
What Is a Conversation Policy?

Mark Greaves, Heather Holmback, Jeffrey Bradshaw

Mathematics and Computing Technology
The Boeing Company

P.O. Box 3707 MS 7L-43
Seattle, WA 98124-2207

{mark.t.greaves, heather.holmback,
jeffrey.m.bradshaw}@boeing.com

Abstract. In this paper we define the concept of conversation policies: declara-
tive specifications that govern communications between software agents using
an agent communication language. We discuss the role that conversation poli-
cies play in agent communication, and suggest several subtypes of conversation
policy. Our reasoning suggests, contrary to current transition net approaches to
specifying conversation policies that conversation policies are best modeled as
sets of fine-grained constraints on ACL usage. These constraints then define
the computational process models that are implemented in agents.

1. The Roots of Conversation Policies

The dream of agent interoperability is commonly thought to rest on three main char-
acteristics shared by the interoperating agents:

1. They would be able to access a set of shared infrastructure services for registration,
reliable message delivery, agent naming, and so forth (i.e., there must be structural
interoperability);

2. They would share (possibly through translation) a common content ontology, truth
theory, and method of binding objects to variables (i.e., there must be logical inter-
operability); and

3. They would agree on the syntax and semantics of a common agent communication
language (ACL) in which to express themselves (i.e., there must be language inter-
operability).

In the last few years, international standards bodies (e.g., OMG, FIPA) and govern-
ment-sponsored research efforts (ESPRIT, DARPA CoABS) have attempted to ad-
dress these three aspects of agent interoperability. A surprising thing that all of this
work has shown is the incompleteness of this list of interoperability characteristics: it
is not difficult to construct a group of agents which satisfies all of them, and yet
which cannot usefully interoperate. One common problem occurs because the above
characterization of language interoperability is not broad enough. Specifically, for
logically powerful and expressive ACLs like KQML [6] and the FIPA ACL [14],
language interoperability requires more than simply that the agents agree on the for-

mat and meaning of the various primitive ACL messages. As a practical matter,
agents must also agree on the range of possible sequences and contents of messages
when they are interpreted in the context of larger goal-directed interagent dialogues,
or conversations.

Why aren’ t existing ACL specification techniques sufficient for this task? Current
methods for defining ACLs are built around complex and technically arcane methods
for making precise the syntax and semantics of each message type. In the most ad-
vanced of these, the semantics are also formally compositional, in that there are well-
defined ways to derive the meaning of a sequence of two or more messages from the
meanings of the constituents [5]. However, compositional semantic theories for
ACLs often do not uniquely specify the actual content and sequencing of agent mes-
sages needed to achieve to a given communicative goal. This gives rise to a signifi-
cant ambiguity problem for agents that need to interact using a powerful ACL, which
we will call the Basic Problem:

Modern ACLs, especially those based on logic, are frequently powerful enough
to encompass several different semantically coherent ways to achieve the same
communicative goal, and inversely, also powerful enough to achieve several dif-
ferent communicative goals with the same ACL message.

Put another way, the Basic Problem states that for powerful ACLs, there is a many-
to-many mapping between the externally visible messages an agent produces and the
possible internal states of the agent that would result in the production of the message.
This would be a significant but manageable problem, except that agent interaction
does not consist of agents lobbing isolated and context-free directives to one another
in the dark. Rather, the fact that problems of high communicational complexity may
be delegated to agents dictates that those agents must participate in extended interac-
tions. Because agents are autonomous, they will need to independently optimize their
own utility functions in these interactions, and hence they must use their beliefs about
the probable goals of the other participants in order to determine the best next mes-
sage to generate. And, because knowledge of the semantics of ACL messages pro-
vides only an imperfect guide to these goals (due to the Basic Problem), it is nearly
impossible for an agent to reliably infer the intentions and goals underlying another
agent’s use of a particular ACL message.

The Basic Problem is not limited to agent communication; indeed, it is a prime
characteristic of human communication in natural language. There are an infinite
number of ways to express a given meaning and communicative intent in a natural
language such as English, and the same English utterance can be used to achieve an
infinite, or at least large, number of communicative functions. In fact, a large part of
speech act theory is concerned with explaining how a certain communicative intention
can be expressed by a certain utterance in a certain context, given the expressive
power of natural languages. The Basic Problem is not a prohibitive one in human
communication because the use of language is always situated in some context and
humans are in general well equipped to use that context to interpret linguistic utter-
ances.1 Communication breakdowns in natural language conversations are largely
due to the lack of sufficient shared context in which to interpret an utterance, not the

1 In fact, the compactness of expression that the Basic Problem entails is one of the features

that allows natural languages to be learnable.

lack of syntactic and semantic knowledge with which to interpret the utterance itself.
These breakdowns are resolved by reestablishing the shared context of facts and in-
ference mechanisms. However, lacking both human inferential skills and the rich
shared context of human interaction, agents lack the means to directly overcome the
Basic Problem in the way that humans do.

