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A Diophantine 𝑚-tuple is a set of 𝑚 distinct positive
integers with the property that the product of any two of
its distinct elements plus 1 is a square. If a set of nonzero
rationals has the same property, it is called a rational
Diophantine 𝑚-tuple. Fermat found the first Diophantine
quadruple in integers {1, 3, 8, 120}. Indeed, we have1 ⋅ 3 + 1 = 22, 1 ⋅ 8 + 1 = 32, 1 ⋅ 120 + 1 = 112,3 ⋅ 8 + 1 = 52, 3 ⋅ 120 + 1 = 192, 8 ⋅ 120 + 1 = 312.
Eulerwas able to extendFermat’s quadruple to the rational
quintuple {1, 3, 8, 120, 777480/8288641}.

The ancient Greek mathematician Diophantus found
the first example of a rational Diophantine quadruple

{ 116, 3316 , 174 , 10516 } .
Some of the famous mathematicians of the past, such as
Diophantus, Fermat, and Euler, as well as some modern
ones such as Fields Medalist Alan Baker, have made im-
portant contributions to problems related to Diophantine𝑚-tuples, but many problems still remain open.

It is natural to ask how large sets of Diophantine 𝑚-
tuples can be. This question is almost completely solved
in the integer case. On the other hand, it seems that in
the rational case we do not have even a widely accepted
conjecture. In particular, no absolute upper bound for
the size of rational Diophantine 𝑚-tuples is known. The
study of this question leads to surprising connections
with elliptic curves.

Note that in the definition of (rational) Diophantine𝑚-tuples we excluded the requirement that the product
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of an element with itself plus 1 is a square. It is obvious
that for integers such a condition cannot be satisfied.
But for rationals there is no obvious reason why the sets
(called strong Diophantine 𝑚-tuples) that satisfy these
stronger conditions would not exist. For each element 𝑎
of such a set we have that 𝑎2 + 1 is a square; therefore𝑎 = 𝑋/𝑌, where (𝑋,𝑌,𝑍) is a Pythagorean triple, i.e.,𝑋2 +𝑌2 = 𝑍2. It is known that there exist infinitely many
strong Diophantine triples, while no example of a strong
Diophantine quadruple is known.

In the integer case, it is easy to prove that there exist
infinitely many integer Diophantine quadruples (there
are parametric families for Diophantine quadruples in-
volving polynomials and Fibonacci numbers, such as{𝑘, 𝑘 + 2, 4𝑘 + 4, 16𝑘3 + 48𝑘2 + 44𝑘 + 12} and {𝐹𝑘, 𝐹𝑘+2,𝐹𝑘+4, 4𝐹2𝑘+1𝐹2𝑘+2𝐹2𝑘+3} for 𝑘 ≥ 1), while the folklore con-
jecture is that theredoesnot exist aDiophantinequintuple.
The first important result concerning this conjecture was
proved in 1969 by Baker and Davenport. Using Baker’s
theory on linear forms in logarithms of algebraic numbers
and a reduction method based on continued fractions,
they proved that if 𝑑 is a positive integer such that{1, 3, 8, 𝑑} forms a Diophantine quadruple, then 𝑑 has to
be 120. This implies that Fermat’s set {1, 3, 8, 120} cannot
be extended to a Diophantine quintuple. It was proved in
2004 that a Diophantine sextuple does not exist and that
there are only finitelymany Diophantine quintuples. Since
then, the bound on the number of possible Diophantine
quintuples has been improved by several authors (at the
moment the best bound seems to be 5.441 ⋅ 1026 due to
Cipu and Trudgian), but the question of the existence of
Diophantine quintuples is still open.

It is known that any Diophantine triple {𝑎, 𝑏, 𝑐} can be
extended to a Diophantine quadruple {𝑎, 𝑏, 𝑐, 𝑑}. Indeed,
with 𝑎𝑏+ 1 = 𝑟2, 𝑎𝑐+ 1 = 𝑠2, 𝑏𝑐 + 1 = 𝑡2, we may take

𝑑 = 𝑎+ 𝑏+ 𝑐+ 2𝑎𝑏𝑐 + 2𝑟𝑠𝑡,
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and then 𝑎𝑑+1 = (𝑎𝑡+𝑟𝑠)2, 𝑏𝑑+1 = (𝑏𝑠+𝑟𝑡)2, 𝑐𝑑+1 =(𝑐𝑟 + 𝑠𝑡)2. Quadruples of this form are called regular,
and the stronger version of the Diophantine quintuple
conjecture is that all Diophantine quadruples are regular.
Fujita proved that any Diophantine quintuple contains a
regular Diophantine quadruple.

