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WHAT IS A MARTINGALE? 
J. L. DOOB, University of Illinois 

1. Introduction. Martingale theory illustrates the history of mathematical 
probability: the basic definitions are inspired by crude notions of gambling, but 
the theory has become a sophisticated tool of modern abstract mathematics, 
drawing from and contributing to other fields. Martingales have been studied 
systematically for about thirty years, and the newer probability texts usually 
devote some space to them, but the applications are so varied that there is no 
one place where a full account can be found. References [1 ] and [2 ] are the most 
complete sources. 

The following account of martingale theory is designed to give a feeling for 
the subject with a minimum of technicality. The basic definitions are given at 
two levels, of which the first is more intuitive and elementary and suffices for 
some of the examples. The examples illustrate only the immediate applications 
requiring a minimum of background. 

We recall that in probability theory one starts with a set called the sample 
space, that events are subsets of this space, and random variables are functionls 
on this space. Suppose for simplicity that the sample space 2 has only countably 
many points wi, W2, ... to which are assigned probabilities pi, P2, * * * respec- 
tively, with p3 _0 and Es pi 1. If xi, . . . , xk are random variables, we write 

{ xi = al, * , xJk - ak f = nm { Cj: xm(.wi) = am,} 

for the set of points where the random variables have the indicated values. The 
probability P { A } of the event A is defined as Epj, where the sum is over those 
values of j with wj in A. If P { B } >O, the conditional probability of the event A 
relative to B is defined by P { A B }P {AflB }/P {B }. If x is a random vari- 
able, its expectation is defined as 

(1.1) Et{x} = E x(oj)pj, 

(where it is supposed that the series converges absolutely) and the conditional 
expectation of x relative to B is defined correspondingly when P { B } >0 as 

(1.2) E{x I B} = (,w)p1P{B 
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452 J. L. DOOB [May 

where the prime indicates that the sum is over the values of j with cj in B. If 
P { B } = 0 the preceding conditional probability and expectation can be defined 
arbitrarily without affecting later work. 

It has been found useful to make conditional expectations into functions, 
as follows. Let { B., n > 1 } be a partition of Q, that is, a countable class of disjoint 
sets with union U. This partition generates, and is in turn determined by, a o- 
algebra Y, namely the class of all unions of sets of the partition. If x is a random 
variable with an expectation, define E {x j 5 }, the conditional expectation of x 
relative to C, as the random variable with the constant value E { x I Bn } on each 
set B,n. This definition is unambiguous except on the partition sets (if there are 
any) of probability 0. In particular if yi, * * *, yk are random variables, they 
induce the partition 3f each of whose sets is determined by a condition of the form 
{yi=a,, , yk =ak }; in this case E {xI }, also denoted by E {xl yi, * * }, 

is the function with the value E { x I y =a,, ,y; = ak I on the set {y = al, 
Yk=ak 1. 

Let TiCT2C . . be a finite or infinite increasing sequence of a-algebras 
(generated by partitions of the sample space as just described). The intuitive 
picture to keep in mind is that TX represents the class of all relevant past events 
up to and including time n. The monotoneity relation corresponds to the idea 
that the past to time n?1 includes more events than the past to time n. Let 
xl, x2, * * be a sequence of random variables. We consider xn as part of the 
relevant history to time n, interpreting this statement to mean that each event 
of the form {C -a } is a set in the class 5n. The sequence of random variables is 
to be analyzed. In some applications xi, x2, are specified and an is the past as 
determined entirely by xi, * * *, xn, that is Tn is generated by the partition of Q 
induced by xi, - *, x.. This choice of 5. will be called minimal (relative to a 
specified sequence of random variables). 

The sequence {Ixn, n ? 1 } is called a martingale relative to {15U;, n 1} if 
each xn has an expectation, and if for m <n the expected value of xn given the 
past up to time m is Xm, that is 

(1.3) E{Xn I nIm} = Xm 

This is a relation between functions on the sample space and is to hold almost 
everywhere, that is everywhere except perhaps on a subset of the sample space of 
probability 0. If every pi is strictly positive, the exceptional set is empty. If xn is 
thought of as the fortune of a gambler at time n, the defining equality (1.3) 
corresponds to the idea that the game the gambler is playing is fair. If '=' in 
(1.3) is replaced by ' or '<, the sequence of random variables is called a 
submartingale or supermartingale respectively, and the corresponding games 
are then respectively favorable or unfavorable to the gambler. Trivially (for 
specified a-algebras) {Xn, n : 1 } is a supermartingale if and only if { -Xn, n ? 1 } 
is a submartingale, and is a martingale if and only if it is both a supermartingale 
and a submartingale. The definitions imply that E {xn } increases with n in the 
submartingale case, decreases with n in the supermartingale case, and does not 
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19711 WHAT IS A MARTINGALE? 453 

vary with n in the martingale case. (All monotoneity statements are to be 
interpreted in the wide sense.) 