In order to address this problem, designers of ACLs like FIPA [14] and KAoS [2]
have included elements in the ACL specification which further specify some of the
different types of stereotypical interactions into which agents using that ACL could
enter. Essentially, these elements function as templates to limit the form, content, and
ordering of the possible message sequences which could be used to accomplish a
communicative goal. For example, the current version of the KAoS specification of
conversation types is based on a form of finite state machine (see figure 1). FIPA’s
interaction protocols are both somewhat more ambitious (e.g., including a description
of several different auction types) and considerably more vague [14]. By providing
these templates, ACL designers have hoped to circumvent the Basic Problem by pro-
viding additional context information beyond that supplied by the bare form of a
message. This context information at minumum includes shared expectations about
the possible and required conversational moves between two agents. For example, a
template might specify that a REQUEST will be followed by an ACCEPT or a RE-

0

4

6

9

7

C➨ S: Announce/RFB

S➨ C: Bid

C➨ S: Award

S➨ C: Task Complete

S➨ C: (silence)

C➨ S: Withdraw

C➨ S: Withdraw/Renege?

C➨ S: Withdraw

S➨ C: Withdraw/Renege?

����������	
 �� � ��� ��	 ���������������	 ���

�

������	 ���� ���
��� � 	 ����� ���

C➨ S: Decline/Reject

10
 !�"� #

$%

$�&$�'
 �(�) *�+�, -�./�0�1324(�+ 5�6�+ 2�7 8 +�0�9�9�*�8�0�) :�.<;
7 8�+) *�8�/ .=�+ 5�6�+�1�*�7 8�) *�7 8>) *�+�,3?A@

'�(�1�5�B) 7 2B .�2�0�7 8) () 0�(2�0�7 8)
#�(�1�*�) /�:�1�*�, .<;�5�+ .-�7 9>2�0 + +�7 6<B .=�2�; 7 0�;�) 04) :7 +�"
�B B��C�.<8) +�*�-�D .<;) 7 + .<E

 �(�) *�+�, -�./�0�1324(�+ 5�6�+ 2�7 8 +�0�9�9�*�8�0�) :�.<;
7 8�+) *�8�/ .=�+ 5�6�+�1�*�7 8�) *�7 8>) *�+�,3?A@

'�(�1�5�B) 7 2B .�2�0�7 8) () 0�(2�0�7 8)
#�(�1�*�) /�:�1�*�, .<;�5�+ .-�7 9>2�0 + +�7 6<B .=�2�; 7 0�;�) 04) :7 +�"
*�B B * C�.<8) + *�-�D .<;) 7 + .<E

 $<"� %A"� '
+ 5�6�F +�.�G) E
H�I�J K�L M�KAN I�O
I�J I�P>Q R�S�M�O T

U V�W�U X
Y Z[<\

1

2 11S➨ C: (silence)

8
5

‘Contract’ conversation policy

Contractor
waits
indefinitely if
subs don’ t
return.

Contractor
waits
indefinitely if
no bids
recv’d?

3

]�^ _ ` a�bc d�_

Fig. 1. A sample KAoS notation for Contract Net

JECT.2 However, ACL designers have also included many other important types of
context information in these templates, such as canonical mappings between ACL
message types and the goals of the agent which generated the messages. For exam-
ple, if an agent A knows that agent B sent a INFORM message in the context of a
KAoS INFORM conversation policy, then A can conclude that B’s use of INFORM
was intended to get A to do something – to adopt a particular belief – and furthermore
that B expects only a limited range of replies from A.3 Because of the explicit poli-
cies which govern this type of KAoS conversation, A does not have to perform a
lengthy piece of reasoning evaluating all the possible communicative goals B might
be using the INFORM to achieve (e.g., B could be using this message to indirectly
get A to adopt a particular goal), and based on this evaluation select an appropriate
response from among the universe of all of A’ s syntactically legal responses.4

Unfortunately, there is no agreement in the agents community on the status of these
conversation templates in the specification of agent communicative behavior, or on
their standing within ACL specification practice. Different agent architectures dis-
agree on what to call these templates (Bradshaw [2;4] uses conversation policies,
which is the term we adopt in this paper), whether they are optional or mandatory,
what formalism should be used to specify them, what conversational properties they
should capture, and what their exact relationship should be to the actual message
sequences that agents produce. The goal of this paper is to sort out some of these
questions, and locate conversation policies within a more general model of agent
communicative behavior.

