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Abstract
Innovation systems are sometimes referred to as complex systems, something that is intui-

tively understood but poorly defined. A complex system dynamically evolves in non-linear

ways giving it unique properties that distinguish it from other systems. In particular, a com-

mon signature of complex systems is scale-invariant emergent properties. A scale-invariant

property can be identified because it is solely described by a power law function, f(x) = kxα,

where the exponent, α, is a measure of scale-invariance. The focus of this paper is to

describe and illustrate that innovation systems have properties of a complex adaptive sys-

tem. In particular scale-invariant emergent properties indicative of their complex nature that

can be quantified and used to inform public policy. The global research system is an exam-

ple of an innovation system. Peer-reviewed publications containing knowledge are a char-

acteristic output. Citations or references to these articles are an indirect measure of the

impact the knowledge has on the research community. Peer-reviewed papers indexed in

Scopus and in the Web of Science were used as data sources to produce measures of

sizes and impact. These measures are used to illustrate how scale-invariant properties can

be identified and quantified. It is demonstrated that the distribution of impact has a reason-

able likelihood of being scale-invariant with scaling exponents that tended toward a value of

less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correla-

tions are shown between the evolution of impact and size with time and between field

impact and sizes at points in time. The recursive or self-similar nature of scale-invariance

suggests that any smaller innovation system within the global research system is likely to

be complex with scale-invariant properties too.

1. Introduction
An innovation system is a network of organisations within an economic system involved in the
creation, diffusion and use of scientific and technological knowledge as well as the organisa-
tions responsible for the coordination and support of these processes [1]. The concept of inno-
vation refers to the development, adaptation, imitation and adoption of knowledge and
technologies that are new to a given context. Innovation systems can found at many levels of
the economy such as global, regional, national, local and sectoral levels. National systems of
innovation have been a particular area of strong interest [2–4].
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The design of effective innovation policy to benefit society and the economy is partially
predicated on the notion that decision makers have reliable evidence-based measures to inform
their decisions [5,6]. This is an area of intense investigation as witnessed by recent articles on
Science Metrics in Nature and the National Science Foundation’s (NSF) The Science of Science
& Innovation Policy (SciSIP) program [7,8].

Why should we care if an innovation system is or is not complex? Complex systems have
unique properties that are distinctly different from those of other systems. Most, if not all, real-
world complex systems possess a particular property—scale-invariance—that can be measured
and quantified. A scale-invariant property is one that is statistically similar at many levels of
observation. The structure of, and the processes taking place inside such scale-invariant sys-
tems are the same over a broad range of spatial and temporal scales[9]. Conventional measures
often used as indicators of performance of an innovation system are incapable of quantifying
this property [10]. If an innovation system is not complex then there is no need to worry
and the current indicators will suffice. However, if an innovation system is complex it will be
shown that scale-independentmeasures are needed to fully inform innovation policy. This
paper focuses on the identification and quantification of scale-invariant emergent properties
of an innovation system to illustrate how this unique property can be used to inform public
policy.

Some people might ask if we can answer the question “Is a given innovation or research sys-
tem complex?” The only answer is yes. The logic is simple [11]. An innovation system is a
social construct created by a biological system of humans. Biological systems, particularly
humans, are intuitively accepted as being complex adaptive systems. Innovation or research is
an emergent property illustrative of their adaptive capabilities. However, this simple answer
doesn’t provide any guidance as to how to identify and use naturally occurring scale-invariant
characteristics of a complex innovation system to inform public policy.

The focus of this article is the general question “What is a complex innovation system?” The
paper describes and illustrates how complex systems theory and techniques can be used to
identify and quantify scale-invariant emergent properties. It shows how these measures can be
used to inform innovation policy. First an overview of complex systems theory and techniques
for identifying and quantifying scale-invariance is provided. Scale-invariant properties of inno-
vation systems that have already been identified are reviewed. And finally the principles dis-
cussed in the preceding sections are applied to size and impact measures to illustrate how
scale-invariant properties can be identified and measured.

2. Complex Systems and Scale-Invariance
Over the past few decades an extensive literature has been published on the study of complex
physical, biological and social systems. Complex systems differ from complicated systems.
Generally speaking a complicated system is understood through structural decomposition
while a complex system is understood through a functional analysis [12]. Complicated systems
tend to be distinctive and specialized occurring relatively rarely while complex systems tend to
be generic and pervasive.

The notion of complexity and complex systems in the sciences was introduced by Weaver
in 1948 [13]. He made a distinction between disorganized and organized complex systems. Dis-
organized complex systems are associated with extremely large physical systems like a system
of gas molecules or stars in the universe. They are uniquely characterised using probability the-
ory and statistical mechanics to create a compact description usually based on the mathematics
of averages. An organized complex system simultaneously involves a large number of interre-
lated variables that form what Weaver called an ‘organic whole’. He claimed there are a wide

What Is a Complex Innovation System?

PLOSONE | DOI:10.1371/journal.pone.0156150 June 3, 2016 2 / 24

Funding: The author received no funding for this
work. As an affiliation for author J. Sylvan Katz,
Science Metrix did not have any role in the study
design and analysis, decision to publish, or
preparation of the manuscript. Science Metrix
provided access to data through a research
fellowship. The specific role of author J. Sylvan Katz
is articulated in the 'author contributions' section.

Competing Interests: For this study Science Metrix
provided access to data through a research
fellowship. There are no patents, products in
development or marketed products to declare. This
does not alter the author's adherence to all the PLOS
ONE policies on sharing data and materials, as
detailed online in the guide for authors.



variety of such systems particularly in the biological, medical, psychological and economic sci-
ences. Moreover, he claimed they cannot be uniquely described in a compact manner by the
mathematics of averages.

Complex systems have some generally accepted properties [14–16]. Their structure spans
several scales. Their constituents are interdependent and interact in nonlinear ways. These
interactions give rise to novel and emergent dynamics. The combination of structure and emer-
gence is viewed as self-organization [17]. Self-organization which is closely related to scale
invariance may in a natural way be among the most important mechanisms leading to scale
invariance in complex systems [9]. Biological evolution is a form of self-organization produced
by dissipative dynamic processes that decreased system entropy through the utilization of
energy and molecular materials leading to increased organization and complexity [18]. The
Sante Fe Institute has prepared a Complexity Explorer web site with a number of excellent on-
line MOOCs that discuss complex systems and their unique properties [19].

There are a number of types of complexity such as algorithmic, computational, mathemati-
cal, physical and symbolic complexity. We will focus on physical and symbolic complexity
exemplified by biological systems and human languages. These are two types of systems that
most people intuitively agree are complex [11].

Humans generate speech and written words from a need to communicate meaning in a
given world or social context; their utterances obey a complex system of syntactic, lexical, and
semantic regularity [20]. Symbolic complexity in human language is partially exemplified by
two scale-invariant properties: the Zipf distribution of words in documents, irrespective of lan-
guage, and the Lotka distribution of scientific productivity, irrespective of language and culture.
Lotka distributions are used to model scale-invariant properties of human information produc-
tion processes such as the published output of a research system [21].

Physical complexity often involves the interplay between chaos and non-chaos producing
critical points where self-organization is most likely to occur [22,23]. A complex systems is nei-
ther too ‘ordered’ nor too ‘disordered’ but finely balanced between the two [11]. In order for a
complex biological system to survive and evolve there must be interplay between competition
and co-operation at different scales. Furthermore, the non-linear dynamics of a complex sys-
tem must be co-operative for self-organization to occur [24]. This is a fundamental characteris-
tic of insect & animal colonies and human activities. Complex biological/social systems are
called adaptive systems because they can adapt to a changing environment. A small subset of
adaptive complex systems are self-reproducing and experience birth, growth and death.

