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Abstract. The increasing number of Petri net variants naturally leads
to the question whether the term “Petri net” is more than a common
name for very different concepts. This contribution tries to identify as-
pects common to all or at least to most Petri nets. It concentrates on
those features where Petri nets significantly differ from other modeling
languages, i.e. we ask where the use of Petri nets leads to advantages
compared to other languages. Different techniques that are usually com-
prised under the header “analysis” are distinguished with respect to the
analysis aim. Finally, the role of Petri nets in the development of dis-
tributed systems is discussed.

1 Introduction

What is a Petri net? Very often, the thesis of Carl Adam Petri [23] written in
the early sixties is cited as the origin of Petri nets. However, Petri did of course
not use his own name for defining a class of nets. Moreover, this fundamental
work does not contain a definition of those nets that have been called Petri nets
later on. In fact, there are hundreds of different definitions and extensions in
the literature on Petri nets since then. Most authors did not mean to define
something completely new when coming up with a new definition. They use the
term “Petri net” to express that the basic concept of a notion is the one of Petri
nets, no matter how this notion is formulated mathematically or which extensions
of standard definitions are used. In this contribution we try to identify central
aspects of this basic concept of Petri nets. In other words, we aim at providing
characteristics of Petri nets that are common to all existing and future variants.
It should be clear that this can only be done in a very subjective manner. So we
like to place the following disclaimer at the very beginning of the paper: We do
not consider our list of important aspects of Petri nets complete, and for each
aspect claimed to be common to all Petri net variants there might exist very
reasonable exceptions.

This paper is not an introduction to Petri net theory. Instead, we assume
that the readers have some knowledge about Petri nets and preferably even
know different Petri net classes. For an overview of Petri net theory we refer to
the proceedings of the previous advanced course on Petri nets [25,26]. The other
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contributions in this book should also be helpful, although the present paper is
meant to be an introductory note to this book. In particular, the work of the
“Forschergruppe Petrinetz-Technologie”, represented by the papers [35,17,13,36],
show how different variants of Petri nets can be subsumed and structured in a
unified framework.

There are also examples of modeling notions which do not carry “Petri net”
in the name but apparently stem from Petri nets. Among these notions are event-
driven process chains (EPCs) [31] (originally called “Ereignisgesteuerte Prozess-
ketten” in German), a standard notion for modeling business processes in the
framework of the “ARIS-Toolset”. The first publications on this model explictly
refer to Petri nets. Still, the central idea is the one of Petri nets although there
are some significant differences. Another example is given by activity diagrams,
a language within the Unified Modeling Language (UML). These diagrams more
or less look like Petri nets and have an interpretation which is very similar to
Petri nets but have some additional features such as “swim lanes”, associating
each diagram element to an object. Although people from the UML community
insist that activity diagrams have nothing to do with Petri nets, there already
exist a number of publications establishing close connections between these two
languages [14,18]. Actually, Petri nets are suggested for a formal semantics of ac-
tivity diagrams – this notion has evolved to a standard without having any fixed
semantics by now. So this paper is about Petri nets and those related formalisms
which are based on the same concepts as Petri nets.

Many papers defining or using Petri nets emphasize the following charac-
teristics of the model; Petri nets are a graphical notion and at the same time
a precise mathematical notion. So we take it that these two properties are the
most important ones and we devote the following two sections to them. The next
important characteristics of Petri nets is described by their executability, their
semantics, their behavior or the like. Whereas it seems that the first two charac-
teristic features do not rise any dissension, there is no common agreement what
the semantics of a Petri net should look like, i.e., what the behavior of a Petri
net formally is. We split the consideration on behavior in two parts; behavior
is constituted by the occurrence rule – which defines under which conditions a
transition is enabled and what happens when it occurs – and by derived for-
mal descriptions of the entire behavior, given by the set of occurrence sequences,
partially ordered runs or any kind of trees or graphs representing all runs of a
net. These parts constitute the topics of sections four and five. Analysis of Petri
nets is the next important subject, addressed in section six. This term comprises
many different concepts; analysis by simulation, by employing structural prop-
erties of the net, or by analysis of the exhibited behavior of a net. We distinguish
between analysis techniques that automatically provide useful information for a
given net (like deadlock-freedom), techniques that automatically verify a given
property (like mutual exclusion) and techniques that help in manually proving
the correctness of a net with respect to a given specification. The last section
is concerned with topics that are not explicitly addressed in most other papers
on Petri nets. Each Petri net is a model of a system, if it is not just a counter-
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example or an illustration of a proof. There are many different languages for
modeling systems, most of them not comparable with Petri nets (consider, e.g.,
models of the architecture, models of the data structure etc.). Therefore we have
to be more precise; a Petri net models the behavioral aspects of a system. The
same can be said about differential equations. So we should add that the behav-
ior is constituted by discrete events. Again, there are more prominent languages
for this task, namely the variety of automata models. The core issue of Petri nets
is that they model behavioral aspects of distributed systems, i.e., systems with
components that are locally separated and communicate which each other. Sur-
prisingly, neither components nor any notion of locality appears with the usual
definition of a Petri net. The section on distributed systems discusses aspects of
this gap.