2. First Principles for Conversation Policies

Our basic account of conversation policies is based on an observation that is com-
monplace in linguistic pragmatics and somewhat less so in ACL circles: at a funda-
mental level, the use of language by an agent is no different from any other action that
an agent might take. Like other actions, an agent’s production of a message is always
the result of a plan to bring about some identified state in the world. This characteris-
tic is the reason we use the theoretical framework of speech acts (and their intended
perlocutionary effects) when we think about agent communicative behavior. In this
style of theoretical framework, every agent message is driven by a strategy to achieve
the agent’s current goals. Of course, this process of planning and goal satisfaction
may be completely implicit in any particular agent: an agent may be unreflectively
executing some prebuilt procedure or state machine, and not performing any explicit
deliberation at all. Nevertheless, if an agent can be coherently analyzed as having

2 Note that the requirement for these responses is not a consequence of the semantics of the

REQUEST message under most ACL semantic theories.
3 Of course, much of this reasoning might be implicit in the logic of A’ s program, but never-

theless this is an accurate model of A’ s ideal behavior.
4 For example, B could send an INFORM to A stating that B requires help on some action a.

The KAoS conversation policy for INFORM forbids B’ s goal in sending this message to be to
get A to adopt a goal to help B with a; B’ s direct goal in sending this message can only be to
get A to form a belief about B’ s capabilities for a.

goals and acting to bring about those goals, then our account will apply. For many
researchers, the ability to take such an intentional stance is one of the prime charac-
teristics of agenthood [1]. We implicitly adopt this stance in this paper.

Another important observation is that, unlike other types of agent actions, such as
turning on a piece of machinery or booking a travel itinerary, interagent messages are
fundamentally limited in the type of effects they can directly bring about. The only
possible direct effect of producing an interagent message is to change the internal
state of the recipient agent so that it comes to have a particular belief about the send-
ing agent.5 Therefore, reasoning about the proper ACL message to generate next in a
conversation necessarily involves reasoning about the beliefs, goals, and abilities of
other agents, both in understanding what was intended by a received message and in
projecting what the perlocutionary effects of a sent message are likely be. Indeed, the
only reason we have ACLs and conversation policies in the first place is because
agents do not have direct access to the beliefs and goals of other agents. And, be-
cause reliable logical reasoning about the private beliefs and goals of others is techni-
cally extremely difficult, and especially so in light of the necessity for ACLs and the
Basic Problem, implemented agent systems typically must employ various ad hoc
simplifying assumptions.6 Differing simplifying assumptions about the mapping
between the received ACL messages and the inferred goals of the sending agent are at
the root of the agent interoperability problem outlined in the first section.

Given that agents using powerful ACLs are required to (at least implicitly) perform
this type of reasoning, and given that the Basic Problem applies to using these ACLs,
we can make the following broad claim:

Conversation policies are necessary in powerful ACLs in order to simplify the
process of inferring another agent’s relevant beliefs and goals from that agent’s
public messaging behavior.

After all, if it were straightforward to figure out what a sending agent intends with a
message and the range of appropriate responses, then recipient agents would have no
need for the additional information which conversation policies provide. This is the
case in very simple and inexpressive agent communication languages, where only a
limited range of interaction is possible. Agents whose interaction is bounded in this
way do not require conversation policies. An example of this would be a simple
agent command language in which there is only one way to express any command
type. On the other hand, an agent with a high-powered reasoning engine and the
luxury of time might in principle be able to entirely reason its way through a complex
conversation, where every message is the result of an exhaustive analysis about its
possible effects (cf. [12]). Such an agent might not need a conversation policy to help
interpret the behavior of others. However, given that time and reasoning power are
typically in short supply for contemporary agents, public conversation policies serve a
critical logical function in limiting the scope of what the agent must consider [2].
Conversely, when an agent reasons about its next conversational move, public con-
versation policies can directly constrain the set of possible responses to consider, and
(by limiting the agent’s range of communicative action) indirectly limit the possible

5 This admittedly ignores the possibility that an agent could use an ACL message to “drown

out” or otherwise make unintelligible another ACL message.
6 These simplifying assumptions can be seen as explicitly inducing a type of context into agent

communications.

goals the agent can achieve with a response. So, we can make the following claim as
well:

Conversation policies are necessary in powerful ACLs in order to simplify an
agent’s process of generating interagent messages that support achieving a par-
ticular set of goals.

