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Abstract: The idea of a digital twin has recently gained widespread attention. While, so far, it has
been used predominantly for problems in engineering and manufacturing, it is believed that a digital
twin also holds great promise for applications in medicine and health. However, a problem that
severely hampers progress in these fields is the lack of a solid definition of the concept behind a
digital twin that would be directly amenable for such big data-driven fields requiring a statistical
data analysis. In this paper, we address this problem. We will see that the term ’digital twin’, as used
in the literature, is like a Matryoshka doll. For this reason, we unstack the concept via a data-centric
machine learning perspective, allowing us to define its main components. As a consequence, we
suggest to use the term Digital Twin System instead of digital twin because this highlights its complex
interconnected substructure. In addition, we address ethical concerns that result from treatment
suggestions for patients based on simulated data and a possible lack of explainability of the underling
models.

Keywords: digital twin; data science; machine learning; experimental design; genomics; personalized
medicine

1. Introduction

The construct of a digital twin is a fascinating idea. It is widely credited to Michael
Grieves, who described it informally in 2002 for the formation of a product lifecycle
management (PLM); however, without using its current name. Later, he provided a
description of a digital twin by stating [1]:

The digital twin is a set of virtual information constructs that fully describes a
potential or actual physical manufactured product from the micro atomic level to
the macro geometrical level.

For completeness, we would like to remark that there are mentions of a digital twin in
the literature earlier than 2002. For instance, in 1994, a realistic model of arteries was called
a digital twin [2]. Even earlier, David Gelernter described in his book in 1991 a software
model of reality, which he called a ‘mirror world’ instead of a digital twin, as a complete
mirror image of reality that is constantly updated by sensor information [3].

In industry, the idea of a digital twin was met with great interest and notable early
adoptions thereof were in astronautics and aerospace by NASA [4] and in manufacturing [5–8].
Since then, many authors have given a similar characterization of a digital twin, e.g., [9]:

A digital twin is a virtual representation that serves as the real-time digital
counterpart of a physical object or process and addresses every instance for its
total life cycle.

As a side note, we think it is interesting to remark that, recently, the idea of a digital
twin is also explored in climate science. There, a digital twin of the structure and dynamics
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of the climate system of the Earth is currently developed to study different aspects of
climate change and climate forecasts [10,11].

In contrast to those fields, much later, biology, medicine and health started to embrace
the idea of a digital twin. In [12], a reason for this delay has been attributed to the increased
difficulty in developing a ‘biological’ digital twin for such fields compared to engineered
devices forming a ‘mechanical’ digital twin, e.g., a jet engine. In addition, ideally, a
biological twin would require multiscale-modeling [13–16] on the subcellular, cellular,
multicellular, tissue, organ and organism level, which is very challenging given our current
knowledge about these levels.

Maybe the best application example to this day that has been clinically tested is the
artificial pancreas model used to treat patients with type I diabetes [17]. The artificial
pancreas is a mathematical model that simulates the glucose metabolism for a target patient.
Specifically, the simulation model performs a closed-loop control by receiving real-time
blood glucose levels via a sensor from the patient, which is used to predict the required
insulin level. In case of a deviation, a pump attached to the patient injects the appropriate
dose of insulin [18]. While this particular result is certainly very impressive, it focuses only
on a single level of the human body. This is in contrast to [19], where a proof-of concept
example has been studied that integrates information at the organ, tissue and cellular level.
Unfortunately, the presented results of the study are only for simulated data. It is interesting
to note that, so far, there is no example in the literature of a biological digital twin on the
subcellular (genomics) level based on real data. Instead, there are a number of survey or
perspective papers about a biological digital twin focusing either on the illustration of
the underlying idea or the description of prospects thereof. For instance, disease-specific
prospects can be found in [20,21] and general discussions can be found in [22–25].

Despite all of this progress in different fields, in our opinion, there is a conceptual
problem with a digital twin that has not been properly addressed so far. Specifically, the
term ‘digital twin’ is used throughout the literature in a cluttered, unprecise and convoluted
way that hides rather than explicates design principles. In this paper, we address this issue
by presenting a data-centric machine learning perspective on a digital twin. This will reveal
the substructure behind a ‘digital twin’ and enables, in a natural way, an experimental
design amenable for a statistical data analysis by utilizing methods from machine learning,
artificial intelligence and statistics, which could be used for personalized and precision
medicine [26–28]. Despite the general character of our discussion in the following, we
focus on a biological digital twin (for problems in medicine and health), but the provided
definitions should be extendable to the inanimate nature applicable to a mechanical digital
twin for engineering.