Emergent properties are the most often observed real world phenomena in a complex sys-
tem. Emergent properties are patterns and regularities arising through interactions among
smaller or simpler entities in a system that themselves do not exhibit such properties. In biolog-
ical systems interactions at lower levels emerge as objects expressing their properties at a higher
level [25]. Emergent properties tend to arise as new objects from one scale to another. For
example, life is an emergent property; none of the component molecules of a cell are alive, only
a whole cell lives.

Emergent properties are a key generic property of complex adaptive economic system; it is
what makes economies become complex [26]. Emergent properties appear at many levels of
observation in complex systems. Consider a Romanesque broccoli—a complex biological sys-
tem—that produces an edible flower constructed of elegant spiral swirls. The flower is com-
posed of smaller florets that mimic the shape of the main flower. Each of the smaller florets is
composed of even smaller florets with similar spiral swirls. This process repeats itself until near
the cellular level. The spiral swirls are natural fractals that emerge during the growth of the
flower. They are described by a series of fractal arcs that follow the well-known recursive Fibo-
nacci series [27]. These fractal arcs are not found at the level of individual cells and molecules
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such as proteins, DNA, minerals, etc. It is an emergent property of the collective dynamic activ-
ity of these entities.

We will see that innovation systems exhibit emergent properties that can be found at many
levels of observation too. For example, van Raan clustered highly cited scientific papers using
co-citation relationships [28]. He showed that the size-rank distribution of these clusters had
the unique signature of a fractal and the signature could be observed at different levels of aggre-
gation. He concluded the fractal emergent properties of co-citation clusters provided a repre-
sentation of the ecosystem of scientists.

An emergent property is identified by the scaling behavior of variables describing a struc-
tural feature or a dynamical characteristic of the system [15]. Scaling behaviour occurs when
an identical or statistically similar property occurs at many levels of observation. This property
is referred to as a scale-invariant property because it appears to be statistically similar irrespec-
tive of scale. It is commonly associated with things like the self-similar structure of geometrical
and natural fractals [29].

There are other common terms synonymous for scale-invariance most notably cumulative
advantage,Matthew Effect, Yule process and preferential attachment [30]. They have their roots
in the Gibrat's law or Gibrat's rule of proportionate growth or the law of proportionate effect
[31]. Merton called this success-breeds-success phenomenon by which the rich get richer while
the poor get comparatively poorer the “Matthew Effect,” after a well-known verse in the Gospel
according Matthew [32,33]. de Solla-Price coined the term cumulative advantage to describe
processes that produce scale-invariant citation probability distributions [34]. Barabási and
Albert called the processes that produce scale-invariant distributions of network links preferen-
tial attachment [35]. Cumulative advantage and preferential attachment are different names
for the same process; both are based on a Polya urn model [36]. It is important to note that
preferential attachment in datasets does not imply that preferential attachment is the active
mechanism. It simply implies that past activity is correlated with whatever growth mechanism
is actually at play. Preferential attachment is an effective mechanism that reproduces the statis-
tical properties of scale-invariant growth [37].

Scale-invariance can be perfect, as in the case of a deterministically defined geometrical frac-
tal, or it can be statistical, as in the case of jaggedness of an island shoreline or the billowiness
of clouds in the sky [29,38]. Scaling properties can be measured and used to characterise attri-
butes of a complex system. Measures based on scale-invariant properties are called scale-inde-
pendent or scale-adjusted measures [39]. These measures have been used to make comparisons
between cities with scaling properties and provide meaningful rankings of urban systems [40].
Unlike conventional per capita indicators scale-independent measures are dimensionless and
independent of size. There have been other attempts to build size-independent measures how-
ever, this paper focuses solely on scale-independent measures useful for characterizing scale-
invariant properties [41,42].

Scale-invariance is mathematically defined as p(bx) = g(b)p(x) for any b [30]. In other
words, if we increase the scale or units by which we measure x by a factor of b, the shape of the
distribution p(x) is unchanged, except for an overall multiplicative constant. Two mathemati-
cal functions that posses this property are shown in Fig 1: (a) power law probability distribu-
tions defined by p(x) = kx-α for x�xmin, the value of x at which the power law tail of the
distribution begins, and (b) power law correlations, defined by f(x) = cxn, where k & c are con-
stants. While f(x)�p(x) when n = -α, xmin = 1 & α>0 for illustrative purposes distributions and
correlations are discussed separately. Power law functions are characterized by their linear
appearance on a log-log scale. The exponents n and α, also called scaling factors, are measures
of the scale-invariance of properties. From this point forward the symbol α will be used to
denote the exponent of either a scaling distribution or correlation
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A common comment about power law probability distributions is that items in the tail of
the distribution only account for a small fraction, sometimes less than 1%, of the total popula-
tion [43]. There are two primary reasons why research has focused on the tail. The shape of the
tail determines if the distribution is or is not scale-invariant. Moreover, the tail not the body of
the distribution defines its variance. Later we will see that the exponent of the tail of a power
law distribution determines if it can be characterized by a mean and variance. Also, we will
review attempts to fit the whole distribution with a modified power law.

In order to reliably determine if the tail of the distribution is scale-invariant the tail should
cover a considerable range of probabilities, P(x), and x values beyond xmin [44]. Consider xmin

values for the 1997 & 1998 Scopus and 1988 Web of Science whose details are given later. The
xmin values for Scopus evolved from 8 and 6 citations, respectively, received in the first year of
publication to 435 and 463 by the end of the observation period. The most highly cited papers
in these years received 36,671 and 14,769 citations, respectively. Similar values occurred for the
WoS. For example, xmin values for the 1984 & 1985 WoS data evolved from 4 and 5, respec-
tively, to 313 and 267 citations with the highest cited papers receiving 14,276 and 18,154 cita-
tions by the end of the observation period. The range between xmin and xmax in the tails of the
WoS and Scopus distributions are close to 3 orders of magnitude and the range of P(x) for Sco-
pus and WoS was close to 4 orders of magnitude. This is illustrated in a dynamic graphic of the
evolution of the 1984 & 1985 WoS impact distributions [45]. The length of the tails in these
distributions is sufficient for making a reliable determination of their characteristics.

Fig 2 shows a degenerate form of a power law distribution called a power law with exponen-
tial cut-off given by f(x) = k x−αe−λx. In these cases some entities in the far right hand tail of the
distribution do not occur with as high a probability as would be expected of a pure power law
distribution. For a pure power law scale-invariance is found for all x>xmin. Scale-invariance for
a power law with exponential cut-off is limited to the region xmax>x>xmin where xmax is the
point at which the exponential cut-off starts to dominate the power law. The region of scale-
invariance between xmin and xmax can be several orders of magnitude in size.

Some research suggests that the exponential cut-off of the power law is due to finite size of
the data set, but recently it has been shown that it might also be an effect of finite observation
time [46]. And some models also show that the probability distribution tends to evolve from
exponential to a power law with exponential cut-off to a pure power law given enough time.

Fig 1. Power law (a) probability distribution and (b) correlation.

doi:10.1371/journal.pone.0156150.g001
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Random and natural populations drawn from a scale-invariant distribution are scale-invari-
ant too. A natural population is one that preserves its clustering, ‘community’ or small world
structure [47,48]. Hence a scale-invariant property found in a large complex innovation system
likely will occur for any natural smaller innovation system within it. It gets more difficult to sta-
tistically confirm the scale-invariance as system size decreases.

A number of physical processes are known to generate power law distributions. For exam-
ple, they can be generated by combinations of exponential distributions [30,49,50]. They can
be generated using the same multiplicative process that generates lognormal distributions by
imposing lower bounds [51]. This is one reason it is difficult to distinguish a power law from
lognormal distribution. Other power law generating mechanisms include specific Yule pro-
cesses such as preferential attachment and critical phenomena that occur with continuous
phase transitions [30,35]. History-dependent processes are ubiquitous in nature and social sys-
tems and frequently exhibit scale-invariant properties [52]. History-dependent stochastic pro-
cess associated with complex systems become more constrained as they unfold and their state
space or set of possible outcomes decreases as they age. This reduction of state space over time
leads to the emergence of power laws. The universal nature of power law distributions may be
partially explained by the diversity of mechanisms that can produce them.