If the two claims above are correct, we can conclude that the central role of conver-
sation policies is to attack the Basic Problem by constraining the possible interagent
messages that can appear on the wire, and in this way artificially restrict the expres-
sive power of the ACL in use. By agreeing to use a conversation policy, an agent
effectively makes public important information about how it is binding itself, and
thereby makes both the reasoning and modeling task easier for all agents with which
it is communicating. Specifically, conversation policies limit the possible ACL pro-
ductions that an agent can employ in response to another agent, and they limit the
possible goals that an agent might have when using a particular ACL expression. In
the extreme case, the constraints provided by a conversation policy are so strong that
the many-to-many mapping between agent states and possible ACL productions is
driven down to a one-to-one mapping. That is, for a given agent goal or goal type, the
conversation policies which govern an interaction will in the limiting case define a
unique sequence of messages for the agents participating in the interaction to follow.
In this way, the use of public conversation policies can be seen to provide a less ad
hoc set of shared simplifying assumptions of the sort mentioned above.

We therefore view the functional role of conversation policies as publicly shared
constraints on the potentially unbounded universe of possible semantically coherent
ACL message sequences which could be used to achieve a goal. By constraining
ACL usage so that the necessary communicative reasoning about beliefs and goals
becomes tractable or even trivial, shared conversation policies allow agent designers
to concentrate their resources on optimizing the agent’s non-communicative actions –
i.e., the sort of actions for which we write most agents in the first place. We can state
this more forcefully:

Any public declaratively-specified principle that constrains the nature and ex-
change of semantically coherent ACL messages between agents can be consid-
ered a conversation policy. A given agent conversation will typically be gov-
erned by several such policies simultaneously. Each policy constrains the con-
versation in different ways, but there is no requirement that every policy be rele-
vant or active in every interaction.

Our account of conversation policies presents them essentially fine-grained – the
individual constraints are presumed to only address a single feature of a particular
conversation. This stands in contrast with current conversation policy description
mechanisms, which attempt to regulate every relevant property of a conversation
within a single policy (e.g., the conversation policy shown in figure 1). We have
come to believe that different conversation types should be governed by different
clusters of policies, with some policies shared by virtually all agent conversations,
such as those regulating question/answer or high level timing, and others which are
applicable only to certain specific conversation types like contracting or brokering.
Moreover, individual conversation policies still must take the logical power of the
underlying ACL into account, because they will be closely linked to the expressive

power of that ACL. Finally, this approach to conversation policies still agents to
address the Basic Problem. By agreeing in advance that a particular interaction will
be bound by a given set of public constraints on ACL use, each interacting agent is
able to simplify their conversational modeling task, and more easily determine the
appropriate next conversational production.

Fine-grained accounts of conversation policies have an important advantage over
traditional accounts. Traditional models of conversation policies (i.e., transition nets)
encode large numbers of individual policy decisions in a single formalism, making it
difficult for both agents and agent designers to be precise about exactly which as-
sumptions about agent communication a given model incorporates. For example,
figure 1 combines policies about timing, withdrawing, sequencing, and other proper-
ties into a single complex diagram. In contrast, by conceptually separating the indi-
vidual policies from the transition net computational models in which they are typi-
cally embedded, fine-grained accounts gain great flexibility about the types of policy
which can be specified and the range of conversation types over which they will be
valid. For example, we are now able to consider several important assumptions about
the character of agent interactions that have typically been left implicit in the various
extant ACL conversation policy descriptions, and separate them from the sequencing
constraints which make up the traditional subject matter of a conversation policy:

1. Termination. It is a typical, if unstated, assumption of most agent conversation
design work that agent conversations can be depended on to eventually terminate.
Certain applications have stricter termination conditions, such as limits on the
number of total messages that can be sent or a strict time limit on the overall length
of the conversation. Other assumptions will govern the nature of acceptable termi-
nation for specific conversation types – e.g., that an offer-type conversation will
terminate when the offer is accepted, rejected, or withdrawn. In any case, though,
there are several principles which address why individual agent conversations can
come to an end, and these principles should be encoded explicitly as policies.