2. What Is a Biological Digital Twin?

We start our discussion by specifying the concept of a biological digital twin. In order
to introduce this concept in detail, we compare it with a biological twin. For simplicity, in
the following, we call a biological digital twin just a digital twin because our focus is on
problems in medicine and health and not in engineering.

Figure 1 shows two levels: a medicine level and a biology level. These levels allow us
to assume a data-centric view to discuss key concepts. We start by discussing the biology
level, which shows how traditional experiments in biology are conducted. Specifically,
traditional biology experiments take a representative sample from a population and conduct
experiments on the members of such a sample. In the case of a multicellular organism, a
sample consists of a number of animals (e.g., mice), whereas, for an unicellular organism,
the sample consists of a collection of cells (e.g., S. pombe). While a sample should be
representative of a population, its members are not identical in all aspects. Instead, they can
be distinguished, e.g., based on their DNA. In Figure 1, this important aspect is highlighted
by the different colors of the organisms.

Let us assume that we care about one member of such a sample, which can be one
multicellular organism or one unicellular organism. In the former case, this would be
one animal and, in the latter, one cell. We call this organism the target organism. Then,
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we could perform personalized biology experiments, analogous to personalized medicine
experiments, by focusing on the target organism. Since we care about this individual
organism, ideally, we would like to perform experiments on a sample of identical organisms
to gather more experimental information. Theoretically, such identical organisms could be
realized by cloning. This will allow us to create a cohort of biological twins of our target
organism, whereas each biological twin is identical to the target organism.

experiments

patient cohort

population:
- molecular data
- clinical data

experiments

personalized:
- molecular data
- clinical data

target patient digital twin cohort 
    = digital twins

simulations

simulated:
- molecular data
- clinical data

Traditional medicine Personalized medicine Digital twin in health

Medicine-level

Biology-level

experiments

population:
- molecular data
- pathological data

experiments

personalized:
- molecular data
- pathological data

simulated:
- molecular data
- pathological data

Traditional biology Personalized biology Biological twin in biology

Unicellular organisms

Multicellular organisms

biological twin cohort 
    = biological twins

target organism

experiments

Figure 1. Visualizing the idea of a digital twin by comparing experimental settings in biology and
medicine.

Regarding the medicine level, the concepts of traditional biology and personalized
biology can be directly extended to the medicine level by a one-to-one copy of the idea
from the biology level. This leads to traditional medicine and personalized medicine
(first two columns in Figure 1). However, converting the idea of a biological twin to the
medicine level is, for a variety of reasons (e.g., ethical, practical), not feasible. For this
reason, one needs a surrogate solution. Such a surrogate solution is provided by a digital
twin. The idea of a digital twin is to use computer simulations or computer models to
mimic a biological twin as closely as possible. However, due to current limitations in
the understanding of biological organisms, especially of humans, this is imperfect. In
Figure 1, this imperfection is highlighted by the different shades of blue for the digital
twins compared to a target patient.

Definition 1. A digital twin is a computer simulation that allows us to generate biologically
realistic data of a target patient.

A key element of this definition is that a digital twin generates (biologically realistic)
data. This implies that a digital twin is not a means to analyze data or, more generally,
to answer questions. Instead, a digital twin is merely a surrogate for a target patient to
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generate data as if they were generated from the target patient themselves. This is important
to emphasize because there is a clear distinction between data and, e.g., a machine learning
method for analyzing the data. Hence, a digital twin is a computer simulation for generating
data mimicking virtual biological/biomedical experiments.

In order to obtain a realistic characterization of a patient, many computer simulations
need to be run to model different conditions. For instance, the administration of drugs or
the effect of surgical procedures can be modeled over time to provide information about
hypothetical molecular, cellular and clinical states. In Table 1, we show an overview of
different interventions that can be simulated with a digital twin. Due to the fact that
these are based on computer simulations and not real experiments, even the effect toward
gene knockdowns can be simulated. Overall, this leads to a digital twin cohort where an
individual digital twin corresponds to a particular experimental condition.

Definition 2. A digital twin cohort is a collection of digital twins each corresponding to a particular
computer simulation that allows us to generate biologically realistic data of a target patient for a
specific condition.

Table 1. An overview of different intervention types that can be simulated by different digital twins.