Equation (1.3) implies that 

(1.4) E{Xn I XI; * Xm} = XM 

equivalently that 

(1.4') E{xn I xi = a,, .. * Xm = am} am, 

whenever the conditioning event has strictly positive probability, and in fact 
(1.4) is the same as (1.3) whenever every 5k is minimal. In other words, a 
martingale relative to a given sequence of u-algebras is also one relative to the 
minimal sequence of a-algebras. A corresponding remark is valid for submar- 
tingales and supermartingales. If the sequence of cr-algebras is not mentioned, 
the minimal sequence is to be understood. 

The definition of a martingale is applicable to complex-valued random vari- 
ables, and we shall consider certain complex martingales below. Trivially, the 
real and imaginary parts of a complex martingale are real martingales. 

2. Definitions in the general case. The definitions in Section 1 assumed 
countability of the sample space, a condition not satisfied for some of the ap- 
plications to be described below. In this section definitions will be given in the 
general case, in non-probabilistic language to convince cynical readers that 
probability theory does not need an admixture of non-mathematical terms like 
coin, event, gambler, urn, * * *, even though the ideas behind these terms have 
inspired much of the theory. 

Let {Q, C, P } be a measure space: Q is a set, 5f is a a-algebra of subsets of Q, 
and P is a measure defined on W. Assume further that PI{Q } = 1. (Some non- 
probabilists accuse probabilists of seeking to mystify outsiders by disguising 
measurable functions and their integrals with the aliases random variables and 
expectations. Note however that probabilists were dealing with the integrals of 
functions on abstract sets before other analysts dreamed of measure theory. It is 
sardonic that, dually, some probabilists accuse others of obfuscating probability 
with measure theory.) Let Y1C52C . . . be an increasing sequence of u-algebras 
of 5f sets. Let {X., n > 1 } be a sequence of complex functions on Q satisfying the 
following conditions: 

(a) xX is measurable relative to 5i; 
(b) xX is integrable; 
(c) If m <n and if A is any set in Jmn then 

(2.1) fdP = xmdP. 

Then the sequence of random variables is said to be a martingale relative to 
nt?, n a 1 }. If the random variables are real and if ' =' is replaced in (2.1) by ' ' 
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454 J. L. DOOB [May 

or '_', the sequence of functions is said to be a supermartingale or submar- 
tingale, respectively, relative to the sequence of a-algebras. Conditional ex- 
pectations relative to a a-algebra (in the present general context) are defined in 
such a way that (2.1) and (1.3) (to hold P almost everywhere on Q) are equiv- 
alent. Thus the present definitions include the earlier ones and the collateral 
remarks about martingale theory in Section 1 are valid in the general case also. 

The definitions have been given for the parameter set 1, * * *, k or 1, 
2, * * *, ordered as usual, but they are obviously extendable to any simply- 
ordered parameter set. 

3. Example: expectations knowing more and more. Let 5f1C52C * be an 
increasing sequence (finite or infinite) of u-algebras, as usual, and let x be a ran- 
dom variable with an expectation. Then if xn =E {xJ I }, the sequence xi, 
x2, * * * is a martingale relative to the given u-algebra sequence. That is, succes- 
sive conditional expectations of x, as we know more and more, yield a mar- 
tingale. More generally, the parameter set 1, 2, * * * can be replaced in this 
example by any simply ordered set. The essential condition is that 53t increase 
with t. Every martingale whose parameter set has a last element is of this type, 
with x identified with the last element. 

This example suggests the possibility of applications to statistics and in- 
formation theory and induces such probabilistic extravagances as the statement 
that 'the game man plays with nature as he learns more and more is fair.' 
(Perhaps this statement indicates how realistically a martingale reproduces the 
idea of a fair game.) 