2. Synchrony. Different basic assumptions about the nature of agent conversational
turn-taking, possible concurrency of messaging, interruption possibilities, and the
like are often implicit in the formalisms with which current conversation policies
are specified. Yet, precise knowledge of these is critical to an agent or agent de-
signer’s reasoning about how to produce messages with proper sequencing and
timing.

3. Uptake acknowledgment. Whether or not an agent must send a message indicating
successful receipt of another message, and the possible range of contents of this
uptake message (i.e., simple ACK, or some more complex message from which
uptake can be inferred) is a common property of many different kinds of agent
conversations. It is also a conversation policy decision, as the requirement to send
an uptake messages is not typically a logical consequence of ACL message seman-
tics. Fine-grained conversation policies can make this kind of policy explicit.

4. Exception handling. Exception or error conditions are always possible in real
agent conversations. This means that the transition nets that have traditionally
been used to specify agent conversations have had to be decorated with enormous
numbers of little-used error handling transitions, often to the extent that the pre-
ferred conversational flow in the net is completely obscure. Further, many of these
basic exception handling strategies are common across different types of agent

conversations. A fine-grained account of conversation policies promises to be
flexible enough to account for conversational exceptions in a satisfactory way.

5. Pragmatics. There may be several semantically equivalent messages which can be
used to achieve the same communicative goal [9;13]. Agreement between agents
on the preferred way to express a given communicative act in an ACL is an im-
portant way in which conversation policies can address the Basic Problem.

This is obviously only a partial list of the kinds of implicit assumptions which regu-
late agent inter-action, but it illustrates our motivation for proposing an account of
conversation policies focused around mixing and matching fine-grained policies in
order to regulate an agent’s usage of its ACL.

3. Agent Conversation Redux

Thinking about conversation policies as these sorts of fine-grained constraints on
semantically coherent ACL usage is a powerful idea, and it fits well with the use of
deterministic finite automata (DFA) and other formalisms which have traditionally
specified conversation policies. We model agent communication with four layers,
each providing a different level of abstraction (see figure 2). The direct inspiration
for this approach is from Manna and Pnueli’s work on reactive systems verification
[ref], but this type of four-layered model of analysis is common in other parts of com-
puter science. For example, in order to analyze how a computer performs a piece of

MESSAGES ON THE WIRE

ABSTRACT CONVERSATION POLICIES

Conversation
Management Policies

Sequence Policies

Synchrony Policies

Other Policies

Specific Goal
Achievement Policies

ABSTRACT COMPUTATIONAL MODELS

AGENT IMPLEMENTATION
(e.g., Java)

Exception Handling
Policies

Pragmatics Policies

Termination Policies

Uptake Policies

Transition Net Models
(FTN, ATN, DFA, CPN) Entailment-based Models

Other Process
Models

AGENT IMPLEMENTATION
(e.g., Prolog)

Fig. 2. A Model of Conversation Policies

mathematics, we need to explain how an abstract mathematical theory (the con-
straints) can be reflected in one or more abstract algorithms (the computational mod-
els) and implemented in different actual programming languages and execution mod-
els (the agents).

At the top of the hierarchy is the set of conversation policies for an ACL, which are
the different fine-grained constraints which agent message production in an interac-
tion must not violate. These policies are public, shared, abstract, and normative, and
can combine in different ways. When agents agree to abide by specific conversation
policies for an interaction, they are agreeing to let their ACL usage be governed by a
specified subset of these constraints. Further, we believe that these constraints will
fall naturally into different packages: e.g., general conversation management con-
straints, clusters of constraints relative to the use of specific communicative acts,
constraints that govern message sequencing for particular kinds of goal-directed inter-
actions, and so on. All of these constraints are sensitive to the semantic model and
expressive power of the target ACL. Agent designers (or sophisticated agents), when
presented with the need to interact with other agents in the service of a particular goal,
will select the governing conversation policies for that interaction from the larger set
of possible conversation policies for the ACL.

The set of policies that are in force for a particular agent interaction will together
define a set of abstract computational models for that interaction. The computational
models induced by a set of policies might include, for example, several different types
of state transition network, but it might also range over more logically-based compu-
tational models, such as those based on entailment relations in a situation calculus or
dynamic logic. The computational models are extensionally defined by the require-
ment that their semantics must satisfy the composition of the policy constraints that
are in force; hence, these models are only normative to the extent that they accurately
reflect the constraints that define them.7 Thus, these computational models have a
type-token relationship to the actual agent conversations. Also, while policies must
be shared between agents, the specific computational models induced by these poli-
cies need not be – one agent might include code implementing a DFA, while another
might be running a Petri net. Nevertheless, if the agents agree on conversation poli-
cies, then the computational models used by the agents should allow them to commu-
nicate within the limits of the constraints that they agree upon.8 This approach allows
for a wide latitude of agent implementations, and guarantees that certain properties of
the conversation will hold even when sophisticated agents are communicating with
simpler ones.