Intervention Type External Condition Internal Condition

environmental changes knockdown effects
diet changes gene therapy
surgery pharmaceutical interventions

3. What Advantages Do the Digital Twins Provide?

From the above discussion, we have seen that digital twins generate (biologically
realistic) target patient data for specific conditions. This means that digital twins establish
a new data source. The benefit from this is visualized in Figure 2. Specifically, Figure 2A
emphasizes that we can distinguish four different data sources from each other that are
available for an analysis system: (i) retrospective data, (ii) patient cohort data, (iii) person-
alized patient data and (iv) digital twin data. Here, we used the term analysis system to
indicate that there is more than one analysis (based on one method) that can be performed
by using the four data sources. We will elaborate more on this important point below.

Importantly, before we proceed, we would like to clarify that the four data sources
have a heterogeneous meaning corresponding to a categorization. Specifically, we can
distinguish data that have already been generated by previous experiments from data that
are newly generated by a study. Usually, the former data are deposited into a (public)
database and, for this reason, we summarized these data by the term retrospective data (RD)
because they have already been generated. In contrast, the data sources that correspond
to patient cohort data (PC), personalized patient data (PP) and digital twin data (DT)
are obtained from the current study under investigation. Hence, the data sources can be
substructured according to the origin of the data, i.e., from previous experiments or the
current experiments.

The connection to the previous section becomes apparent if we identify the data from
data sources (ii) to (iv) with the situations visualized in the columns one to three in Figure 1,
whereas the retrospective data represent data from past experiments that can be found in
repositories, e.g., TCGA or LINCS [29,30]. By selecting different combinations of the data
sources (i) to (iv), we can identify known special cases. For instance, for an analysis based
on traditional medicine, one would only have access to data sources RD and PC whereas,
for personalized medicine, this would be data sources RD, PC and PP.

In contrast, when, in addition to data sources (i) to (iii), digital twin (DT) data are also
available, an analysis system can utilize data from four different data sources. Assuming
that the digital twin data are of high quality, which means that they provide biologically
realistic simulations and are ideally indistinguishable from biological twins, then it is clear
that such an analysis system can make better predictions about the target patient because
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the collection of data (data sources (i) to (iv)) is more informative than the collection of
any subset thereof as used, e.g., by traditional medicine (data sources RD and PC) or
personalized medicine (data sources RD, PC and PP).

time

- RD
- PC(t0)
- PP(t1)
- DT(t1)

Data sources:
- (i) RD: retrospective data
- (ii) PC: patient cohort data 
- (iii) PP: personalized patient data
- (iv) DT: digital twin data

Analysis system Results

A.

B.

- RD
- PC(t0)
- PP(tn)
- DT(tn)

- RD
- PC(t0)
- PP(t0)
- DT(t0)

t0 t1 tn

time independent data

time dependent data

begin of the study

D.

Data
Results

drug toxicity - R1

}
Digital Twin System (S-DTS)

method A

method B

method C

method D
method E

method F

C.

Digital twin cohort
calibrated at time ti

Bad e�ect of intervention
on a digital twin 

Good e�ect of intervention
on a digital twin 

Patient trajectories

Time dependency

Optimal result simulations at time ti

Previously generated data: - (i) RD: retrospective data

Newly generated data by a study: - (ii) PC: patient cohort data 
                                                                  - (iii) PP: personalized patient data
                                                                  - (iv) DT: digital twin data 

E.

prognostic predictions - R3 

(overall survival)

measurable residual disease - R2

Digital Twin System (I-DTS)

R1

R2

R3

Rn

DecisionIndividual results
as input

}

Figure 2. Complexity of the data (A–C) and the analysis system (D,E). (A): A simplified view on an
analysis system that has access to four different data sources. If all four data sources (i) to (iv) are
available, we call the analysis system a Digital Twin System. (B): Availability of data to the Digital
Twin System over time. The time dependency of the different data sources is important. (C): Starting
from a calibrated digital twin cohort at time ti, different outcomes of various interventions are shown
corresponding to different patient trajectories. (D): Part of the Digital Twin System for single analyses
(S-DTS). (E): Part of the Digital Twin System for integration of analysis results (I-DTS).

In order to distinguish the simulation method for generating the digital twin data
from an analysis system for its analysis, we introduce the following definition.
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Definition 3. An analysis system based on data sources (i) to (iv) is called a Digital Twin System.