4. Example: sums of independent random variables. Let yi, Y2, * be 
independent random variables with expectations, and let x =y1?+ * * +y. 
Then it is intuitively obvious and easily proved that xi, x2, * is a martingale if 
E =y 0 for j> 1, a submartingale if E {yI} 0 for j> 1, a supermartingale if 
E y; } <Oforj>1. 

5. Example: averages of independent random variables. In the preceding 
example suppose that yl, Y2, * * * have a common distribution which has an ex- 
pectation. Then a symmetry argument shows that 

X3 X2 
2 - , xl 

is a martingale in the indicated order (left to right). This example suggests 
possible applications to the law of large numbers and therefore suggests ties 
between martingale theory and ergodic theory. In fact there are close relation- 
ships between the two theories, and sometimes it is said that one contains the 
other. Which is said to contain the other depends on the speaker. At any rate, it 
is true that in a reasonable sense there are only two qualitative convergence 
theorems in measure theory (aside from theorems of the form "convergence of 
type I implies convergence of type II"), the ergodic theorem and the martingale 
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1971] WHAT IS A MARTINGALE? 455 

convergence theorem. The latter will be discussed below. Each is involved with 
finer and finer averaging. 

6. Example: harmonic functions on a lattice. Let S be any subset of the set S' 
of points with integral coordinates in d-dimensional coordinate space, d 2 1. A 
point t of S will be called an interior point of S if S contains all 2d of the nearest 
neighbors in S' of t. Otherwise t will be called a boundary point of S. Unless 
S S' there will be boundary points. A function u on S will be called harmonic 
(superharmonic) if u at each interior point of S is equal (at least equal) to the 
average of u on its 2d nearest neighbors. For example, a linear function is 
harmonic, a concave function of a harmonic function is superharmonic. Define a 
walk on S, that is, a sequence x0, xi, * * - of random variables with values in S, 
as follows. Prescribe some initial point in S and set x0 identically this point. If 
xo = a0, ... * X, =an and if an is an interior point of S, then Xn+1 is to be (condi- 
tional probability) one of the 2d nearest neighbors of an, with (conditional) 
probability 1/(2d) for each one. If an is a boundary point of S, Xn+1 is to be a". 
Thus the walk proceeds until the boundary is reached, if ever, and sticks at the 
first boundary point reached. It can be shown that such a walk exists. If u is 
harmonic (superharmonic) on S, the sequence of random variables u(xo), 
u(xi), ... **is a martingale (supermartingale). If we are to consider the infinite 
sequence x0o xi, ... , the sample space must be uncountable. 

7. Example: classical harmonic and analytic functions. A variation of the 
idea of Section 6 is the following. Let S be an open subset of d-dimensional 
coordinate space, d _ 1. A function u on S is said to be harmonic if u is continuous 
and if, whenever t is a point of S, and B is a ball with center t whose closure 
lies in S, the value of u at t is the average of its values on the boundary of B. For 
example linear functions are harmonic for all d, and are the only harmonic func- 
tions if d =1 and S is an interval. The harmonic functions are the infinitely 
differentiable functions whose Laplacians vanish. If d 2, the real part of an 
analytic function is harmonic. If t is in S and if S is the whole space, denote by 
B(t) the boundary of the ball with center t and radius 1. If S is not the whole 
space, denote by B(t) the boundary of the ball with center t and radius half the 
distance from t to the boundary of S. If d > 1 and A CB(t), let p(t, A) be the 
(d- 1)-dimensional "area" of A divided by that of B(t). If d = 1 let p(t, A) be 
one-half the number of points in A. Now define a walk on S, that is, random 
variables xo, xi, . . . with values in S, as follows. Prescribe some initial point in S 
and set x0 identically this point. If xo =ao, , * Xn =an, then Xn+1 is to be on 
B(an), and in fact the conditional probability that xn+1 is in the subset A of 
B(an) is to be p(an, A). With this definition, if u is real and harmonic, or if d=2 
and u is complex and analytic on S, the sequence of random variables 
{u (xn), n 0 } is a martingale. If superharmonic and subharmonic functions are 
defined as usual in this context, there is a corresponding relation between 
superharmonic (subharmonic) functions and supermartingales (submartingales). 

Sections 6 and 7 indicate connections between martingale theory and 
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potential theory. In fact the probability theory of Markov processes and ab- 
stract potential theory are to a'considerable extent different ways of looking at 
the same subject, and martingale theory is an essential tool of probabilistic 
potential theory. 