It is important to note that there is no requirement that the computational model
chosen by an agent or designer to implement a particular set of policies regulate every
aspect of an agent’s messaging behavior. Models which are induced by a very tight
set of policy constraints might indeed do so; but it is also possible (and indeed likely)
that many aspects of messaging behavior might be unspecified by the computational
model. Most commonly, computational models will provide on very general con-

7 In general, the choice of a computational model will fix many more properties of an agent’s

interaction behavior than are accounted for by the chosen set of policies. This is not a prob-
lem; presumably, agents who converse under this set of conversation policies will be able to
deal with the variations.

8 We note that it is logically possible that agents could agree on a set of constraints that are
incompatible: i.e., that there is no computational model that could satisfy all the constraints.

straints on message content, and while they might include some global timing pa-
rameters, they will typically leave open the timing of individual message exchanges.
More interestingly, though, a model might not specify the exact sequencing of mes-
sages required to achieve a particular state – it might specify only that a set of com-
municative states must be achieved in a particular sequence. This type of higher-level
computational model would correspond to the agents agreeing on only a very weak
set of policies to govern their interaction.

For example, a model such as the one described above might only describe a rela-
tive sequence or partial order of conversational landmarks (e.g., that an offer has been
made; that an offer has been accepted) in a conversation of a given type. Each land-
mark would be characterized by a set of properties that must be true of the agents
involved at that point in the conversation. Consider the CONTRACT conversation
policy shown in figure 1. The initial segment involves an announcement made by
some agent C immediately followed by an bid (or decline) by some other agent S.
While it is reasonable to think of announcing and bidding as typically being a two-
step process, this might not always be the case: between C’ s announcement and S’s
bid, S might ask C for a clarification about payment, or if a partial bid is acceptable,
or whether multiple bids will be accepted. There might be any number of contract-
related exchanges between C and S until the acceptance (or nonacceptance) of the
original announcement. A loose set of conversation policies might not specify the
number and exact sequence of messages in advance, but rather would constrain the
ACL usage to attempting to achieve certain high-level states, given certain other re-
strictions (e.g., turn-taking).

In our view, the traditional methods for specifying conversation policies [2; 6] have
not specified policies per se, but rather have attempted to specify these computational
models directly, typically by using automata or transition net formalisms. The indi-
vidual policy decisions that traditional conversation policies are designed to capture
are only implicit in these formalisms. This has lead to a significant problem in exist-
ing conversation policy design practice – how to guarantee that existing policies are
interoperable or composable, how to modify them, and how to model and verify the
expected effects of following these policies.

Once a set of computational models is defined, an agent designer will implement a
specific choice of computational model in a particular agent for conversation of a
particular type using a particular ACL. One agent might include a set of rules that
simulate a DFA, while another agent whose computational model involves entailment
over a particular axiom set might contain a theorem prover. A third agent might im-
plement an interpreter for a DFA language, and download specific DFAs for a con-
versation from a server. The designer’s choice of implementation model for an
agent’s communication behavior will governed by the requirements on the sophisti-
cation of an agent’s conversation, performance requirements on the agent, interaction
with other parts of the agent’s architecture, and so on. However, the fact that all the
computational models for the conversation type will encode the same chosen con-
straints on ACL usage will guarantee that each agent’s production of ACL messages
will be limited in a consistent way. Hence, agents implementing these models will be
able to minimize the Basic Problem to the extent to which their conversation policies
allow.

4. Objectives for Conversation Policies

Viewing conversation policies as general constraints on semantically coherent ACL
messaging behavior is a powerful idea. Besides being consistent with the general
goal of addressing the Basic Problem by limiting the possible usage of the ACL, it
allows us to bind together many of the classic arguments for using conversation poli-
cies to govern agent communication:

1. Conversation policies should allow us to cleanly separate policy from mechanism
in our theories of agent behavior, thus dividing public policies from private imple-
mentations. Many authors have pointed out that the use of explicit conversation
policies in agent interaction facilitates the separation of policy and mechanism –
i.e., the policy must be independent of the program used to implement it. This is
desirable because it enables conversation policy reuse, metareasoning over conver-
sation policies, and off-line analysis of the implications of various conversation
policy choices [8]. Viewing conversation policies as sets of interacting constraints
which can induce a variety of computational models is entirely consistent with this
idea, as it provides a level of analysis that is independent of the model with which
the conversation policies are implemented in an agent. Explicit implementation-
independent conversation policy representation also makes practical the develop-
ment of consistent agent-system-wide exception handling mechanisms: unless we
can unambigously and declaratively describe expected agent behavior and the con-
straints by which it is bounded, we can neither detect, facilitate, nor repair prob-
lems when they arise [4; 10].

