].

7 Discussion

In this paper we have shown that the near-horizon limit of the extremal BTZ black hole,
which leads to the so-called self-dual orbifold geometry, is dual to the DLCQ of a non-chiral 2d
CFT, which is a chiral 2d CFT with the same central charge. We have also provided evidence
that various “chiral CFTs” that have appeared in the literature as dual CFTs to extremal
black holes should really be thought of as DLCQ of ordinary two-dimensional CFTs. This,
among other things, justifies the use of Cardy formula to account for the extremal black hole
entropy using this chiral CFT duals. It would be desirable to develop this picture in more
detail. In particular, it would be interesting to study correlation functions in the DLCQ
theory and the corresponding bulk-boundary dictionary. Another outstanding problem is
to establish more rigorously that generic extremal black holes, upon taking a near-horizon
limit, are indeed dual (once suitable boundary conditions are imposed) to the DLCQ of a
conformal field theory. If this is indeed the case, one would expect that the parent 2d CFT
of the DLCQ theory might also have a string theoretic realization, e.g. in the form of a
warped AdS3 solution of string theory. In other words, one might seek some sort of map
from extremal black hole solutions to AdS3 solutions. We have seen hints of such a map in
[15, 16, 17], but whether it exists in the general case is unclear.

One curiosity about the self-dual orbifold geometry is that it is dual to thermal state in
a DLCQ CFT. The ground state of the DLCQ theory does not appear to have a bona fide
geometric dual.10 This is unlike AdS3 gravity with a standard cylindrical boundary where
the ground state describes empty AdS and thermal states describe black holes. This seems
to be a general feature of gauge-gravity duality for DLCQ field theories [37].

10Specifically, it is not dual to a very near horizon limit of the M = 0 BTZ black hole as one can explicitly

check.
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