The existence of scale-invariant properties maybe necessary but it is not sufficient to define
a complex innovation system. Scale-invariance is associated with simple and complex physical
systems as well as complex biological/social systems [11]. In addition to scale-invariant proper-
ties a complex biological/social system needs to be distinguishable from a physical system. A
physical system only has to do one thing–“be”–it doesn’t make choices and it is constrained by
physical laws to find a state of least energy or action. A biological/social system has to make
choices consistent with the restrictions imposed by the laws of physics. A complex physical sys-
tem evolves solely in state space while a complex biological/social system evolves in spaces of
state and strategy allowing it to adapt. By definition an innovation system is a biological/social
system that makes choices adapting itself and its environment to changing knowledge, prac-
tices and technologies and as well as to changing economic, social and political forces in which
it is embedded.

Fig 2. Power law with exponential cut-off.

doi:10.1371/journal.pone.0156150.g002
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3. Innovation Systems and Scaling Properties
Innovation is an interactive process between many actors, including companies, universities
and research institutes [53]. Innovation does not follow a linear path that begins with research
and then moves through development, design, engineering and production resulting with the
introduction of new products and processes. It is a non-linear process with feedback between
the different stages of development. Innovation is an emergent property of a complex adaptive
social system [54–60].

The character of an innovation system emerges from the interactions between its members
and the members of other systems. Some of the interactions are more “rule-like” than others
because they are governed by laws, regulations, treaties, etc. Other interactions are more ran-
dom because they are governed by personal, social, political and economic forces. Economic
emergence in an innovation system, that is the appearance of economic structures that cannot
be explained by examining their components, requires that their analysis be fully embedded in
complex economic system theory [26,61].

Leydesdorff and Etzkowitz pioneered the use of the metaphor ‘Triple Helix’ to describe a
complex innovation system composed of university, governmental and industrial organiza-
tions. It was the seed for many publications on the topic in the social studies of science [62–
64]. Recently there have been attempts to model the self-organizing character of the Triple
Helix to show how fractal structures of an innovation system are replicated by innovation
activities at various scales [65].

Many scaling properties have been observed for innovation systems. For example, the distribu-
tion of stock price fluctuations for US companies [66]. The growth dynamics of business and uni-
versity research activities are scale-invariant [67,68]. A recent study of the European aerospace
research area shows a variety of scale-invariant topologies in joint venture networks [69]. Also, a
variety of scale-independent measures has been used to explore the Chinese innovation system
[70]. These researchers found that some important developments were hidden by rankings using
conventional performance measures that were revealed using scale-independent rankings.

Cities are society’s predominant engine of innovation and wealth creation [71]. Scaling cor-
relations occur between city sizes and such thing as new patents issued, numbers of inventors,
GDP, number of R&D establishments, private sector R&D employment and overall R&D
employment [72,73]. Generally speaking, the properties of most socioeconomic systems are
strongly predicted by scaling laws that are non-linear functions of population size [40].

Scale-invariant models composed of a small number of power law correlations have been
constructed of the evolution of the European, Canada and Chinese innovation systems. The
models were constructed using the scaling correlations between GERD & GDP and GDP &
population [39,74]. They will be discussed in detail later.

Patent based indicators have been used and accepted as measures of innovation. A scaling
correlation has been shown between firm R&D expenditures and number of patents issued
[75]. Recently, the distribution of patents among applicants within OECD countries was
shown to be scale-invariant [76]. A variety of scale-invariant properties have been found for
patent measures [77].

Some measures used to investigate innovation systems are self-reported, statistically sam-
pled and/or incomplete. Sometimes they are reported in different units requiring conversion
before they can used for comparative purposes. Such data tend to be noisy and inaccurate mak-
ing them difficult to analyse. The quality of these data makes distributional analysis particularly
difficult especially when the data are disaggregated into smaller groups.

On the other hand, some properties such as impact and size measured using numbers of
citations to peer-reviewed publications and numbers of papers published by a group are
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accurate and relatively noise free. Some well tested schemes are available to agglomerate publi-
cations into things like research fields and subfields facilitating the investigations of the effects
of scale. Large datasets covering decades of published research are available making them ideal
for illustrating scale-invariant emergent properties of an evolutionary innovation system.

Peer-reviewed publications often containing new knowledge are a common output of the
global research system based in institutions and organizations like universities, hospitals, gov-
ernment research labs, private sector labs, etc. References or citations to these articles are used
as an imperfect but quantifiable indirect measure of the impact this knowledge has on the com-
munity. Peer-reviewed publications and citations to them are examples of clean, reliable and
reproducible measures of size and impact that can be used to explore scale-invariant properties
of the global research system. The same principles can be applied to other measures discussed
earlier.

An interesting property of scale-invariance is its recursive or self-similar character allowing
properties seen at one level observation to be seen a lower levels too. For example, if we know
that a property of the global research system is scale-invariant then any regional, national,
local, sectoral, institutional (e.g. universities) [78], etc research system within it will have that
scale-invariant property too. Moreover, if the global research system is a complex innovation
system then smaller research systems contained within it are complex too.

3.1 Scaling Distributions
Citation distributions have been the object of intense investigation for fifty years. Price reported
the right skewed nature of these distributions and later proposed a ‘cumulative advantage’
mechanism to explain the power law nature of these heavy tailed distributions [34,79]. However,
until recently a robust methodology for determining the likelihood of a real-world distribution
having a power law tail had not been generally accepted.

In the past a standard method for determining if a distribution was a power law was to use
linear regression methods on log transformed data. However, Rousseau and others had sug-
gested that the maximum likelihood estimation technique was better [80]. In 2005 an in-depth
article reviewed the theories and empirical evidence for the existence of power-laws as well as
generating mechanisms proposed to explain them [30]. In 2009 an excellent paper appeared in
SIAM that detailed a comprehensive methodology for determining the existence of a power
law distribution which is gaining wide acceptance [44,81]. The article examined the theory,
practice and difficulties for determining the best fit model to real-world empirical data sus-
pected of having power law probability distributions. It convincingly showed that the use of a
linear regression of log transformed data is flawed and that the maximum likelihood estimation
technique could be used to draw meaningful conclusions. Also the authors supplied the R:, C
and Matlab routines required for the analysis.

A few papers have appeared that used the Clauset et.al techniques to explore citation distri-
butions. Two papers looked at field level citation distributions for 1998–2002 WoS and Scopus
data [43,82]. Albarrán and colleagues used WoS data and Brzezinski used Scopus data. Both
groups used a 5 year fixed citation window to create the citation distributions and both encoun-
tered a similar difficulty. The WoS and Scopus field/subfield assignments allow a journal,
hence an article, to be assigned to more than one field/subfield. This has the potential to change
the shape of the tail of the citation distributions and warrants further investigation.

Albarrán et.al. reported that the distribution for 17 of 22 (77%) fields and 140 of 219 (64%)
subfields had reasonable likelihood of being power law distribitions. The authors did not check
to see if any other heavy tailed distributions might fit the data. Brzezinski reported the citation
distributions of 14 of 27 (52%) Scopus fields had a reasonable likelihood of being power law
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distributions. He computed the log-likelihood ratio as describe in Clauset et.al to see if a given
distribution was best fit by a power law or another heavy tailed distributions.

Using the same methodology a longitudinal study examined the evolution of the citation
distributions to peer-reviewed papers indexed in the WoS between 1984 and 2002 and cited
from the year of publication to 2009 [10]. This approach provided observation windows rang-
ing from 6 to 25 years. Articles were uniquely assigned to one of 13 fields using the National
Science Foundation (NSF) journal classification scheme so that citation distributions at the
field level could be explored. For the evolution of the overall citation distribution it was found
that those scaling exponents, α, with significant p-values (i.e. p� 0.10) declined with time. As
the distribution evolved it approached a value near 3.0, a value first reported by Redner [83].
Also, the citation distributions for 7 of 13 (54%) fields and 124 of 276 (45%) subfields had scal-
ing exponents< 3.0 with significant p-values. In addition, 71 of the 139 Scopus subject areas
had exponents< 3.0 one or more times during the first five years of the evolution of their cita-
tion distributions. This time frame is frequently used to prepare comparative impact measures.