8. Two basic principles. We shall need the concept of a stopping time, also 
called a Markov time and optional time. If ifoC5iC * is an increasing se- 
quence of cr-algebras and if v is a random variable whose range is the set of posi- 
tive integers together with + oo, the random variable v is called a stopping time 
(relative to the sequence of a-algebras) if { v < k } is a set in Yik for k = 0, 1, 
that is, in intuitive language, if the condition v < k is a condition involving only 
what has happened up to and including time k. For example, if { X,, n ?0 1 is a 
martingale relative to the given sequence of a-algebras and if v(co) is the first 
integer j for which xj(X) > 0, or v(X) = oo if there is no such integer, thenr v is a 
stopping time. 

Two basic principles are embodied in the following rough statements, which 
will be given exact versions and applied in various contexts. Let xo, xi, .*. be a 
supermartingale relative to go, 5. 

Pl. If V ?v2 ? * * are finite stopping times which are not too large (with 
reference to xo, xl, .), then the sequence x.1, x^2, ... is a supermartingale; it is a 
martingale if { xt&, n > 0 is a martingale. 

P2. If supnE { xX } is not large, then supn I xn I is not large, and the sequences 
{xo(co), x1(@), } of possible values of the supermartingale are not strongly 
oscillatory. 

The principle P1 is suggested by the fact that a gambler playing an unfair 
(fair) game will still consider it unfair (fair) if he looks at his money not after 
every play, but only after plays number v1, P2, - - . The following version of 
P1, in which all stopping times are finite, will be called the STOPPING TIME 
THEOREM below: 

If { xn, n 0 1 } is a supermartingale (martingale) and if each v; is bounded, then 
the sequence {IX,, j_ I } is also a superinartingale (martingale). With no restriction 
on the finite stopping times, the second sequence is a supermartingale if the first was, 
and if also xi O for allj. 

The principle P2 is exemplified by the following theorem, which will be called 
the MARTINGALE CONVERGENCE THEOREM below: 

If { X., n >1 } is a supermartingale with sup.E xn| }<oo, then limn,o: xn 
exists and is finite almost surely. If { . . , X_, xQ} (ordered left to right) is a 
supermartingale, then (almost surely) limn_ = x- exists with - to x_,< co . 

Here almost surely means everywhere on the sample space except possibly 
for a set of probability zero. (One of the most noticeable distinctions between 
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19711 WHAT IS A MARTINGALE? 457 

probability and measure theory is that a probabilist frequently writes "almost 
surely" where a measure theorist writes "almost everywhere.") 

The Martingale Convergence Theorem should be contrasted with the 
ERGODIc THEOREM, which we state in the following version: 

Let zi, Z2, * * * be random variables with expectations and having the property 
that for every n > 0 the joint distribution of zi, , zl+j does not depend on j> 1. 
Then almost surely 

(8.1) lim (z1 + + Z")In 

exists and is finite. 

Denote by z' the ratio in (8.1). Then z' is a weighted average of zi, Z2, 

and z+1 is a weighted average of z', , i, * . Thus z'+. is a coarser 
average than z,. Now the defining equality of a martingale { Xnc n > 1 } makes xn a 
partial average of x.+i. Thus if there is any relation between the Martingale 
Convergence Theorem and the Ergodic Theorem, one would conjecture that the 
Ergodic Theorem corresponds to the Martingale Convergence Theorem with 
decreasing index. The application in Section 11 verifies this conjecture in a special 
case. 

9. Continuation of Section 3. In the example in Section 3, E {xj } 
<5 Et I }. Thus according to the Martingale Convergence Theorem, liM 
EF {x Tn exists almost surely. If 5:. is defined as the smallest a-algebra contain- 
ing every set of U.T., then the limit can be identified as E { x 9 }. We have ob- 
tained a kind of continuity theorem for conditional expectations. There is a 
corresponding theorem relative to a decreasing sequence of a-algebras. 

10. Continuation of Section 4. Suppose in Section 4 that E { yj }O0 for all j. 
Then the sequence {Xn, n 21 } is a martingale, and according to the Martingale 
Convergence Theorem, the series Ej yj converges almost surely if supn 
E y } < oo. Suppose for example that E{y2} < 00 for all j, so that the 
series Ej yj is a series of orthogonal random variables, and as such converges in 
the mean if and only if Ei E {y y} < oo, that is, if and only if sup,E{x2} <0 . 