2. Conversation policies should provide a level of abstraction that allows us to iden-
tify equivalence classes of conversations across different specification formalisms.
An important objective for any theory of conversation policies is that it provide
criteria for identifying identical conversation policies across different agent im-
plementations. If one agent is executing a theorem prover and another is running a
Petri net, it should nevertheless be possible for them to have common policies gov-
erning their conversation. This means that the conversation policies themselves
need to apply at a level beyond the computational models that the agents imple-
ment. Our account provides a natural way to express this.

3. Conversation policies should be compositional, so that different pieces can be
mixed and matched to govern different domain-specific conversations. We found
in our KAoS work that we were constantly tinkering with the DFAs that expressed
KAoS’s conversation policies. KAoS conversations have certain common fea-
tures, such as the way that question/answer loops and exceptions are handed, and
we wanted to be able to flexibly integrate these with our existing DFAs. However,
without a precise way to describe the critical properties of the original DFAs that
we needed to preserve, we could not guarantee that the modified DFAs expressed
the same ideas about conversation design as the original ones. Policies expressing
certain kinds of pragmatic constraints were difficult to express as pure DFAs (e.g.,
timing, abnormal termination, and general turn-taking constraints) and we found
ourselves extending the representation in ad hoc ways to reflect these concerns

rather than applying a more systematic approach. Essentially, we found that the
nature of the conversations we were designing required fine-grained policies that
could be combined to yield larger composite policy entities. The present frame-
work allows us to do that.

4. Conversation policies should be flexible enough to allow agents of different levels
of sophistication to interoperate, and should therefore allow for conversational
control at different levels. The successful agent-based ensembles of the future will
include agents created by different vendors with widely varying degrees of sophis-
tication and reasoning ability, operating under many different kinds of resource
constraints, and interacting with each other at many different levels [3;4]. Many
agents will be small and simple, some will have medium-scale reasoning abilities,
and relatively few will exhibit complex and explicit reasoning on beliefs and goals.
All will have to communicate with each other, at least to advertise their services
and autonomously negotiate for resources they need. This kind of extreme hetero-
geneity entails that agents will need to tailor their use of the ACL to match the ca-
pabilities of the interacting agents – the highly restricted language necessary to in-
teract with a simple database agent wrapper is too inexpressive to handle, e.g.
complex distributed planning problems. By expressing individual ACL con-
straints at a level above the composite computational models, agents and agent de-
signers can reason about how precisely to manage the ACL tradeoffs that the Basic
Problem requires, and match these tradeoffs to the capabilities of the agents that
are conversing.

5. Conclusion

We realize that the approach to conversation policies sketched out in the above text
will require a great deal of formal work to make it precise and convincing. We are
currently engaged in research which we believe will do just that. Specifically, we are
looking at:

1. Formal languages for representing conversational constraints and computational
models

2. Deductive techniques which will allow us to verify that a computational model
meets a specification.

3. The relationship and boundaries between ACL semantic theories and the account
of conversation policies given here.

Though agent designers who have not been dealing with conversations in any formal
way may worry that the kinds of approaches discussed in this paper will just add
unnecessary complexity to their implementations, we assert precisely the contrary.
We believe that the combination of powerful offline conversation analysis tools, with
the resultant systematically constructed conversation policies, policy facilitators,
enforcement mechanisms, and exception handling facilities will actually simplify the
online reasoning task for agents and help guarantee a level of robustness and respon-
siveness to pragmatic considerations that has been lacking in deployed agent systems

[4].
Our hope is to move the analysis of agent conversations up a level, and make ex-

plicit all of the fine-grained policies which have hitherto been implicit in the conver-
sations we have designed. In this way, the view that we are advocating is not sub-
stantially different from many other types of formally-based scientific work. It is
always important to bring out the relations between the abstract theories which pro-
vide our intellectual touchstones, the process models which allow us to combine our
theories into constructive procedures, the artifacts in which our theories are imple-
mented, and the results of allowing these artifacts to interact in the world. Our ac-
count of conversation policies is a step in this direction.9

6. Acknowledgments

The authors thankfully acknowledge support from the DARPA CoABS program
(Contract F30602-98-C-0170); the Aviation Extranet joint-sponsored research agree-
ment between NASA Ames, The Boeing Company, and the University of West Flor-
ida (Contract NCA2-2005); and the Agency for Health Care Policy Research (Grant
R01HS09407).