Other studies have reported few subfields with exponents<3.0, for example, the work of
Brzezinski and Albarrán et al. discussed earlier. However, these studies combined multiple
years of publications and their citation counts. Citation growth and decay rates for individual
years can differ and it is unclear what effect mixing citation distributions for multiple years has
on the exponent of a scale-invariant tail. It is possible that it contributed to the larger exponents
reported by these authors. In this study only citation distributions to individual years of publi-
cations were examined to avoid this problem.

The magnitude of the exponent of the tail of a power law distribution is important. It tells
us when the mean and the variance of the distribution can be used to characterize it and when
it cannot. Power law distributions with exponents> 3.0 can be characterize by their mean and
variance. However, the second moment of real-world power law distributions with 2<α�3 is
infinite hence the variance is infinite [30]. Unlike power law distributions with α>3.0 they
don’t reside in the domain of attraction of Gaussian distributions; hence, the Central Limit
Theorem no longer applies and population averages cannot be used to characterise them [84].
The population average is only significant when the variance is finite.

Real data are finite and have a finite sample maximum but given any growing population
with a maximum x value at a point in time there is a non-negligible chance at some later time
the maximum value will be exceeded. If one calculates the means of random samples drawn
from a power law distribution with α<3.0 the values of the means will have a power law distri-
bution and vary over many orders of magnitude [30].

Population averages cannot accurately characterize real-world distributions with α<3.0.
Many traditional measures used for comparative and evaluative purposes are valid only for
Gaussian population distributions and power law distributions with α�3.0 [85]. Such measures
are poor indicators of the emerging properties of real-world complex systems [39].

Over the past few years attempts have been made to find models that fit the whole distribu-
tion not just the tail. For example, it is generally accepted that a power law distribution mod-
eled using preferential attachment in a growing network realistically characterizes the in-
degree distribution of Web links. However, some low connectivity regions such as university
home web pages seem to be better characterized by a modified power law of the form p(x) =

A/(B+x)α where A is chosen to ensure
X1

x ¼ xmin
pðxÞ ¼ 1; and B, the mode, and α, the expo-

nent, are constants [86]. The location of the mode is proportional to the rate at which links are
added and it appears in regions of low connectivity. When B = 0 the modified power law is a
pure power law. The modified power law is modeled using a mixture of preferential attachment
where links are created because of popularity and uniform attachment were links are created
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because of personal interests independent of popularity. The body seems to be best modeled by
a log-normal distribution and the tail by a power law with a transition in between determined
by a mixture of attachment types.

A simplified form of the modified power law called a hooked power law given by p(x) =
1/(B+x)α where B>-1 was used to explore citations distributions in smaller size Scopus subject
areas [87]. When x>B the tail of the hooked power law follows a power law. The authors used
data consisting of papers indexed in 2004 from 20 small Scopus subject areas that accumulated
citations over a 10 year period. 9 of the 20 datasets were truncated at 5000 papers due to limita-
tions of the Scopus interface. A comparison of fits of a power law, log-normal and a hooked
power to the tails of impact distributions was done for x>xmin where xmin was determined
using Clauset et al. methodology. All functional forms seemed to fit equally well; however, it
can be difficult to distinguish power law forms from log-normal fits particularly for small data
sets [44]. When the fits were compared over the whole distribution with xmin = 1 the hooked
power law distribution was a better overall fit. This is not a surprising finding as Clauset et al.
warns if that if xmin is too small or too large it produces a biased estimate of the scaling parame-
ter and a poor fit will result.

The authors also reported 8 of the 20 subfield has exponents<3.0 when the Clauset et al.
methodology was used to fit the tail of the distributions for x>xmin. On the other hand when
the hooked power was used to fit the whole distribution for xmin = 1 the overall fit was good
but only 2 of the 20 had exponents<3.0. The authors did not provided a mathematical reason
or statistical evidence for the differences. They suggested that the difference is related to the
hook in the power law but they did not provide any evidence that its tail fitted the range of val-
ues for x>xmin better or even as well as the Clauset et al. technique did. It is possible that while
the hooked power fits the larger data set it is a poor fit to the tail. This is a critical factor as the
exponent of the power law tail determines the variance of the distribution.

In contrast to the above approaches others have shown that papers in the body of citation
distributions are dominated by direct citations while the tail is dominated by indirect citations
with a ‘tipping point’ between them [88]. A direct citation is a reference to the source article
and an indirect citation is a reference to an article that contains a reference to the source article
in its bibliography. Papers having few citations are frequently directly cited whereas papers
having many citations (e.g. “classics”) are indirectly cited. Cumulative advantage arises because
there are more routes through the reference lists of intermediate papers for finding a classic
paper than for finding a non-classic paper. Irrespective of which model is used to fit the whole
distribution—preferential & uniform attachment, hooked power law or direct & indirect citing
—they all have a scale-invariant tails.

Many innovation networks have small world properties where the diameter of the network
d� log N and N is the number of nodes in the network [89]. The diameter of a network is the
average distance between nodes in the network. Complex networks like citation networks tend
to have scale-invariant degree distributions. When the magnitude of the exponent is in the
range 2<α�3 the average diameter of the network shrinks from logN to loglogN. So if
N = 1010 the mean distance between nodes shrinks from 10 when α>3 to 1 when α<3. The
network becomes an ultra-small world network [90].

Until recently it was difficult to examine the evolution of large citation distributions. Usually
a snapshot is taken of the distribution at a point in time. These data are analyzed and conclu-
sions drawn about the likelihood that the distribution is power law distribution or another
heavy-tailed distribution (e.g. log-normal, Poisson, stretched exponential). It is difficult to do
longitudinal studies even using modern high performance computing facilities available on
most university campuses. It can take more than 24 hours to run the simulation routine used
to determine the p-value for the exponent of a single power law distribution.
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An innovation system is a dynamic system and its attributes change with time. Perhaps a
snapshot of a distribution at a point in time is not giving us a full picture. Later, using a longitu-
dinal approach to look at evolutionary trends, it will be shown that impact distributions may
not be scale-invariant all of the time but they have a reasonable likelihood of being scale-invari-
ant much of the time.

3.2 Scaling Correlations
The global research system exhibits many scaling correlations defined by f(x) = cxα, where c is
constant. A scaling correlation with an exponent α 6¼1 is indicative of scale-invariant proper-
ties. When α>1.0 the correlation is superlinear indicative of a Matthew effect or cumulative
advantage [32,78,91]. When α<1.0 the correlation is sublinear indicative of an inverse Mat-
thew effect or cumulative disadvantage. When α = 1.0 linear effects are at play more indicative
of random organization rather than self-organization.

Scale-invariant correlations are found across groups within an innovation system [92]. For
example, using 1981–1996 ISI (nowWoS) data a scaling correlation with α = 1.27±0.03 was
found between the impact and sizes of subject areas. The magnitude of the scaling exponent
shows that on average a doubling in size produced a 21.27 or 2.4 times increase in impact. Also,
scaling correlations were found between impact and sizes across 13 NSF fields and 138 NSF
subfields using 1984–2002 WoS data [10]. Impact was measured by counting citations to
papers using a fixed 6-year citation window. The data were summed over the time interval.
The field and subfield level scaling exponents were nearly equal with α = 1.28±0.09 and α =
1.27±0.03, respectively.

The scaling factor, α, for the correlation between citations and papers is a scale-independent
measure of the average citedness of peer-reviewed papers produced in fields & subfields of dif-
ferent sizes in the global research system. The term citedness is a fuzzy term describing a scale-
invariant property akin to terms like the jaggedness of islands and billowiness of clouds mea-
sured by their fractal dimension which is the exponent of a power law relationship.