This definition means that a Digital Twin System has four different data sources
available to perform its analyses. We would like to emphasize that this can be used for
a multitude of different analyses and not just a single one, each addressing one patient-
specific question (see Section 4). Hence, a Digital Twin System has a substructure depending
on the patient-specific questions one wants to address.

From this discussion, we see that the advantage of digital twins is to provide a new data
source that can be used in combination with other data sources ((i) to (iii)) in order to per-
form advanced analyses, e.g., compared to traditional medicine or personalized medicine.

It is important to note that digital twin data are structured data. This is reflected in
their time dependency and their dependence on interventions. Specifically, in Figure 2B,
we show the time dependency of the four data sources. One can assume that the RD data
do not change over time provided that the duration of the study given by tn − t0 is short so
that the information provided by databases is not significantly changed/updated during
this period. In addition, the patient cohort (PC) data do not change over the duration of the
study. Instead, they are usually generated at the beginning of the study (indicated by t0).
Hence, the data sources (i) and (ii) can be assumed to be static over the time of the study.
This does not mean that RD data or PC data cannot contain time series of longitudinal data.
It just means that their data content does not change during the study.

In contrast, personalized patient (PP) data are continuously measured for the target
patient indicated in Figure 2B by a time dependency ti, where ti is the point at which a
measurement occurs. In addition, digital twin (DT) data do change over time because
the simulations can consider updated patient information, given by PP(ti), to modify the
simulations correspondingly. Overall, this implies that the Digital Twin System provides
continuous analyses and predictions over time.

A second structure of digital twin data is provided by their dependence on interven-
tions. This can be described by the following definition.

Definition 4. A digital twin cohort is calibrated to a target patient at time ti and each digital twin
simulates the consequences of one specific intervention.

This means that, at a certain time ti, a digital twin cohort is calibrated to a target patient
(red point in Figure 2C) in a way that each digital twin provides the best approximation
possible for simulating biologically realistic data. Then, various interventions, e.g., the
administration of drugs, surgery, etc., are simulated, each with a dedicated digital twin.
This leads to different outcomes corresponding to patient trajectories as a consequence of
the interventions (see Figure 2C). Most of such outcomes may lead to a worsening of the
health state of the patient (black points in Figure 2C), but others lead to an improvement
(light green point in Figure 2C). While the optimal result corresponding, e.g., to the cure
of the patient (dark green point in Figure 2C), may not be achievable by any intervention,
these simulations can point to the most beneficial treatment option at a given time.

4. What Is a Digital Twin System?

In the previous section, we have seen that there are four different data sources available
to the Digital Twin System, whereas each data source has its own substructure given by
the time and intervention dependency. Such complex data also imply that the Digital Twin
System needs a substructure that is a collection of different methods (see Figure 2D). Each
method will allow us to make dedicated predictions about a particular patient-specific
aspect. Importantly, the methods for dedicated problems can come from different fields
of data science, e.g., machine learning, artificial intelligence or statistics [31,32], focusing
on different aspects of data and employing different methodologies. Hence, it would
not be appropriate to call such an analysis system, e.g., an AI system, because it can also
comprise non-AI methods. As an example for an important non-AI method, we would like
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to mention survival analysis [33], which can be used for prognostic predictions, e.g., about
the administration of drugs or the effect of a surgery or chemotherapy.

Definition 5. A Digital Twin System is a collection of different methods from data science, each
allowing us to make dedicated predictions about a particular aspect of the target patient.

Importantly, for making a final decision about a patient, an integration over the single
analyses results needs to be performed. In order to explicate this, we call the part of a
Digital Twin System conducting the single analyses S-DTS, and the integrative part I-DTS
(see Figure 3). This should clarify that a Digital Twin System is not a solitary method but a
collection of different methods that can comprise techniques from a multitude of different
fields, including machine learning, artificial intelligence and statistics.

Data

Digital Twin System (S-DTS)
method A

method B

method C

method D
method E

method F

Digital Twin System (I-DTS)

Decision

Digital Twin System

Figure 3. Main structure of a Digital Twin System consisting of S-DTS and I-DTS, which have
themselves a complex substructure.

5. Experimental Design

From the above discussion, it should be made clear that a ‘digital twin’ is neither
simple nor monolithic but a complex interconnected system. However, clarifying all of its
components in detail allows us to now address design aspects of experiments. Since any
statistical analysis crucially depends on the underlying data, we assumed a data-centric
view from the beginning of our discussion. This allowed for a clear exposition of the four
data sources (see Figure 2A,B) and their characteristics and differences.