Here we sketch the ideas used in the proof of finite-
ness of Diophantine quintuples and other similar results.
Extending the Diophantine triple {𝑎, 𝑏, 𝑐}, 𝑎 < 𝑏 < 𝑐, to
a Diophantine quadruple {𝑎, 𝑏, 𝑐, 𝑑} leads to the system𝑎𝑑+1 = 𝑥2, 𝑏𝑑+1 = 𝑦2, 𝑐𝑑+1 = 𝑧2, and by eliminating𝑑, we get the system of simultaneous Pellian equations:𝑐𝑥2 −𝑎𝑧2 = 𝑐− 𝑎, 𝑐𝑦2 −𝑏𝑧2 = 𝑐− 𝑏.
Solutions of Pellian equations are contained in finitely
many binary recursive sequences. Thus, the problem leads
to finding intersections of binary recursive sequences, i.e.,
finitely many equations of the form 𝑣𝑚 = 𝑤𝑛. These se-
quences satisfy 𝑣𝑚 ≈ 𝛼𝛽𝑚, 𝑤𝑛 ≈ 𝛾𝛿𝑛 for certain algebraic
numbers𝛼,𝛽,𝛾, 𝛿 (e.g. in the caseof theDiophantine triple{1, 3, 8} treated by Baker and Davenport, 𝛼 = (3+√3)/3,𝛽 = 2 + √3, 𝛾 = (4 ± √2)/4, 𝛿 = 3 + 2√2), which im-
plies 𝑚 log𝛽 − 𝑛 log𝛿 + log 𝛼𝛾 ≈ 0. But a consequence of
Baker’s theory is that a linear combination, with integer
coefficients, of logarithms of algebraic numbers which is
nonzero cannot be very close to 0. We therefore obtain
upper bounds for 𝑚,𝑛. To obtain lower bounds, we can
use the congruencemethod, introduced in joint work with
Pethő in 1998, and consider 𝑣𝑚 ≡ 𝑤𝑛 (mod 𝑐2). If 𝑚,𝑛
are small (compared with 𝑐), then ≡ can be replaced by =,
and this (hopefully) leads to a contradiction (if 𝑚,𝑛 > 2,
i.e., if 𝑑 does not correspond to a regular quadruple).
Therefore, we obtain lower bounds for𝑚,𝑛 (small powers
of 𝑐). Comparing the upper and lower bounds we get a
contradiction for large 𝑐.

It is likely that we cannot surpass Fermat by construct-
ing Diophantine quintuples. However, in the rational case,
there exist larger sets with the same property. Euler
found infinitely many rational Diophantine quintuples.
The question of the existence of rational Diophantine
sextuples remained open for more than two centuries. In
1999 Gibbs found the first rational Diophantine sextuple

{ 11192, 35192, 15527 , 51227 , 123548 , 18087316 } ,
while in2016Dujella,Kazalicki,Mikić, andSzikszaiproved
that there exist infinitely many rational Diophantine
sextuples. For example, there are infinitely many such
sextuples containing the triple {15/14,−16/21, 7/6}, with
the simplest example being

{1514,−1621, 76 ,−16803481,− 9101083, 624847} .
No example of a rational Diophantine septuple is known.
Moreover, we do not know any rational Diophantine
quintuple (or even quadruple) that can be extended to
two different rational Diophantine sextuples.

We now describe connections between rational Dio-
phantine 𝑚-tuples and elliptic curves. Let {𝑎, 𝑏, 𝑐} be a
rational Diophantine triple. In order to extend this triple
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Figure 1. If 𝑃 and 𝑄 have different 𝑥-coordinates,
then the straight line through 𝑃 and 𝑄 intersects the
curve in exactly one more point, denoted by 𝑃∗𝑄,
and we define 𝑃+𝑄 as −(𝑃∗𝑄) (where −(𝑃∗𝑄) is
the point with the same 𝑥-coordinate but negative𝑦-coordinate as 𝑃∗𝑄). If 𝑃 = 𝑄, then we replace the
secant line by the tangent line at the point 𝑃.
to a quadruple, we have to find a rational 𝑥 such that𝑎𝑥 + 1, 𝑏𝑥 + 1, and 𝑐𝑥 + 1 are all squares of rationals.
By multiplying these three conditions, we obtain a single
condition 𝑦2 = (𝑎𝑥+ 1)(𝑏𝑥 + 1)(𝑐𝑥 + 1),
which is in fact the equation of an elliptic curve (nonsin-
gular cubic curve with a rational point). We will explain
below which points on the curve satisfy the original
system of equations and give extensions to Diophantine
quadruples.

The set 𝐸(ℚ) of rational points on an elliptic curve 𝐸
over ℚ (affine points [𝑥, 𝑦] satisfying the equation along
with the point at infinity) forms an abelian group with the
law of addition defined by the secant and tangent method
as described in the figure.

Moreover, by the Mordell-Weil theorem, the abelian
group 𝐸(ℚ) is finitely generated, and hence it is the
product of the torsion group and 𝑟 ≥ 0 copies of the
infinite cyclic group: 𝐸(ℚ) ≅ 𝐸(ℚ)tors ×ℤ𝑟.