But the finiteness of this supremum means that the hypothesis of the Mar- 
tingale Convergence Theorem is satisfied, and we have proved that convergence 
in mean of a sum of independent random variables with zero expectations im- 
plies almost sure convergence. 

To obtain a second application of martingale theory to sums of independent 
random variables, let zi, Z2, . . . be mutually independent random variables 
with a common distribution having expectation a. If xo = 0 and xn- (zj-a) 
for n> 0, the sequence { Xn, n > 0 } is a sequence of sums of independent random 
variables with zero expectations and as such is a martingale. If v is a finite 
stopping time (relative to the minimal a-algebra sequence) with an expectation, 
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and if V1=0, v2=v, it can be shown that a version of P1 yields the fact that 
x.1, x2 is a martingale with two random variables, having common expectation 0. 
The fact that E { x" }O0 means that 

(10.1) E{ z} } aE{v}. 

This equality is Wald's FUNDAMENTAL THEOREM OF SEQUENTIAL ANALYSIS, 
which has many applications in statistics. 

11. Continuation of Section 5. An application of the Martingale Convergence 
Theorem to the martingale in Section 5 yields the almost sure existence of the 
limit 

(11.1) lim (yi+ .- +yn)/n. 

The limit can be shown to be E {yi } . This convergence result is known to prob- 
abilists as the STRONG LAW OF LARGE NUMBERS FOR INDEPENDENT RANDOM 
VARIABLES WITH A COMMON DISTRIBUTION, and the result can also be obtained 
as an application of the Ergodic Theorem. (See the discussion of the relation 
between the Ergodic Theorem and the Martingale Convergence Theorem in 
Section 8.) 

12. Continuation of Section 6. We suppose that S is bounded and show first 
that almost every walk path from a point t of S reaches the boundary. There are 
elementary proofs of this fact and the following proof is given only to illustrate 
martingale theory. If u is defined and harmonic on S, then {u(xn), n_O} is a 
bounded martingale and is therefore almost surely convergent. In particular if u 
is a coordinate function, it is trivial that u on a walk sample sequence cannot be 
convergent unless u on the sequence is finally constant. Then almost every walk 
sample sequence must hit the boundary (where it sticks), as was to be proved. 

If t is not a boundary point, there is an integer-valued random variable v (the 
first hitting time of the boundary) such that xv is a boundary point, but xj is not 
for j <v. The random variable v is a stopping time relative to the sequence of 
minimal a-algebras. If u is harmonic on S, if vP=0 and V2 = V, the stopping time 
theorem (slightly extended) asserts that u(a), u(x,) is a martingale with two 
random variables. But then 

(12.1) u(Q) = E{u(0)} = E{u(x)}. 

Denote by /(q, 77) the probability that x- =7, that is, the probability that a walk 
starting at t hits the boundary at X. The distribution u(, *) is called harmonic 
measure relative to t. In terms of harmonic measure, (12.1) becomes 

(12.2) u( ) = E u(n1) L( , X), 

where the sum is over all boundary points . Thus a harmonic function on S is 
determined by its values on the boundary, in fact, is the weighted average using 
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harmonic measure of its values on the boundary. The rules for manipulating 
conditional expectations yield the fact that if u is an arbitrary function defined 
on the boundary of S, and if u is defined at interior points by (12.2), then u is 
harmonic on S. We have now shown the existence and uniqueness of a harmonic 
function with a specified boundary function. We omit the corresponding treat- 
ment of more general harmonicity defined using weighted averages, not neces- 
sarily at nearest neighbors. When d 1, the result obtained is particularly intui- 
tive. In this case if S is the set of points -a, - * *, b, where a and b are strictly 
positive integers, the walk is the random walk in which a step is either 1 or -1, 
with probability 1/2 each, independent of previous steps, until -a or b is 
reached. In gambling language: a gambler is playing a fair game in which at each 
play he can win or lose a dollar with probability 1/2 each and the plays are 
independent; he starts with a dollars, his opponent with b dollars, and the game 
ends when he or his opponent has lost all his money; x,, is the gambler's total 
winnings (positive or negative) after the nth play. Since the play starts at time 
0, we define xo=0. If we take the harmonic function u to be the identity func- 
tion, u(s) = on S, the sequence {x., n0>} is seen to be a martingale, so (12.1) 
becomes 

(12.1') E{u(x )} c 0, 

that is, the expected final gain is 0 as it should be. Equation (12.1') can also be 
obtained as a special case of (10.1). However obtained, this equation yields the 
standard result that the probability the gambler wins, that is, the probability 
that xv is b, is a/(a+b). 