Since a Digital Twin System consists of two main parts (see Figure 3), there are also two
main components to be considered for the experimental design. The first one addresses the
single analysis system (S-DTS) of a Digital Twin System, which focuses on single methods
for obtaining results for particular problems, whereas the second addresses the combination
of the individual results performed in the integrative analysis system (I-DTS).

In Figure 2D, we depicted three potential results of an analysis corresponding to
drug toxicity, measurable residual disease and prognostic predictions. Each such outcome
is the result of a dedicated analysis that is typically not the same for other outcomes.
Those problems have been studied extensively in the literature and, for each ‘conventional’
analysis approach, experimental design protocols have been developed [34]. Hence, for
the single analyses as part of S-DTS, no new protocols are needed, but existing ones can
be utilized.

The second aspect is different because it requires the combination of all individual
results obtained in the previous step corresponding to the integrative analysis part (I-DTS)
of a Digital Twin System (see Figures 2E and 3). This combination could either form a
meta-analysis or a Bayesian approach [35]. Potentially, this step is more challenging than
the previous one, especially when combining heterogeneous results, e.g., when not all
outcomes are p-values. Either way, the amalgamated results will allow for personalized,
comprehensive decision making about the patient by considering all individual data sources
and intermediate results.
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6. Applications

In order to provide an outlook on the wider implications of a Digital Twin System, we
outline in the following potential applications in research and the clinics.

With respect to the artificial pancreas model [17] for type I diabetes discussed above,
we think that it is fair to say that, currently, a full multiscale-modeling approach over a
multitude of levels is very hard to reach. Nevertheless, there are a number of feasible
applications that can be studied. The first one is focused on gene expression. While a
biological cell comprises intricate regulatory programs between the DNA, mRNA and
protein level, a realistic simulation of all aspects thereof is currently too demanding. For
this reason, focused models have been developed that provide simulations of the gene
expression. Specifically, mathematical models of gene expression utilize a variety of differ-
ent approaches, whereas the most prominent ones are based on thermodynamic models,
differential equation models and Boolean models [36–38]. Such models can provide a
digital twin for gene expression, which is an informative level for the dynamic activities of
genes and proteins. Furthermore, gene expression also captures the effects of perturbations,
e.g., by the administration of drugs. However, as a note, we would like to add that the
most realistic models developed in this context so far are for prokaryote cells, e.g., [39–41].

Another application is for disorders that are, so far, well-studied, providing ample
data. Such data are needed for designing simulation models enabling semi-mechanistic
models. This means that, instead of relying on validated mechanistic models, data are used
to leverage an approximate model that is functional within a well-restricted molecular
domain but does not fully incorporate all mechanistic details. For instance, cancer in general
is among the most widely studied disorder families, whereas breast cancer and lung cancer
are prominent subtypes thereof. For each of those cancer types, tens of thousands of
genomics data samples are available from public repositories, e.g., from TCGA or GEO
[29,42]. This can facilitate the development of approximate models for dedicated disease
subcategories that can function as a proxy digital twin.

Finally, we think that Mendelian diseases, e.g., cystic fibrosis, sickle cell anaemia
or muscular dystrophy, would form excellent testbeds because much of the complexity
of non-Mendelian disorders is omitted. Specifically, while complex disorders employ
gene products on a systems scale that are connected via large gene regulatory networks,
Mendelian diseases may be limited to smaller circuits. Hence, the mathematical modeling
techniques could be more easily deployed for Mendelian diseases that exhibit a reduced
dynamic behavior without being trivial.

7. Ethical Considerations

The above discussion shows that the concept of a digital twin leads to a new data
source that corresponds to simulated data. From an ethical point of view, this raises several
concerns that we address in the following. We would like to emphasize that, in a health
context, such a discussion is imperative because of the involvement of patients. This is
potentially different from engineering applications of a digital twin, which deal exclusively
with an inanimate nature.

The first issue relates to the nature of the data themselves. Specifically, in science, it
is common to introduce novel measurement devices or technologies once in a while. A
fairly recent example from genomics is given by the next-generation-sequencing (NGS)
technology [43,44]. In general, high-throughput devices based on NGS or other novel
technologies are capable of measuring either new aspects of an experiment or providing a
more refined approach to previous problems. However, regardless of those details, such
measurement devices always provide experimental data. In contrast, a digital twin always
provides simulated data. This is an important qualitative difference.