Let us denote the curve 𝑦2 = (𝑎𝑥+ 1)(𝑏𝑥 + 1)(𝑐𝑥 + 1)
by ℰ. We say that ℰ is induced by the Diophantine triple{𝑎, 𝑏, 𝑐}. There are three rational points on ℰ of order 2,
namely 𝐴 = [−1/𝑎, 0], 𝐵 = [−1/𝑏, 0], 𝐶 = [−1/𝑐, 0], and
also two other obvious rational points:𝑃 = [0, 1],

𝑆 = [1/𝑎𝑏𝑐,√(𝑎𝑏 + 1)(𝑎𝑐 + 1)(𝑏𝑐 + 1)/𝑎𝑏𝑐].
Note that the 𝑥-coordinate of the point 𝑃 − 𝑆 is exactly
the number 𝑑 from the definition of regular Diophantine
quadruples. In general, 𝑃 and 𝑆 will be independent
points of infinite order. But an important question, with
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significant consequences, is whether they can have finite
orders and which orders are possible.

Now we can answer the question which points on ℰ
give extensions to Diophantine quadruples. Namely, the𝑥-coordinate of a point 𝑇 ∈ ℰ(ℚ) satisfies the original
three conditions if and only if 𝑇− 𝑃 ∈ 2ℰ(ℚ). It can be
verified that 𝑆 ∈ 2ℰ(ℚ). This implies that if 𝑥(𝑇) satisfies
the original conditions, then also the numbers 𝑥(𝑇 ± 𝑆)
satisfy them. It can be shown that 𝑥(𝑇)𝑥(𝑇 ± 𝑆) + 1 is
always a perfect square.

Thus, {𝑎, 𝑏, 𝑐, 𝑥(𝑇 − 𝑆), 𝑥(𝑇), 𝑥(𝑇 + 𝑆)} is “almost” a
rational Diophantine sextuple. The onlymissing condition
is that 𝑥(𝑇− 𝑆)𝑥(𝑇+ 𝑆) + 1
is a square, and this last condition is satisfied if the
point 𝑆 is of order 3. In that way, the problem of
construction of rational Diophantine sextuples becomes
closely connected with elliptic curves with torsion groupℤ/2ℤ×ℤ/6ℤ. Elliptic curves inducedbyDiophantine triples
were used by Dujella and Peral in 2014 in constructing
elliptic curves with given torsion and high rank (details
of the current rank records can be found at the webpage
web.math.hr/˜duje/tors/tors.html). It is interesting
that any elliptic curve over ℚ with torsion group ℤ/2ℤ ×ℤ/8ℤ can be induced by a Diophantine triple.

There are several natural generalizations of the notion
of Diophantine 𝑚-tuples. We can replace squares by 𝑘-th
powers for fixed 𝑘 ≥ 3 (in a joint work with Bugeaud we
showed that there are no such quadruples for 𝑘 ≥ 177)
or by perfect powers (Luca showed in 2005 that the
cardinality of such a set is uniformly bounded assuming
the 𝑎𝑏𝑐-conjecture).

We can replace the number 1 in the conditions “𝑎𝑏+1
is a square” by a fixed integer 𝑛. Such sets are called𝐷(𝑛)-𝑚-tuples. It is easy to show that there are no 𝐷(𝑛)-
quadruples if 𝑛 ≡ 2 (mod 4). Indeed, assume that {𝑎1,𝑎2, 𝑎3, 𝑎4} is a 𝐷(𝑛)-quadruple. Since the square of an
integer is ≡ 0 or 1 (mod 4), we have that 𝑎𝑖𝑎𝑗 ≡ 2 or 3(mod 4). This implies that none of the 𝑎𝑖’s is divisible by4. Therefore, we may assume that 𝑎1 ≡ 𝑎2 (mod 4). But
now we have that 𝑎1𝑎2 ≡ 0 or 1 (mod 4), a contradiction.

On the other hand, it can be shown that if 𝑛 ≢ 2(mod 4) and 𝑛 ∉ 𝑆 = {−4,−3,−1, 3, 5, 8, 12, 20}, then
there exists at least one 𝐷(𝑛)-quadruple. For 𝑛 ∈ 𝑆, the
question of the existence of𝐷(𝑛)-quadruples is still open.
No 𝐷(−1)-quintuple exists, and there are only finitely
many such quadruples (and all of them must contain
the element 1); among the main contributors here are
Filipin and Fuchs. These results solve an old problem
investigated by Diophantus and Euler by showing that
there does not exist a set of four positive integers with
the property that the product of any two of its distinct
elements plus their sum is a perfect square. Indeed, since𝑥𝑦 + 𝑥 + 𝑦 = (𝑥 + 1)(𝑦 + 1) − 1, the existence of such a
set would imply the existence of 𝐷(−1)-quadruples with
elements ≥ 2.

Instead of over the integers and rationals, the problem
can be considered over any commutative ring with unity.
There are interesting results, due to Franušić and Soldo,

over rings of integers of certain quadratic fields which
show that there is a close connection between existence
of a 𝐷(𝑛)-quadruple and representability of 𝑛 as a
difference of two squares in the ring. Note that integers≡ 2 (mod 4) are exactly those that cannot be represented
as a difference of two squares of integers.

More details on Diophantine 𝑚-tuples and the com-
plete list of references can be found at the webpage
web.math.hr/˜duje/dtuples.html.
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