Scaling correlations with α>1 have been found between the denominators and numerators
of ratios within collections of conventional measures of performance such as citations/paper,
GDP/capita and GERD/GDP. Invariably, the numerator is a measure of size and it is used as a
normalizing parameter. If these indicators were truly normalized for size we would expect that
the scaling correlation between the denominators and numerators would be linear (i.e. α = 1)
indicating effects of size have been removed. Usually they have α>1 indicating the denomina-
tors increased non-linearly with size.

The mean-normalized citations score (MNCS) and the Hirsch or h-index are two fairly
recent measures used to evaluate aspects of an innovation system. They are considered to be
normalized for size. van Raan showed that the field-normalized number of citations, Cn, for
500 of the world’s largest universities scaled with their sizes, P [78]. Given that Cn = P�MNCS
and Cn� P1.17 then Cn/P = MNCS� P0.17. For a doubling in the size of a university Cn would
be expected to increase 2.25 times and MNCS 1.13 times. In other words, while Cn exhibits a
Matthew effect and MNCS shows an inverse Matthew effect. The h-index, h, has been used to
compare the impact of such things as individuals, journals, countries and patents. A group has
an index h if h published papers have at least h citations each and the other papers receive no
more than h citations. Hirsh defined the h-index as h = (C/a)1/2 where C is total citations and a
is a constant between 3 and 5 [93]. Earlier we showed that C = kPα, therefore substituting for C
we get h = a’ Pα/2 where a’ = (k/a)1/2 is constant. If α = 1.28 as in the previous example then for
a doubling of size the h-index would be expected to increase 1.55 times, an inverse Matthew
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effect. Many conventional indicators used as comparative measures of the performance of
innovation systems are biased by size [39,74].

Recently scaling correlations were used to illustrate that research collaboration increases the
impact of peer-reviewed papers beyond those of single-authored papers [94,95]. The scaling
correlation between impact and numbers of collaborative papers in 173 Management journals
was 1.89±0.08 whereas for single-author papers it was 1.35±0.08. Moreover, a scaling correla-
tion was found between impact and numbers of multi-author papers in 33 subfields of the nat-
ural sciences. The scaling correlation for multi-authored papers was 1.20±0.07 and for single-
authored papers it was 0.85 ± 0.11. In both instances the Matthew effect was much stronger for
collaborative papers resulting in greater impact than single-authored papers. In fact, in the nat-
ural sciences single-authored papers had a scaling exponent< 1.0 indicative of a cumulative
disadvantage.

A variety of other scaling correlations are associated with the global research system. Num-
bers of in-links and sizes of University web sites and numbers of collaborative papers and
total numbers of papers published by countries show scale-invariant characteristics [91,96].
Research impact has been shown to scale with size from the level of research groups and to the
level of European Universities [97,98]. The sizes of universities have been shown to scale like
city sizes and the published scientific output from urban centers scales with the population of
the centers [78,99].

A scale-invariant correlation can be used to construct dimensionless, relative measures
properly adjusted for size useful for comparative purposes [39]. For example, the expected
impact, Ce, of a group of a given size, P, in a collection of groups in a research system having a
scaling factor, α, is given by Ce�P α. The relative impact of any group in the collection is given
by the ratio of its observed impact, Co, to its expected impact Ce. The magnitudes of the relative
impacts of groups of vastly different sizes can be compared with the confidence that effects of
size have been removed.

One of the most common scale-invariant relationship occurs between any two measures
that exhibit exponential growth [100]. Assume we are given two exponential growth processes
x = ampt and y = bmqt where m is the base, t is time and a & b are constants. Let y = sxα where s
is a constant, then bmqt = s(ampt)α or b/s(a)α = m(pα –q)t. Because m(pα –q)t is a time-dependent
variable and it cannot be equal to b/s(a)α, a constant, unless pα –q = 0, therefore, α = q/p and
s = b/aq/p. This relationship holds even if the two processes are delayed in time with respect to
each other or if they have different starting values at t = 0. An example of this relationship will
be presented later.

The scaling exponent of such correlations gives us a measure of the relative exponential
growth of the two properties. If α = 1 both are growing at the same rate and if α 6¼1 then one is
growing faster or slower than the other. This measure can be used to inform policy. Consider
the following two examples discussed below. The first example is based on the relative growth
of impact and size and the second example is based on the relative growth of Gross Expendi-
tures on R&D (GERD) and GDP.

The scaling exponents for relative exponential growths of citations and papers were deter-
mined for each of 13 NSF fields derived from 1984–2002 WoS data. The exponents ranged
from α = 1.13 in physics to α = 2.92 in biology with an average of α = 1.74 [10]. Field sizes ran-
ged from 40 thousand to 3.2 million peer-reviewed documents. The fields were ranked by the
magnitude of the exponents and compared to the ranks determined using average number of
citations per paper over the time interval. It was clear that the conventional measure of average
number of citations per paper was not a predictor of the relative growths of impact vs size.

European and Canadian Gross Expenditures on R&D (GERD) and GDP grew exponential
from 1981 to 2000. The scaling exponents for the correlation between these parameters was
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found to be 1.03 and 1.42 respectively [39]. Between 1995 and 2005 the Chinese innovation
system had a scaling exponent of 1.67 for the same parameters [74]. These scaling exponents
tell us that the relative growth of GERD for the EU was essentially linear with respect to GDP
while the Canadian and Chinese GERD tended to grow 2.67 (21.42) and 3.18 (21.67) times for a
doubling of GDP. Let us examine these findings in more detail using scale-independent models
constructed from scaling correlations.

Scaling correlations were used to build scale-invariant models of the 1980–2002 European
and Canadian innovation systems and a model of the 1995–2002 Chinese innovation system.
Scaling correlation for the relative growth of GERD and GDP for countries, provinces and
municipalities in Europe, Canada and China, respectively, were combined with the scaling cor-
relations that occurred between GERD and GDP across these groups at points in time in these
systems [39,74,101]. A small number of scale-invariant functions uniquely described the evolu-
tion of R&D expenditure and GDP of groups within these innovation systems.

Consider the model of the European innovation system. It clearly showed that shortly after
the enactment of the Single European Act in 1986 the scaling correlation between GERD and
GDP across EU countries dropped from approximately 1.25 to nearly 1.0. In other words, at
the beginning of the period R&D investments increased nearly 2.5 times for each doubling in
country size and by the end of the period R&D investment it was increasing linearly with size.
R&D investment became more equitable across EU countries with integration into a single
market. During the same period the scaling correlation across Canadian provinces moved up a
bit from about 1.1 to 1.14 with a brief peak at around 1.2 between 1996 and 1998. On the other
hand scaling correlation across Chinese provinces and municipalities rose from about 0.86
in 1995 to around 1.25 in 2002 as R&D investment became more concentrated in the larger
regions. A scale-independent model can be played forward providing an overview of how a sys-
tem might evolve given the current scaling trends or how it might evolve under different policy
regimes.

Let’s turn our attention to illustrations of these concepts in more detail. The next two sec-
tions describe the data and methodology used to illustrate how scale-invariant properties of
impact distributions evolve with time and how the scaling correlations between impact and
size can provide novel insight into the character of the global research system.

4. Data and Methodology
Two data sets were used to examine the evolution of citation distributions and the correlations
between impact and size. One data set consisted of publications indexed in Scopus in 1997 and
1998 with annual citation counts to each paper from the year of publication to 2013. These
data were awarded as part of the 2013 Elsevier Bibliometric Research Program grants. They
were used to study the evolution of citation distributions over 16 and 17 year time spans and
consisted of more than 800,000 peer-reviewed documents each year that were cited more than
20 million times. The second data set consisted of 10.9 million peer-reviewed source docu-
ments indexed in the WoS between 1984 and 2002 with annual citation counts for each docu-
ment from the year of publication to 2009 totalling about 120 million citations [10]. These data
were accessed through a Research Fellowship at Science Metrix in Montreal.