13. Continuation of Section 7. If d= 2, the properties of the random walk of 
Section 7 are intimately related to the properties of harmonic and analytic func- 
tions. We shall see this first in a simple application where S is the whole plane. 
It can be shown in this case that almost every sample walk starting from any 
point t is dense in the plane. This fact corresponds to Liouville's theorem that a 
bounded complex function which is analytic on the plane is a constant function, 
and we shall now prove Liouville's theorem probabilistically. Since the real and 
imaginary parts of an analytic function are harmonic, we shall obtain a stronger 
result if we prove that a function harmonic and bounded on the plane is con- 
stant. In fact we shall do even better and prove that a harmonic function on the 
plane which is bounded from above or below is a constant. By linearity we can 
suppose that the function u is positive, and we consider the martingale 
{u (x.), n 0}. Trivially, 

E{u(xo)} = E{u(xn)} = E u(x| ) j} 

According to the Martingale Convergence Theorem, this martingale is almost 
surely convergent. If we choose any sample walk which is dense and on which u 
has a limit, say c, the function u must be identically c by continuity, as was to be 
proved. 
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We proceed to the analog of the work in Section 12, assuming from now on 
that S is bounded and d arbitrary. The almost sure convergence of the bounded 
martingale { u(x) n _0 }, when u is a coordinate function, implies that limn+OO 
xn=x0o exists almost surely. This is impossible unless x., has its values on the 

boundary of S. If t is the initial point of the walk and if A is a Borel boundary 
set, let g(, A) be the probability that x,O is in A. Then u(t, *) is a measure of 
boundary sets, harmonic measure relative to t. If u is a bounded harmonic func- 
tion on S, or even if u is merely bounded above or below, the Martingale Con- 
vergence Theorem implies that lim.oO u(x.) exists almost surely. That is, u has a 
limit at the boundary of S along almost every one of the sample walks. We shall 
continue this aspect of the discussion in Section 16. Suppose now that u is 
actually defined and continuous on the closure of S. Then trivially lim, 
u(x") u((x.) almost surely and it is straightforward to show that the ordered set 
of random variables 

i(xo), U(Xi), u (x.) 

is a martingale. Since the expectations of the first and last random varlables are 
equal, 

(13.1) u() =E{u(x.O)} - fu(?)A(t, dq), 

where the integration is over the boundary of S, that is, u(t) is the average of its 
values on the boundary, weighted by harmonic measure. Conversely, if u is a 
function defined and continuous on the boundary of S, and if u is defined on S by 
(13.1), it can be shown, using the ideas in Section 16, that u is harmonic on S and 
has the assigned boundary function value as a limit at each boundary point near 
which the boundary is well-behaved (more precisely at each regular boundary 
point in the potential theoretic sense). Thus martingale theory solves the first 
boundary value problem for harmonic functions. This kind of analysis is ap- 
plicable not only to classical harmonic functions, but also to the solutions of 
general elliptic and parabolic partial differential equations. 

14. Example: application to derivation. The close relation between mar- 
tingale theory and derivation theory is illustrated by the following example. Let 
Q be the unit interval [0, 1 and let the probability of a subset A be its Lebesgue 
measure, denoted by IA I. For each n > 1, let A., , , A,nk be a partition of 
[0, 1] into disjoint intervals, and suppose that the (n+l)th partition is a re- 
finement of the nth, that is, we suppose that each Aj is a union of sets in the 
(n+l)th partition. If in is the class of unions of sets in the nth partition, then 
9.C5Fnf. If f is an integrable function on [0, 1], define the random variable x, by 

x?= f(c.)dw/l An}| onA Aj, j 1 
tn nt 

to get a martingale relative to nX n_ 1 } for which 
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(14.1) El I xn} < f f(w) I d@. 