Each section header is an answer to the question raised at the beginning of
the paper.

2 A Graphical Notation

Most modeling languages have graphical notations, and this has good reasons.
Models are used as a means to specify concepts and ideas, and to communicate
them between humans. Nearly everybody would use some kind of graphics to
express his or her understanding of a system, even without using any explicit
modeling language. We asked our first semester students to give a model of the
enrollment procedure of our university. The result was a very interesting vari-
ety of models emphasizing surprisingly many different aspects of the procedure.
All these models were supported by graphics. It does not need psychological
research to state that graphics employing two dimensions allow for a better un-
derstanding of complex structures than one-dimensional text. Since specification
of systems and communication of models are the main applications of Petri nets
in practice, understandability for humans is among the most crucial quality cri-
teria for modeling languages. Petri nets have a nice graphical representation
using only very few different types of elements, which is a good basis for an easy
understandability of a model and for the learnability of the language. These two
criteria for modeling languages belong to the most important ones recognized in
the “Guidelines of Modeling” [3].

Many modeling languages are supported by graphics that possibly abstracts
from some details of a model. Petri nets are not only supported by graphics but
each Petri net is a special annotated graph. One could argue that the annotations
of a Petri net are as essential as the graphics. In fact, for some high-level Petri
net classes it is possible to represent any model equivalently by a trivial net
structure, putting all the information about the model into the annotations of
a single place, a single transition and the connecting arcs [32]. In general, often
one has to trade off between specification by graphical means and specification
by textual means in the annotations. It is a typical feature of Petri nets that the
semantics of textual annotations can be given in terms of nets, i.e. of graphs.
As an example, consider the low-level unfolding of a high-level Petri net [32]. In
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Fig. 1. A picture of a Petri net

this sense, annotations can be viewed as shortcuts for more complex graphical
representations, employing, e.g., symmetries of a net. Hence it is justified to
claim that a Petri net is a graph.

In the previous paragraphs we confused mathematical graphs with graphi-
cal notations. So what is a Petri net, a mathematical object representing the
components of a graph or a picture? It is important to notice that by definition
the way a net is drawn does not carry any semantic information. This is dif-
ferent for languages such as SADT [28] where it makes an important difference
whether an arc touches a node at its right, left, upper or lower side. Also the
relative position of Petri net nodes carries no formal information. However, the
topology of a drawn Petri net is important from a pragmatic perspective. The
modeler might place the elements representing a single system component on a
cycle if this helps to understand the net. In this case, additional knowledge about
the model and its relation to the system is put in the picture. Alternatively, a
tool can calculate a nice way to draw a net; then the figure carries information
about the net itself and about some analysis results. So a Petri net picture can
be more than a mathematically defined graph. The difference is irrelevant for
analysis tools. But it is significant when the net is used as a means for human
communication. Even simple models can be drawn in a spaghetti style such that
this picture does not help much (compare for example two pictures of the same
Petri net in Figures 1 and 2). The topology of a net drawing is an important
topic in the context of interchange standards for Petri nets [20]. The exchange
information of a picture might contain information about the relative position
of the nodes, about their shape etc.