A field level analysis of the evolution of citation distributions was done using three journal
schemes to classify documents: Scopus, UCSDMap of Science (MAPS) and the National Sci-
ence Foundation (NSF) journal classification schemes. Earlier it was mentioned that the Scopus
scheme allows a journal and the articles it contains to be assigned to one or more of 27 research
fields. This raised a question. Does this affect the field level citation distributions?
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This question is examined by comparing the findings using the Scopus scheme to the non-
overlapping MAPs and NSF schemes. The MAPS scheme was designed for visualizing maps
of science [102]. It used algebraic and clustering techniques to assign journals to one of 554
unique journal clusters which were aggregated into 14 unique science areas. Journals that cov-
ered multiple fields were not used in the analysis reducing the size of the analyzed data by 10%
from its original size. The NSF scheme assigns each journal hence each article to one of 13
unique fields based on citation patterns and expert opinion. It has not been updated since 2012
so articles in newer journals are not classified reducing the analyzed data set by approximately
7% from the original size.

The methodology described by Clauset et al. and the Matlab, R: and C software routines
they used were used in this analysis [44,103]. In particular, the maximum likelihood estimation
method (MLE) was used to determine the scaling exponents of the cumulative probability dis-
tributions. A technique devised by Clauset and colleagues was used to estimate the lower
bounds (i.e. xmin. The p-values for exponents were determined using Monte Carlo simulations.
These simulations were computationally intensive taking up to 25 hours to determine one p-
value running on an 8 node, 6 processors per node, Sun Microsystems, cluster using parallel
Matlab. In addition likelihood ratio tests were done comparing the best-fit power law model to
other heavy tailed distributions: Poisson, log-normal, exponential, stretched exponential and
power with exponential cut-off. It is important to note that in Clauset et al. the authors state
that for real-world data it is extremely difficult to tell the difference between log-normal and
power-law behavior unless one has very large data sets.

The distributions for each year in the evolution of the overall citation distribution were
assigned one of four likelihoods of being modeled by a power law (none, moderate, good or
power law with exponential cut-off) as described in the Clauset paper. The assignments are
based on the amount of statistical support there is for a distribution being modeled by a power
law distribution. “None” indicates the data is probably not power-law distributed; “moderate”
indicates that the power law is a good fit but that there are other plausible alternatives; “good”
indicates that the power law is a good fit and that none of the alternatives considered is plausi-
ble. In some cases, it is noted as “with cut-off,”meaning a power law with exponential cut-off is
favored over a pure power law.

5. Illustrations and Discussion
The first part of this section presents an analysis of the evolution of the impact of the global
research system by exploring the evolution of citation distributions to peer-reviewed papers
indexed in Scopus and WoS overall and at field levels. The second section presents an analysis
of the scaling correlations between the growth of the research system’s impact and size over
time and the correlation between field impact and field sizes measured across fields at points in
time.

5.1 Impact Probability Distributions
Table 1 gives the results of the tests of the fit of a power law model to the evolution of the distri-
bution of citations to 1997 and 1998 peer-reviewed documents indexed in Scopus. One of four
likelihood categories was assigned to each distribution annually. Table 2 gives similar results of
the tests of the fit of a power law model to the evolution of the distribution of citations to 1984
peer-reviewed documents indexed in the WoS database. This table is an example of the analysis
done for each of five years of WoS data from 1984 to 1988 that had the longest evolution times.
Both tables give the magnitude of the scaling exponent, α, its p-value and the log-likelihood
ratios test (LR) for alternative heavy tailed distributions and their respective p-values. Positive

What Is a Complex Innovation System?

PLOSONE | DOI:10.1371/journal.pone.0156150 June 3, 2016 14 / 24



values of LR indicate that the power-law model is favored over the alternative [44]. The final
column of the table summarizes the statistical support for the power-law fit for each year in the
evolution of the distributions.

The values in Table 3 summarize the results from Table 1. It gives the number of times that
each type of support occurred in the evolution of the 1997 & 1998 citation distributions. Except

Table 1. Test of evolution of power law distributions for citations to peer-reviewed 1997 and 1998 documents indexed in the Scopus database. Sta-
tistically significant p-values are denoted in bold. For each year in the evolution of the distribution p-values for the fit to the power-law model and likelihood
(LR) ratios with p-values are given for alternatives distributions.