Iff is continuous and if limn.+.maxjl AniJ = 0, it is trivial that limurn0x,(w) =f(co) 
for all w. Without this restriction onf and on the partitions the Martingale Con- 
vergence Theorem implies that limnoocxn exists almost everywhere on [0, 1]. 
More generally, [0, 1] can be replaced by any measure space {Q2, C, P} with 
P { Q} = 1. In this new context the partition is to be a partition of Q2 into count- 
ably many disjoint measurable sets; the (n+ 1)th partition is to be a refinement 
of the nth; fA fdco is replaced by 1u(A), where 4 is any finite signed measure on 
i; x. is defined as A(A I)/P {Ani} on A1j if the denominator does not vanish, 
defined arbitrarily on Any if P { Anl} =0. With this definition the sequence of 
random variables is a martingale if 

(a) P{Anj} >0foralln,j, 

or if 

(b) /(A n) =0, wheneverP{AnJ} =0. 
Without either (a) or (b) the sequence of random variables is a supermartingale 
if 

(c) ,u20. 
Under (a) or (b) or (c), E { JXnl } is at most the absolute variation of A, and we 
conclude that the martingale or supermartingale converges almost surely. Since 
a finite signed measure is the difference between two finite measures, we have 
derived the fact that a finite signed measure has a derivative relative to any 
finite measure with respect to a net of partitions. (The extension to allow P Io 
to be other than 1 is trivial.) 

15. Example: functions on an infinite dimensional cube. The definition of a 
martingale implies that each martingale random variable is a partial averaging 
of the next one. The following example exhibits this fact very neatly. Let Q be 
the coordinate space of two way infinite sequences * * * , -1, t0 , , * * , 06 ?t 
< 1. Let P be the product measure on Q for which each coordinate measure is 
Lebesgue measure, that is, P is infinite dimensional volume. Let f be a mea- 
surable integrable function on Q. Then we define, in the obvious notation, the 
random variable x,, by 

(15.1) xn = f( X ) ...01 101 dt. 
n+1 

Here we have integrated out tn+1, tn+2 If n,, is the smallest O-algebra of 
subsets of Q containing every set determined by a condition of the form {j<c 
for j ? n, it can be shown that x,, = E {f in } almost surely, as should be intui- 
tively clear: we are calculating the expected value of f knowing all the coor- 
dinates up to and including the nth. Then (see Sections 3 and 9) the two way 
sequence { nx, - <n < X } is a martingale which converges in both directions: 
liMn-,=ax,nx and liMn-.-.X.= x-, exist almost surely. These limits can be 
shown to be (almost surely) f and E {f } respectively. 
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16. Continuous parameter case. Let {xt, tGI } be a supermartingale, where 
I is an interval on the line. Then Principle P2 is illustrated by the fact that each 
random variable w-Xe(w) can be changed on an co set of probability 0 in such 
a way that almost every sample function (that is for almost every w the func- 
tion t-%..xt(c)) becomes continuous except for nonoscillatory discontinuities. 
Such a change does not affect the joint distributions of finite sets of the random 
variables or the fact that the family of random variables is a supermartingale. 
The theory of continuous parameter supermartingales is very rich and plays an 
essential role in probabilistic potential theory. We give only one application 
here, a continuation of Sections 7 and 13. Let {t, 0 5 t oo } be Brownian mo- 
tion in d-dimensional space, with initial point : z0 is identically t; for each t_0 
the random variable Zt has its values in d-space; every sample function te--o.zt(w) 
is continuous. We omit the exact specification of the distributions. It turns out 
that, in the notation of Section 7, if To= 0, if Ti is the first time t when Zt is a 
point of B(s), if T2 is the first time t > T1 when zt is a point of B(ZT1) and so on, 
and if x. is defined as zT., then the sequence { X,c, n ? 0 } is precisely the walk dis- 
cussed in Sections 7 and 13. Thus a walk sample sequence is a sequence of 
points on a Brownian path. If S is the whole space and if u is a real harmonic 
function (or, if d =2, a complex analytic function) on S and if I uj is not too 
large (we omit the precise restriction), then { u(zt), t >0 } is a martingale. Sup- 
pose from now on that S is bounded. (The exactly appropriate condition is more 
generally that the complement of S has zero capacity.) Let T=sup.Tn be the 
first time t at which Zt is on the boundary of S. Then it can be shown that T is 
almost surely finite, and of course ZT can be identified with x0 (defined in Section 
13). Then the distribution of ZT is harmonic measure relative to the initial point 
of the Brownian motion. A refinement of the analysis in Section 13 shows that 
if u is harmonic and positive on S, and if u(zt) is defined as 0 when t> T, the 
process { u(zt), t > 0 1 is a supermartingale. (This result is valid even if u is only 
superharmonic and positive, excluding the parameter value 0 if u(t) = oo, and 
the discussion here can be generalized correspondingly.) From this result it is 
then concluded, using the existence of left limits of supermartingale sample 
functions, that u has a limit at the boundary of S along almost every Brownian 
path: limtt u(Zt) exists almost surely. The limit theorem we have obtained is a 
probabilistic generalization of the classical FATOU THEOREM that if S is a disk, 
then any positive harmonic function u on S has a limit along almost every 
radius: if the disk radius is a and if polar coordinates are used, lim7..4 u(reil) 
exists Lebesgue for almost every 0. (The result was extended later to balls of 
arbitrary dimensionality.) Note that Fatou's Theorem is much more special 
because in his theorem S is a ball. On the other hand Fatou's paths are un- 
deniably more pleasant, or at least more traditional, and are individually 
identifiable. The probability theorem, however, when applied to a ball, can be 
used to deduce Fatou's theorem, and in fact when boundary limit theorems are 
extended to cover superharmonic functions and more general classes of func-. 
tions it becomes clear that the probabilistic versions are intrinsic, not accidents 
of the geometry of the domains. 
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MATHEMATICAL FOUNDATIONS FOR MATHEMATICS 
LEON HENKIN,1 University of California, Berkeley 