It is often emphasized that Petri nets are bipartite graphs, because each di-
rected arc either leads from a place to a transition or from a transition to a place.
This is not exactly true; Petri nets are more than that. In bipartite graphs the
two sets of nodes play a symmetric role whereas places and transitions are dual
concepts. Exchanging places and transitions leads to a completely different net.
The existence of places and transitions and their distinction, is one of the fun-
damental ingredients of Petri nets. Therefore this formalism is neither primarily
based on actions (like data flow diagrams), represented by transitions, nor is it
primarily based on states (like automata), represented by places. Instead, the
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Fig. 2. Another picture of the Petri net from Figure 1

mutual interplay of local activities and local states constitutes the basic compo-
nents of each net, as will be discussed later in more detail. The equal footing of
actions and states is reflected in nets by the definition of places and transitions
on the same level. So the following definition is the most common answer to the
question “What is a Petri net?”

The usual definition of a “core” Petri net
A Petri net is a directed graph with two kinds of nodes,
interpreted as places and transitions,
such that no arc connects two nodes of the same kind.

Places of a Petri net are usually represented by round graphical objects (cir-
cles or ellipses), and transitions by rectangular objects (boxes or squares), as
shown in Figures 1 and 2. There is a standard arc type between vertices of differ-
ent type representing the flow relation, as shown in the figures. This convention
makes it easy to guarantee a rough understanding of any Petri net without ad-
ditional legend. One of the main advantages of the Unified Modeling Language
(UML, see [30]) is that it unifies the shape of vertices and arcs in its diagrams
that have been used in a contradictory way in different languages before. Like-
wise, the consistent use of graphical symbols for Petri net objects is one of the
main reasons for the worldwide and long standing success of Petri nets. When-
ever someone acquainted with Petri nets is confronted with a new variant, the
general interpretation of places and transitions does not have to be explained
and gives no rise to misunderstandings. So Petri nets play the role of a “Unified
Process Language” since a long time.

Sometimes the use of only circles and squares is considered a disadvantage.
Instead of circles or squares, special symbols representing the actual type of
the represented system component can be used. Branches at transitions or at
places can be substituted by special branching nodes. These variants are – among
others – implemented in many commercial Petri net tools. The vendors claim
that the readability of their models is improved by the graphical extensions.
This might sometimes be true, but there is the danger of inconsistency between
different products. Moreover, an increasing number of features leads to an in-
creasing number of modeling errors. Someone only familiar with such a specific
application-dependent notion can not understand an example net given in an-
other proprietary notation. However, as long as additional graphical notions have
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a unique and easy translation to traditional Petri net components, a good knowl-
edge about Petri nets will help to understand any such model. In this way, Petri
nets – including their graphical representation – can be seen as an “interlingua”
for many different related modeling languages.

3 A Precise Mathematical Language

One might say that this answer to the question raised in this paper is a matter
of course. However, often the mathematics, and particularly its presentation, is
the reason to consider Petri nets difficult for users. As mentioned in the previous
section, it is the graphical representation of a net which is actually used in
practice and which can easily be understood. So why do we need any further
mathematical foundation? And what does it mean for a modeling language to be
precise? The answer to these questions concerns two parts: syntax and semantics.

There are different ways to specify a class of nets syntactically. Well-known
examples are restricted classes such as free-choice Petri nets [5] where the local
vicinities of net objects are restricted in a characteristic way. Another frequently
used possibility is given by the class of all nets that are generated from an initial
one using a given set of production rules. Such Petri net grammars can be used
for a syntactic formulation of a Petri net class, defining exactly which Petri nets
belong to that class.

We consider here another way to deal with the syntax of Petri nets; each
Petri net should have a precise syntax. In other words, it should be clear what
kind of objects belong to a given Petri net and which objects do not belong to it.
This syntax differs for different classes of Petri nets. It turns out that this kind of
formal syntax can be more conveniently be given in terms of simple mathematics
than in terms of the graphical representations. So for definition purposes, Petri
nets are syntactically defined as annotated graphs in a mathematical setting.
The usual notions equip tuples of sets, relations and mappings. The following
definition shows an example.