Scopus 1997 N = 801,501

Time Log-normal Poisson Exponential Stretch Exp Power law
+ cut-off

Support for
power law

years α p LR p LR p LR p LR p LR p

1 3.36 0.44 -0.92 0.36 7.12 0.00 5.49 0.00 0.50 0.62 -1.67 0.07 with cut-off

2 3.10 0.00 -2.14 0.03 13.11 0.00 9.52 0.00 -0.46 0.65 -8.21 0.00 with cut-off

3 3.23 0.83 -0.94 0.35 8.60 0.00 5.75 0.00 0.19 0.85 -1.92 0.05 with cut-off

4 3.24 0.69 -0.68 0.50 6.91 0.00 5.10 0.00 0.63 0.53 -1.01 0.16 moderate

5 3.25 0.52 -0.43 0.67 5.90 0.00 4.68 0.00 0.55 0.49 -0.38 0.38 moderate

6 3.23 0.43 -0.44 0.66 5.46 0.00 4.48 0.00 0.98 0.33 -0.27 0.46 moderate

7 3.23 0.54 -0.29 0.77 4.90 0.00 4.17 0.00 1.01 0.31 -0.07 0.70 moderate

8 3.23 0.85 -0.21 0.83 4.86 0.00 4.31 0.00 1.26 0.21 -0.01 0.87 moderate

9 3.21 0.86 -0.27 0.78 4.77 0.00 4.31 0.00 1.16 0.24 -0.01 0.89 moderate

10 3.17 0.17 -0.47 0.64 4.59 0.00 4.11 0.00 0.81 0.42 -0.04 0.79 moderate

11 3.10 0.09 -0.81 0.42 5.75 0.00 5.46 0.00 1.06 0.29 -0.35 0.40 none

12 3.11 0.31 -0.54 0.59 5.08 0.00 4.81 0.00 1.08 0.28 -0.08 0.68 moderate

13 3.10 0.76 -0.41 0.69 4.88 0.00 4.66 0.00 1.25 0.21 -0.03 0.82 moderate

14 3.10 0.55 -0.26 0.80 4.43 0.00 4.18 0.00 1.32 0.19 0.00 0.98 moderate

15 3.06 0.26 -0.48 0.63 4.88 0.00 4.70 0.00 1.19 0.23 -0.04 0.77 moderate

16 3.06 0.24 -0.29 0.77 4.47 0.00 4.27 0.00 1.14 0.25 0.00 0.95 moderate

17 3.06 0.25 -0.24 0.81 4.38 0.00 4.18 0.00 3.38 0.00 0.00 0.99 moderate

Scopus 1998 N = 816,486

Time Log-normal Poisson Exponential Stretch Exp Power law
+ cut-off

Support for
power law

years α p LR p LR p LR p LR p LR p

1 3.21 0.04 -1.72 0.09 9.46 0.00 7.56 0.00 n/a n/a -5.18 0.00 with cut-off

2 3.34 0.68 -0.72 0.47 7.77 0.00 4.65 0.00 0.02 0.99 -1.09 0.14 moderate

3 3.30 0.51 -0.30 0.76 9.53 0.00 6.49 0.00 1.16 0.25 -0.49 0.32 moderate

4 3.30 0.91 -0.15 0.88 9.60 0.00 6.76 0.00 1.46 0.14 -0.27 0.47 moderate

5 3.26 0.83 -0.18 0.86 9.54 0.00 6.85 0.00 1.43 0.15 -0.29 0.45 moderate

6 3.01 0.00 -2.35 0.02 16.26 0.00 12.60 0.00 0.15 0.88 -8.37 0.00 with cut-off

7 3.01 0.00 -2.05 0.04 14.93 0.00 11.62 0.00 0.48 0.63 -5.95 0.00 with cut-off

8 3.15 0.71 -0.13 0.90 9.27 0.00 7.20 0.00 1.74 0.08 -0.27 0.47 moderate

9 3.11 0.72 -0.13 0.90 9.48 0.00 7.51 0.00 1.86 0.06 -0.29 0.44 moderate

10 3.06 0.64 -0.29 0.78 10.74 0.00 8.79 0.00 1.96 0.05 -0.47 0.33 moderate

11 3.05 0.73 -0.11 0.91 10.97 0.00 9.22 0.00 2.39 0.02 -0.31 0.43 moderate

12 3.04 0.76 -0.05 0.96 10.87 0.00 9.22 0.00 2.39 0.02 -0.27 0.47 moderate

13 3.02 0.56 -0.09 0.93 10.85 0.00 9.22 0.00 2.44 0.01 -0.30 0.44 moderate

14 3.01 0.27 0.14 0.88 10.63 0.00 9.07 0.00 2.53 0.01 -0.22 0.51 good

15 2.99 0.69 0.15 0.88 9.63 0.00 7.96 0.00 5.17 0.00 -0.30 0.44 good

16 2.99 0.54 0.25 0.80 9.70 0.00 8.06 0.00 5.28 0.00 -0.27 0.46 good

doi:10.1371/journal.pone.0156150.t001
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for one instance the LR values for the Poisson, exponential and stretched exponential models
were positive ruling them out as potential candidates. The LR values for the log-normal model
were negative except for three instances and because they had insignificant p-values they could
be ruled out as a possibility. In 98% of the instances the distributions had a moderate likelihood
of being modeled a power law or a power law with an exponential cut-off. And the scaling

Table 2. Test of evolution of power law distributions for citations to peer-reviewed 1984 documents indexed in theWeb of Science database. Sta-
tistically significant p-values are denoted in bold. For each year in the evolution of the distribution p-values for the fit to the power-law model and likelihood
(LR) ratios with p-values are given for alternatives distributions.

Web of Science 1984 N = 437,225

Time Log-normal Poisson Exponential Stretch Exp Power law
+ cutoff

Support for
power law

year α p LR p LR p LR p LR p LR p

0 3.22 0.50 -0.16 0.88 8.71 0.00 8.59 0.00 1.20 0.62 -0.14 0.59 moderate

1 3.11 0.00 -2.04 0.04 9.37 0.00 8.08 0.00 -0.03 0.98 -5.28 0.00 with cut-off

2 3.17 0.08 -1.23 0.22 8.11 0.00 6.59 0.00 0.38 0.71 -1.98 0.05 with cut-off

3 3.07 0.00 -2.21 0.03 10.02 0.00 8.55 0.00 1.42 0.55 -6.00 0.00 with cut-off

4 3.12 0.03 -1.34 0.18 8.09 0.00 6.63 0.00 1.32 0.45 -1.91 0.05 with cut-off

5 3.09 0.00 -1.44 0.15 8.73 0.00 7.30 0.00 1.26 0.72 -2.31 0.03 with cut-off

6 3.06 0.00 -1.65 0.10 9.22 0.00 7.71 0.00 1.49 0.38 -2.93 0.02 with cut-off

7 3.03 0.00 -1.85 0.06 9.76 0.00 8.18 0.00 0.00 1.00 -3.71 0.01 with cut-off

8 3.04 0.00 -1.54 0.12 9.02 0.00 7.49 0.00 0.15 0.88 -2.36 0.03 with cut-off

9 3.23 0.92 0.25 0.80 5.47 0.00 4.63 0.00 1.48 0.14 0.00 1.00 good

10 3.22 0.63 0.44 0.66 5.37 0.00 4.65 0.00 1.56 0.12 0.00 1.00 good

11 3.19 0.50 0.11 0.91 5.43 0.00 4.70 0.00 1.46 0.15 0.00 1.00 good

12 3.22 0.51 0.50 0.62 5.30 0.00 4.77 0.00 1.78 0.08 0.00 1.00 good

13 3.00 0.00 -1.65 0.10 8.18 0.00 7.10 0.00 0.09 0.93 -2.34 0.03 with cut-off

14 2.98 0.00 -1.87 0.06 8.50 0.00 7.44 0.00 -0.13 0.90 -3.13 0.01 with cut-off

15 2.98 0.00 -1.79 0.07 8.31 0.00 7.26 0.00 -0.01 1.00 -2.82 0.02 with cut-off

16 2.98 0.00 -1.74 0.08 8.36 0.00 7.33 0.00 -0.12 0.84 -2.71 0.02 with cut-off

17 2.98 0.00 -1.75 0.08 8.14 0.00 7.00 0.00 -0.22 0.83 -2.64 0.02 with cut-off

18 3.17 0.87 0.52 0.60 5.39 0.00 4.88 0.00 1.79 0.07 0.00 1.00 good

19 3.16 0.92 0.32 0.75 5.70 0.00 5.12 0.00 1.71 0.09 0.00 1.00 good

20 3.15 0.85 0.23 0.82 5.88 0.00 5.25 0.00 1.77 0.08 0.00 1.00 good

21 3.14 0.58 0.24 0.81 5.96 0.00 5.29 0.00 1.84 0.07 0.00 1.00 good

22 3.13 0.84 0.20 0.84 6.11 0.00 5.42 0.00 1.73 0.08 0.00 1.00 good

23 3.11 0.62 0.11 0.92 6.23 0.00 5.49 0.00 1.64 0.10 0.00 0.97 good

24 3.10 0.50 0.16 0.87 6.31 0.00 5.59 0.00 1.71 0.09 0.00 0.98 good

25 3.08 0.48 -0.07 0.95 6.41 0.00 5.62 0.00 1.46 0.14 -0.01 0.88 moderate

doi:10.1371/journal.pone.0156150.t002

Table 3. Scopus—support for a power law distribution.

Support 1997 1998 Total % Total

None 1 0 1 3%

Moderate 14 10 24 71%

Good 0 3 3 9%

Power law w/cut-off 3 3 6 18%

doi:10.1371/journal.pone.0156150.t003
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exponents for the distributions decreased in magnitude with the passage of time from 3.36 and
3.21 to 3.06 and 2.99 in 1997 and 1998, respectively.

Table 4 summarizes the findings for five years of WoS data for which example data were
given for 1984 in Table 2. In 93% of the instances the distributions had at least a moderate
chance of being a power law or power law with exponential cut-off. And in 75% of cases of the
WoS distributions were assigned a likelihood support of ‘good’ or power law with exponential
cut-off.

Moreover as we move from observation times of 17 & 16 years using Scopus to 25 to 21
years using the WoS there is a greater chance the distributions will have a good fit to a power
law or power law with exponential cut-off. These data support the notion that the distribution
of the impact of knowledge has a reasonable likelihood of having scale-invariant properties.

Table 5 examines the field level distributions of citations to peer-reviewed papers indexed in
the Scopus database in 1997 & 1998. Journals were assigned to one or more of 27 overlapping
Scopus fields, one of 13 non-overlapping NSF fields and one of 13 non-overlapping MAPS
fields. The data show that in 55–70% of the cases there is a ‘good’ likelihood that the field level
citation distributions can be modeled by a power law or a power law with exponential cut-off.

These data illustrate that the impact of field level knowledge has a reasonable likelihood of
having scale-invariant probability distributions too. Furthermore the result seems to be inde-
pendent of whether papers are assigned to overlapping or non-overlapping fields

Scaling exponents with significant p-values for the field level distributions were examined at
the end of the observation timeframe to determine how many fields had α< 3.0. Using the
Scopus journal classification scheme 24 of the 54 (44%) field level distributions had α< 3.0.
Also, 8 of the 24 (30%) fields had distributions with α< 3.0 both years. Using the NSF scheme

Table 4. Web of Science—support for a power law distribution.