1. Introduction. Most mathematical papers deal with mathematics "in the 
small"-a few definitions, a few theorems, a few proofs. If the author has a 
modicum of boldness and compassion he may also include some account of the 
intuitive ideas from which these formal parts of his work were fashioned. This 
paper, however, will have a different character. 

In wondering what subject to choose for this Chauvenet Symposium, I let 
my mind's eye wander over those areas of the foundations of mathematics in 
which I have worked or dabbled-completeness proofs, applications of logic to 
algebra, decision problems, infinitary logic, algebraic logic . . . somehow none 
of them seemed appropriate. I began to wonder why. Presently it seemed to me 
that the answer was bound up with what might be called the "sociological struc- 
ture" of our contemporary American mathematical community. 

1 The point of view toward foundations developed here was first formulated by me in the 
IBM Lectures which I gave at Swarthmore in December, 1967. This viewpoint has been developed 
over an extended period, during which much of my work was supported by the National Science 
Foundation (most recently, Grant No. GP-6232X). 

This paper constitutes the final paper prepared for the Chauvenet Symposium held at the 
U. S. Naval Academy in October 1969 (this Monthly, May 1970). 

Professor Leon Henkin received his PhD at Princeton University in 1947 under the direction 
of Alonzo Church. His thesis included a proof of G6del's completeness theorem for the predicate 
calculus which has since become the standard proof in almost every presentation of mathematical 
logic. In addition Professor Henkin developed the theory of cylindrification algebras which is an 
algebraic formulation of the theory of quantifiers. His principal work has been in the area of 
foundations and mathematical logic in which he has published many papers and is a recognized 
authority. He was awarded the Chauvenet Prize in 1964 for his paper "Are Logic and Mathematics 
Identical?" published in Science, 1962 (vol 138). 

Professor Henkin was Fine Instructor and Jewett Fellow at Princeton from 1947 to 1949, hav- 
ing spent four previous years as a mathematician in industry. In addition he was a Fullbright 
Scholar in Amsterdam in 1954-55, aVisiting Professor at Dartmouth in 1960-61, and a Guggenheim 
Fellow and member of the Institute For Advanced Study in 1961-62, and a visiting Fellow at All 
Souls' College, Oxford in 1968-69. He taught at the University of Southern California and has been 
a member of the faculty of the University of California at Berkeley since 1953 where he has served 
as chairman twice. He has been Editor for the Journal of Symbolic Logic and served a three year 
term as President for the Association of Symbolic Logic. He has also been a member of the Council 
of the American Mathematical Society as well as active in CUPM. Besides his papers in founda- 
tions he is the author of "Retracing Elementary Mathematics," Macmillan, 1962, which indicates 
his keen interest in the teaching of mathematics. J. C. Abbott. 
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