The mathematical definition of a place/transition Petri net
A place/transition net is a tuple (S, T, F, M0, W, K), where
S is the set of places,
T is the set of transitions,
F is the flow relation,
M0 is the initial marking,

formally given as a mapping from S to the nonnegative integers,
W maps arcs to positive numbers (arc weights) and
K maps places to positive numbers (capacity restrictions).

These objects have to satisfy some restrictions, such as M0(s) ≤ K(s) for each
place s (no capacity restriction is violated initially). All these objects and restric-
tions are very easy to explain using the graphical representation. For example,
“no arc connects two places or two transitions” might be more plausible than the
usual expression F ⊆ (S ×T )∪ (T ×S). But all the used objects and restrictions
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have to be precise enough that an equivalent mathematical formulation can be
given in a simple and obvious way and such that there is no doubt how this for-
mulation would look like. The tuple notion induces an order on the objects (in
the above example, places before transitions before arcs before . . . ). This order
does not imply valences of the used objects. It is just arbitrarily fixed for con-
venience sake; the formulation “given a place/transition net (A, B, C, D, E, F )”
is the shortest way to define all components of a place/transition net. But the
tuple-notion never represents the core idea of a Petri net. When teaching Petri
net theory one should be careful not to emphasize this notion too much – it
unnecessarily complicates the matter.

When are two Petri nets identical? Using the mathematical definition, the
answer is obvious: two nets are identical if and only if all their objects are pair-
wise identical. This implies in particular that a different graphical representation
of a Petri net does not change the Petri net. Conversely, two Petri nets which
look the same, i.e. which have identical graphical representations, are not nec-
essarily identical, assuming that the graphical representation does not include
the identity of each single element. This is often not exactly what one would like
to have. Instead, Petri nets that look the same should sometimes not be distin-
guished. Imagine for example the net with a single (unmarked) place, a single
transition and one arc from the place to the transition (arc-weights, capacities
etc. are ignored for this example). Putting this description into mathematics
one needs to define a place s, a transition t and an arc (s, t). There is no unique
net that matches the above description, because the identity of the place and
the identity of the transition is chosen arbitrarily. The net with place s′ (where
s �= s′), t and arc (s′, t) is different to the one defined before. This difference
is only meaningful if the net models something; then s and s′ model different
objects of the system domain. But syntax does not distinguish what is modeled.
So, intuitively one is interested in the class of all nets which can be obtained
from the original one by consistent renaming. In other words, the syntactical
definition of a Petri net comes with the notion of an isomorphism relation.

Isomorphism of Petri nets
Two Petri nets are isomorphic if there are bijections
between their respective sets of objects (places and transitions)
which are respected by all annotations, relations and mappings
that belong to the syntactical definition.

The simple but important distinction between equality and isomorphism of
Petri nets is only easily possible on a mathematical level. Intuitively, a single
(graphical) Petri net is mathematically given by an isomorphism class of tuples,
where each single tuple of the class has the same Petri net as its graphical
representation. Isomorphism classes are particularly important for labeled Petri
nets, i.e. nets where each element carries a label which establishes the connection
to the modeled world. In a labeled Petri net, two distinct places can represent the
same object and two distinct transitions the same action. For example, process
nets representing partially ordered runs of other Petri nets are labeled Petri nets.
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The same run can be represented by many isomorphic process nets (see the next
section).

What is the semantics of a Petri net? Taking the original meaning of the
word “semantics”, the answer should associate objects of a net to objects of the
modeled system. Considering also the dynamics of the net, the behavior of the
net should correspond to the behavior of the modeled system. In the context
of modeling languages, the term “semantics” is used in a different way, usually
together with the prefix “formal”. A class of Petri nets has one (or several) formal
semantics although the world of modeled systems is not considered at all when
defining such a class. The formal semantics generically defines the behavior of
each Petri net that belongs to the class, i.e. the role of each possible ingredient
of a net with respect to behaviour is precisely defined by the semantics. Since
Petri nets are defined by mathematics, so are their formal semantics. At this
stage, we do not discuss different variants of semantics, because this will be the
topic of the next section.