References

1. Bradshaw, J. M. (1997). An introduction to software agents. In J. M. Bradshaw (Ed.), Soft-
ware Agents. pp. 3-46. Cambridge, MA: AAAI Press/The MIT Press.

2. Bradshaw, J. M., Dutfield, S., Benoit, P., and Woolley, J. D. (1997). KAoS: Toward an
industrial-strength generic agent architecture. In J. M. Bradshaw (Ed.), Software Agents. pp.
375-418. Cambridge, MA: AAAI Press/The MIT Press.

3. Bradshaw, J. M., Gawdiak, Y., Cañas, A., Carpenter, R., Chen, J., Cranfill, R., Gibson, J.,
Hubbard, K., Jeffers, R., Kerstetter, M., Mathé, N., Poblete, L., Robinson, T., Sun, A., Suri,
N., Wolfe, S., and Bichindaritz, I. (1999). Extranet applications of software agents. ACM
Interactions. Forthcoming.

4. Bradshaw, J. M., Greaves, M., Holmback, H., Jansen, W., Karygiannis, T., Silverman, B.,
Suri, N., and Wong, A. (1999). Agents for the masses: Is it possible to make development of
sophisticated agents simple enough to be practical? IEEE Intelligent Systems (v. 14:2, March
1999), pp. 53-63.

5. Cohen, P. R., and Levesque, H. (1997). Communicative actions for artificial agents. In J. M.
Bradshaw (ed.), Software Agents. pp. 419-436. Cambridge, MA: The AAAI Press/The MIT
Press.

6. Finin, T., Labrou, Y., and Mayfield, J. (1997). KQML as an agent communication language.
In J. M. Bradshaw (ed.), Software Agents. pp. 291-316. Cambridge, MA: The AAAI
Press/The MIT Press.

7. Greaves, M., Holmback, H., and Bradshaw, J. M. (1999). Agent conversation policies. In J.
M. Bradshaw (ed.), Handbook of Agent Technology. Cambridge, MA: AAAI Press/The MIT
Press. Forthcoming.

9 We are currently working on a more complete account of conversation policies to appear in

[7].

8. Greaves, M. T., Holmback, H. K., and Bradshaw, J. M. (1998). CDT: A tool for agent con-
versation design. Proceedings of 1998 National Conference on Artificial Intelligence
(AAAI-98) Workshop on Software Tools for Developing Agents. pp. 83-88. Madison, WI,
Menlo Park, CA: AAAI Press.

9. Holmback, H., Greaves, M., and Bradshaw, J. M. (1999). A pragmatic principle for agent
communication. J. M. Bradshaw, O. Etzioni, and J. Mueller (ed.), Proceedings of Autono-
mous Agents ’99 Seattle, WA. New York: ACM Press. Forthcoming.

10. Klein, M., and Dellarocas, C. (1999). Exception handling in agent systems. J. M. Brad-
shaw, O. Etzioni, and J. Mueller (ed.), Proceedings of Autonomous Agents ’99, Seattle, WA.
New York: ACM Press. Forthcoming.

11. Manna, Z. and Pnueli, A. (1995). Temporal Verification of Reactive Systems: Safety. New
York: Springer-Verlag.

12. Sadek, M. D., Bretier, P., and Panaget, F. (1997). Artimis: Natural Dialogue Meets Ra-
tional Agency. Proceedings of the 1997 International Joint Conference on Artificial Intelli-
gence (IJCAI-97), Palo Alto: Morgan Kaufmann.

13. Smith, I. A., Cohen, P. R., Bradshaw, J. M., Greaves, M., and Holmback, H. (1998). De-
signing conversation policies using joint intention theory. Proceedings of the Third Inter-
national Conference on Multi-Agent Systems (ICMAS-98). pp. 269-276. Paris, France. Los
Alamitos, CA: IEEE Computer Society.

14. Steiner, D., (ed.) FIPA 97 Specification Vesion 2, Part 2: Agent Communication.
http://www.fipa.org/ spec/FIPA97.html.