Support 1984 1985 1986 1987 1988 Total % Total

None 0 3 0 5 0 8 7%

Moderate 2 4 5 6 5 22 18%

Good 11 6 0 9 12 38 32%

Power law w/cut-off 13 12 19 3 5 52 43%

doi:10.1371/journal.pone.0156150.t004

Table 5. Support for power law distribution—field level analyses.

Scopus NSF MAPS

Likelihood No. % No. % No. %

1997 none 39 8 5 2 11 5

moderate 142 31 98 41 52 24

good 25 5 10 4 21 10

cut-off 253 55 123 53 137 62

1998 none 26 6 16 7 14 5

moderate 172 40 85 38 64 31

good 59 14 38 17 21 10

cut-off 175 41 85 38 109 52

Total none 65 7 21 5 25 5

moderate 314 35 183 40 116 27

good 84 9 48 10 42 10

cut-off 428 48 210 45 246 57

doi:10.1371/journal.pone.0156150.t005
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14 of 26 (54%) distributions had α< 3.0 and 4 of 13 (31%) fields had distributions with α<

3.0 both years. And using the MAPS scheme 10 of 28 (36%) of the distributions had α< 3.0
and 5 of 14 (36%) fields had distributions with α< 3.0 both years. Irrespective of the method
used to assign papers to fields a significant number of distributions have α< 3.0 by the end of
the observation time frame.

5.2 Impact-Size Scaling Correlations
As shown earlier the simplest scaling correlation that any system will exhibit occurs between
parameters that grow exponentially at the same time. Let’s examine how the increasing size of
the global research system correlates with its impact. This is illustrated using WoS data because
it covers a larger time frame. Fig 3a depicts the exponential growth over time on a log-linear
scale of peer-reviewed papers and citations to these papers counted using a fixed 6 year time
window. Fig 3b depicts the scaling correlation between citations and papers on a log-log scale.

The ratio of the exponential growth exponents, 0.023/0.013 = 1.77, is within the error limit
range for the measured scaling exponent of 1.79±0.04. The scaling exponents tells us that on aver-
age for every doubling in peer-reviewed published output the impact was expected to increase by
21.79 or 3.5 times. The scaling exponent, 1.79, is a scale-independent measure of the scale-invari-
ant relative growth of the impact of the global research system over a 21 year time frame.

As discussed earlier scaling correlations have been found between impact and group size
in the global research system at a point time. For example consider the scaling correlation
between the impacts of research fields and their sizes based on Scopus data classified using
the three journal classification schemes and done at two points in time. Table 6 gives the

Fig 3. Scaling correlation between exponential growth of impact and size.

doi:10.1371/journal.pone.0156150.g003

Table 6. Scaling exponents for scaling correlation between impact and field sizes.

1997 1998

Scheme No. Fields α R2 α R2

Scopus 27 0.96 ± 0.09 0.83 0.96 ± 0.09 0.83

NSF 13 1.21 ± 0.08 0.91 1.19 ± 0.07 0.92

MAPS 13 1.27 ± 0.12 0.96 1.26 ± 0.11 0.96

doi:10.1371/journal.pone.0156150.t006
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magnitudes of the scaling correlation across fields in 1997 and 1998 between number of cita-
tions and field sizes determined using the Scopus, NSF and MAPS journal classification
methods.

The data show that the non-overlapping NSF and MAPS field assignments have α> 1.0
indicative of a self-organization. On the other hand the overlapping Scopus field assignment
has α�1.0 not indicative of self-organization.

Consider the following characteristics of the data. More than 50% of 1997–98 Scopus arti-
cles were assigned two or more Scopus general subject areas (fields). About 70% were assigned
to two or more Scopus subject areas (subfields). Moreover, more than 18% were assigned to
three or more fields and about 40% were assigned to 3 or more subfields. Assigning articles to 2
or more fields/subfields affects both the sizes of the fields/subfields and thier impact. Caution
needs to be exercised as the methods used to classify groups in an innovation system can affect
our view of its self-organizing structure.

6. Summary
The global research system is an example of an innovation system. Peer-reviewed publications
and citations are used as measures of size and impact, respectively. The distribution of impact
and the correlation between impact and size over time and at points in time were shown to
have scale-invariant properties. Many outputs from innovation systems could have been used
but as described earlier they have limitations. Citations and papers were used to illustrate scale-
invariant concepts because the Web of Science and Scopus datasets are relatively clean and
long time series are available. These measures have an extensive history of use in the study of
innovation systems.

The global research system has the general characteristics of a complex system. Its adaptive
nature distinguishes it from a complex physical system. At different levels of observation the
evolution of the impact tended to be scale-invariant. The scaling exponent decreased toward a
value of<3.0 as the distributions evolved. However, in some subfields the exponents became
<3.0 within the first few years of their evolution.

Scale-invariant correlations exist between the growth of impact & size over time and
between impact and size across fields & subfields at points in time. The scaling exponents of
the later correlations are systemic measures of the ‘average impact’ of all the fields or subfields
in the system. This scale-invariant correlation can be used as a reference function to calculate a
scale-independent measure of how much impact a field or subfield is having relative to the
average system impact.

A scale-invariant property has a unique characteristic. It is solely characterized by a power
law f(x) = kxα where α is a constant that quantifies the scale-invariant property. Due to its
recursive or self-similar characteristics any natural community drawn from a population
exhibiting a scale-invariant property will display that scale-invariant property too. Since the
global research system is a complex innovation system with scale-invariant characteristics then
any research system within it is likely to be a complex system with scale-invariant properties
too.

This recursive property is useful. For example, it can be difficult to determine if the proba-
bility distribution of a property for smaller groups is scale-invariant. However, if it can clearly
be shown that a property is scale-invariant at higher levels of aggregation then it can be said
with increased certainty that it is likely scale-invariant at low levels too.

What are the implications for policy makers? Perhaps the most important take away is
scale-invariance is natural and it is frequently found as an emergent property of a complex
innovation system. Finding reliable measures to describe scale-invariant emergent properties is
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a concern. Many measures are based on population averages that are useful only when the scal-
ing exponent of the underlying distribution is� 3.0. Generally speaking real-world scale-
invariant distributions tend to become<3.0 as the system evolves. Moreover, as group size
decreases it is more likely to become<3.0 early in its evolution. On the other hand scale-inde-
pendent measures based on emergent properties are useful throughout the lifetime of the sys-
tem irrespective of the magnitude of the variance. Furthermore, only a small number of scale-
invariant functions are needed to create a scale-independent evolutionary model of properties
of a complex innovation system.

Some scientometricians claim that measures based on standard field-normalization proce-
dures that use average field citations as normalization factors work well in practice. This may
be true for scale-invariant distributions with scaling exponents>3.0. However, few, if any, rig-
orous comparisons have been made on the effect that field normalized and scale-adjusted mea-
sures have on the rankings of performance measures from distributions with scaling exponents
<3.0 or with a mixture of scaling exponents<3.0 &>3.0. Further research on this matter is
warranted to ensure that policy makers are getting an accurate evidence- based view of the
innovation systems that are the targets of their policies.

The focus of this article was to explore the question “What is a complex innovation system?”
The current research on scale-invariant properties of innovation systems and methodologies
for determining their existence was reviewed. Finally, proven methods were applied to mea-
sures of impact and size to illustrate a variety of scale-invariant properties of the global research
system. The global research system has characteristics of a complex adaptive system and it
exhibits a variety of scale-invariant properties indicative of self-organizing processes. Most, if
not all, innovation systems are complex systems. Scale-independent evidence based measures
capture naturally occurring but rarely quantified emergent properties of a dynamically evolving
complex innovation system. Scale-independent measures and models would be useful tools to
include in any basket of measures used to inform innovation policy.
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