Many modeling notions used in practice do not have a precise semantics.
Defining a formal semantics is only possible for a notion possessing a formal
syntax. Hence, without explicitly defining the syntax it is impossible to for-
malize semantics. Some languages do have a formal syntax, with or without
a mathematically given description, but no fixed semantics. These notions are
frequently called “semi-formal”. It is often claimed that semi-formal modeling
languages allow more flexibility and are hence better suited for practical appli-
cations than formal modeling languages like Petri nets. Moreover, semi-formal
models are said to be easier to understand and easier to learn. We claim that the
opposite is true. The theory of Petri nets offers classes of nets where specific de-
tails of the model are left open. For example, channel/agency nets define only the
structure given by places, transitions and arcs together with the interpretations
of these elements, but no behavior [24]. Place/transition nets identify all tokens
and thus abstract from different token objects. Conflicts, i.e., different mutually
exclusively enabled transitions, can be interpreted as incomplete specifications –
the vicinity that decides which alternative will be chosen is missing. Most nets
abstract from all notions of time. So there are various ways to express different
kinds of vagueness. The important point is that it is always very clear which
aspects are expressed by the net and which aspects are not. Many modeling
notions outside the Petri net world exhibit moreover a kind of meta-vagueness.
For these models, it is a matter of interpretation to decide which aspects are
represented in the model and which are not. So flexibility concerns not only the
model itself but also its interpretation – a feature that we do not consider de-
sirable. Instead, it is much easier to understand a model and also the modeling
language if there is a precise understanding about what has been modeled and
how it is modeled. Only a precise mathematical language, such as given by most
variants of Petri nets, provides sufficient clarity.

As an example for a semi-formal notion, consider event-driven process chains
(EPCs) [31]. This language is a derivative of Petri nets. In the application field of
business processes it has emerged to a quasi-standard. The major benefit of EPCs
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is that they are integrated in a larger context containing additionally a data
model and a structure model (the “house of ARIS” [31]). An EPC has three types
of nodes, two comparable to places and transitions, and an additional node type
for the logical connections AND, OR, and XOR (exclusive or). Not surprisingly,
the OR connector raises severe problems. A binary OR-split is interpreted as
follows. Either one of the output arcs or both arcs are chosen for forwarding the
control. A binary OR-merge cannot be interpreted in such a simple way. After
receiving the control from one input arc, either one has to wait for the control
from the other arc or one can continue immediately which corresponds to the
different possible decisions at the OR-split. This technical problem has led to
quite a number of research activities (see e.g. [29]), but there exists no really
satisfying solution yet. The problem is that EPCs have no formal semantics.
When asking experts in EPC modeling about the correct interpretation of an
OR-merge in a difficult example, they come to very vague (and different) answers.
Surprisingly, it is often claimed that EPCs are more compact, more appropriate
and easier understandable than Petri nets in the application area of business
processes. The paper [2] proves that they are not smaller than equivalent Petri
nets in general. Nonetheless, the Petri net community should learn from EPCs
which kind of concepts and which kind of links between concepts are necessary
for successfully selling a modeling language together with an associated tool.

4 A Structured Set of Activities that Remove
and Add Tokens

Most Petri net variants are equipped with a notion for behavior. Some variants,
however, are not. For example, channel/agency nets do not have an explicit
behavioral definition [24]. They are used as a first step when developing a Petri
net model. Refinement and completion of a channel/agency net leads to a more
detailed model, which can then be equipped with behavior.

In this section, we restrict our considerations to nets that do have a behavior.
In contrast to all automata models and transition systems, a (global) state

of a net is not a fundamental concept but it is constituted by local states of all
places of the Petri net. States are formally represented by markings. A marking
associates a set, multi-set, list etc. of tokens to each place, where tokens are
elements of some domain. So a global state is only a derived concept (with the
exception that the definition of a Petri net often contains initial or final global
states).

Principle of Distributiveness
States are associated to places and thus distributed.
A global state is constituted by all local states.

In most cases the behavior of a net is formulated by means of a rule stating
under which conditions a single transition can occur and stating the consequences
of its occurrence, the so-called occurrence rule. It is one of the central principles of
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Petri nets that both the enabling conditions and the consequences only concern
the immediate vicinity of a transition. In other words, if the occurrence of a
transition is related to the state of a place then there must be some arc connecting
the transition and the place.