In order to make this qualitative difference clear, let us consider two examples. In the
first example, the worst consequence of a false treatment decision may result in a discomfort
of the patient, whereas, in a second example, a false treatment decision may lead to death.
Certainly, both cases can occur in any data analysis. However, when using simulated data
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for such a decision, the case of a failure (especially for example two) is difficult to accept
because of the indirect nature of such data. Hence, extensive testing, clinical validation and
certification are required before approaches based on a digital twin can reach the clinic or
any practical application in medicine or health.

The second issue is regarding the explainability of a Digital Twin System. Currently,
explainable artificial intelligence (AI) [45–48] is under intense investigation because, on the
one hand, e.g., deep learning neural networks are lacking usually an easy and insightful
interpretation, and, on the other hand, many application domains require explainable
models and shy away from black-box prediction models (as deep neural networks), even
when they are state-of-the art. The latter is especially true for medicine and health-related
areas [49]. For a Digital Twin System, the situation is even more complex because, as
discussed above (see Definition 5), a Digital Twin System is not a monolithic approach
but a collection of different methods from data science. Hence, establishing an explainable
Digital Twin System requires that all methods that it combines are explainable themselves.
This is very demanding and challenging.

Interestingly, there is one further problem in this context which is given by a digital
twin itself. Since a digital twin is a simulation model, also the method for simulating the
data, and not only for analysing the data, needs to be explainable. Given the probabilistic
nature of such simulation methods [50,51], this is unlikely to be less demanding.

At the moment, it is unclear if explainability is a reachable goal for conventional
AI methods [52], and it remains to be seen how this could be expanded to even more
complex analysis systems, such as a Digital Twin System. Hence, aside from methodological
questions, there are severe and unprecedented ethical issues that need to be addressed in
order to use a digital twin in medicine or health.

8. Discussion

In recent years, several publications appeared that provided a definition of a digital
twin in various application domains. For instance, in [53], the authors gave a comprehensive
survey about many aspects of a digital twin, including its definition. Specifically, in total,
31 articles were cited that provide a definition of a digital twin. However, upon inspection,
none of these 31 articles provide a data-centric machine learning perspective, but instead
provide an engineering-based characterization. While useful in certain contexts, this is not
sufficient if the goal is the analysis of data. For this reason, we re-visited the definition of a
digital twin from a different perspective. We centered this perspective around the meaning
of a digital twin, which is the generation of (simulated) data. Hence, our perspective
is data-centric.

As a result, from our discussion, we find the reason for why previous definitions of a
digital twin appear cluttered, unprecise and convoluted. The reason is an overloading of
the term ‘digital twin’ and the neglect of introducing defined substructures. In contrast,
from our analysis, we find the following main substructures, for which, we introduced
definitions:

• A digital twin simulates data.
• A digital twin cohort is a collection of digital twins.
• There are four types of data sources, and digital twin data are one of these.
• Digital twin data are time-dependent.
• A digital twin cohort is calibrated to a target patient at time ti.
• A Digital Twin System consists of two main parts (S-DTS and I-DTS), which are

collections of analysis methods.

In summary, this means that a digital twin is like a Matryoshka doll (Russian dolls),
where one doll is stacked into another one. The current literature seems to overlook these
substructures, which lead to discussions about ‘digital twins’ (dolls) without precise differ-
entiations and connections. Instead, we gave the various ‘dolls’ different names and defined
their connections.



Int. J. Mol. Sci. 2022, 23, 13149 10 of 12

9. Conclusions

In this paper, we provide a discussion about the concept of a digital twin. Our analysis
reveals that the term ‘digital twin’ as used in the literature is like a Matryoshka doll. For
this reason, we unstacked the concept via a data-centric machine learning perspective,
allowing us to define its main components. As a result, we found six components that,
together, define the concept of a ‘digital twin’. As a consequence, we suggest to use the
term Digital Twin System instead of digital twin because this implies the following.

1. A Digital Twin System is a complex entity with interconnected substructures.
2. Each substructure needs to be optimized for a given problem setting, e.g., in medicine

or health.
3. A digital twin is just one method for simulating intervention-dependent data.

It is unquestionable that a Digital Twin System holds great promise for applications in
medicine and health. However, there are great challenges ahead, methodologically as well
as ethically, which need to be overcome first before it can have an impact on personalized
and precision medicine. Given the complex nature of a Digital Twin System, this will not
be an easy task.
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