a Leavitt path algebra?

Gene Abrams
Communicated by Cesar E. Silva

The first postcalculus theorem you encountered as an undergraduate may well have been this: any two bases of a finitely generated real vector space contain the same number of vectors, called the dimension. The standard verification of this result relies on being able to clear nonzero coefficients, which is possible here because \mathbb{R} is a field. When you take the direct sum $V \oplus W$ of two such vector spaces, you get another one. A set with some such associative addition (but not necessarily subtraction) like \oplus, which has a zero element, is called a monoid. Also, the dimensions of the vector spaces (a.k.a. "ranks") add under \oplus. So, recast somewhat more formally, the theorem establishes that the monoid of finitely generated free modules over \mathbb{R} behaves just like the monoid of nonnegative integers \mathbb{Z}^{+}, with $V \leftrightarrow \operatorname{rank}(V)$. (We view $\{0\}$ as a vector space of dimension 0 .)

Any ring R whose finitely generated free modules behave just like \mathbb{Z}^{+}is said to have the IBN property (for Invariant Basis Number). Many rings fail to have this property. For example, let S consist of infinite real matrices with rows and columns indexed by the positive integers and all but finitely many entries in each column equalling 0 (so that we still have matrix multiplication). Then $S \cong S \oplus S:=S^{2}$ by letting the odd columns correspond to the first summand and the even columns to the second. Using this, we easily get $S^{n} \cong S$ for all n, i.e., maximally epic failure of IBN.

Then the natural question arises: are there rings for which the behavior of the finitely generated free modules lies somewhere in between the \mathbb{R} and S extremes? Does there exist, for example, a ring R for which (as free modules) $R^{2} \nsupseteq R$ but $R^{3} \cong R$? Well, suppose you have

[^0]a ring R containing six elements $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ that multiply as follows:
(1) $y_{i} x_{i}=1, y_{j} x_{i}=0(j \neq i)$ and $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=1$.

Then the maps $R \rightarrow R^{3}$ via $r \mapsto\left(r x_{1}, r x_{2}, r x_{3}\right)$ and $R^{3} \rightarrow R$ via $\left(r_{1}, r_{2}, r_{3}\right) \mapsto r_{1} y_{1}+r_{2} y_{2}+r_{3} y_{3}$ are easily shown to be inverses of each other, so that $R^{3} \cong R$. (For one direction: $r \mapsto\left(r x_{1}, r x_{2}, r x_{3}\right) \mapsto r x_{1} y_{1}+r x_{2} y_{2}+r x_{3} y_{3}=$ $r\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)=r \cdot 1_{R}=r$.) So your ring R would be a good candidate for such an "in between" ring. How to find an example of such an R ? EASY, just rig a ring that contains elements which behave this way, e.g., by taking the free associative algebra in the six variables and imposing (modding out by) the relations (1). Then $R^{3} \cong R$. But how could you show that $R^{2} \not \equiv R$? THAT'S NOT SO EASY. (Even showing that $R \neq\{0\}$ is not so easy.)

In fact $R^{2} \not \approx R$ (and much, much more) was established by Bill Leavitt [2] in 1962. This R is now called the Leavitt algebra of type (1,3). There is an analogous Leavitt algebra of type $(1, n)$ for each integer $n \geq 2$.

In deep, fundamental work from 1974, George Bergman described an explicit general construction which starts with any appropriate monoid (along with some additional data about that monoid) and produces a corresponding algebra. The resulting algebra has the property that the monoid of finitely generated projective modules with operation \oplus (which contains, and possibly equals, the monoid of finitely generated free modules) for this algebra behaves just like the given monoid. A special case of the construction yields the Leavitt algebra of type $(1, n)$ by starting from the monoid

$$
\begin{equation*}
M_{n}=\{0, x, 2 x, \ldots,(n-1) x\} \tag{2}
\end{equation*}
$$

with the relation $n x=x$.
We now switch gears. Let Γ be a finite directed graph with vertex set V. Consider the commutative monoid M_{Γ} generated by V, modulo relations of the form $v=\sum\{r(e): e$ is an edge from v to $r(e)\}$ (assuming that set is nonempty). For example, if Γ is the "rose with n petals" of Figure 1, then M_{Γ} is the monoid M_{n} of (2). For general Γ, Bergman's corresponding algebra for M_{Γ}

THE GRADUATE STUDENT SECTION

(with germane additional data) is called the Leavitt path algebra of Γ. Familiar examples of Leavitt path algebras include the algebra of $n \times n$ matrices and the Laurent polynomial algebra (generated by x and x^{-1}). More interesting examples have perhaps unexpected behavior.

Figure 1. This "rose" graph with n petals yields the monoid M_{n} with relation $n x=x$ because the edges which start at x end back at x with multiplicity n.

Since the introduction of Leavitt path algebras in 2005, the research effort into their structure has included a number of lines, e.g., the discovery of conditions on the graph which are equivalent to various ring conditions on the associated Leavitt path algebra, such as simplicity (no nontrivial two-sided ideals), finite dimensionality, so-called von Neumann regularity, and primeness.

There is a tight (but not yet completely well-understood) connection between the Leavitt path algebra and a C^{*}-algebra associated with a graph. This

Leavitt path algebras have been used to settle long-standing questions about apparently unrelated structures connection was an initial motivation for the study of Leavitt path algebras, and it continues to drive one of the research lines. As well, there is an extremely close connection between certain Leavitt path algebras and structures arising in symbolic dynamics. Results established about Leavitt path algebras and their generalizations have been used to settle longstanding questions about apparently unrelated structures, for example, infinite simple groups.

The key open question is tantalizingly easy to state: if E_{4} denotes the graph

then is the Leavitt path algebra of E_{4} isomorphic to the Leavitt algebra of type $(1,2)$ generated from the monoid M_{2} given above in (2)? A more general version of this question (the Algebraic Kirchberg Phillips Question) currently lies at the heart of the subject. Many algebraists, analysts, and dynamicists are working on its resolution. Perhaps you'd like to join in?

See Abrams [1] for a fuller description of the subject.

Credit

Photo of Gene Abrams, courtesy of Gene Abrams.

References

[1] G. Abrams, Leavitt path algebras: The first decade, Bull. Math. Sci. 5 (2015), no. 1, 59-120. MR 3319981
[2] W. G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 103 (1962), 113-130. MR 0132764

ABOUT THE AUTHOR

Gene Abrams enjoys trying to keep up with his wife, Mickey, while skiing and biking in the great outdoors of Colorado. All things baseball dominate the vast majority of his remaining free time.

Gene Abrams

[^0]: Gene Abrams is professor of mathematics at the University of Colorado Colorado Springs. His email address is abrams@math. uccs. edu.

 For permission to reprint this article, please contact: reprint-permission@ams.org.

 DOI: http://dx.doi.org/10.1090/noti1414