1. Principle of Locality
The conditions for enabling a transition, in a certain mode if applicable,
only depend on local states of (some) places in its immediate vicinity.

2. Principle of Locality
The occurrence of an enabled transition only changes the local state of
(some) places in its immediate vicinity.

We formulated the locality principle in two parts because the relevant sets
of places for enabledness and for change in the vicinity of a transition are not
necessarily identical. For place/transition nets, all places in the pre-set (i.e.,
sources of arcs leading to the transition) are relevant for enabling the transition,
and places in the post-set (i.e., targets of arcs from the transition) only play a
role when capacity restrictions are involved. The state is only changed for places
which are either in the pre-set or in the post-set but not both (as long as arc
weights are not considered). Moreover, the new state of a place depends on its
previous value in place/transition nets, because a token is added. However, the
relative change of the state of a place does not depend on its previous state.
Given a transition, we can distinguish:

a) places where the local state is relevant for enabling but is not changed (such
as read places or inhibitor places),

b) places where the local state is relevant for enabling and is changed by the
transition occurrence (places in the pre-set in case of place/transition nets
without capacity restrictions), and

c) places where the local state is not relevant for enabling but is changed by
the transition occurrence (places in the post-set in case of place/transition
nets without capacity restrictions).

Orthogonally, places where the local state is changed by the transition occurrence
(cases (b) and (c)) can be divided into:

1) places where the new local state depends on its previous value (places in the
pre-set and places in the post-set in case of place/transition nets), and

2) places where the new state does not depend on the previous one (such as
places reset by the transition occurrence in case of nets with reset arcs).

Often, the different role of the places is depicted by different arc types such as
inhibitor arcs or reset arcs. When talking about the vicinity of a transition, we
mean all places connected with the transition by an arbitrary arc.

It might be worth mentioning that the majority of Petri net formalisms con-
siders test-and-set-operations elementary, i.e. reading a local state and changing
it depending on the previous value is considered one atomic action. These Petri
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net formalisms have no difficulty with simultaneous access to different places,
even if these places model conditions at different locations. The general paradigm
is the one of removing and adding tokens. It can even be phrased as:

The Token Flow Paradigm
Tokens flow with infinite speed from place to place,
sometimes they mutate, join or split in transitions.

Perhaps surprisingly, read actions (case (a)) and write actions (case (c),(2))
are not that usual in the Petri net literature. As explained above, reading the
state of a place means that this place is relevant for a respective transition
but the state of this place is not changed by the occurrence of the transition.
Although concurrent read is an essential operation in most areas of computer
science, many semantics of Petri nets do not allow any concurrent access to the
tokens of a place (see [11]). Likewise, writing is a central issue in other areas
of computer science but there is hardly any corresponding concept in the Petri
net literature. Petri nets with reset arcs are an exception, but they model only
the special case that a place looses all tokens when the corresponding transition
occurs. More generally, writing the local state of a place means changing the
state arbitrarily without taking the previous state into account. The only way
to model writing with Petri nets is by synchronous removing the old tokens
and adding new ones. It needs a special variant of high-level nets to perform
arbitrary removing with a single transition, such that the previous local state
has no influence on any new state (see [6]).

There are generalizations of the occurrence rule concerning the simultaneous
occurrence of many transitions. These variants still obey the principle of locality,
because the vicinities of all simultaneous transitions have to be considered.

5 A Compact Way to Specify Behavior

The behavior of a Petri net does not only concern occurrences of single transition
but sets of occurring transitions which can be in different relations such as causal
relationship, concurrency, choice, or being totally ordered. The behavior can also
include intermediate local or global states or the final global state and possible
continuations from these states. Different ways to describe the behavior of Petri
nets are given by different semantics of the respective Petri net classes.

Given a model of a dynamic system, the behavior of the model should be in
a close relationship to the system’s behaviour. If the model is executable, i.e. if
it has a defined semantics, then runs of the model can be generated. These runs
correspond to the runs of the system. Analysis of the model’s behaviour yields
information about the system’s behaviour. In this section we concentrate on the
question how to formalize the behavior of a net. Since the behavior is the most
interesting aspect of a model, one can phrase this question also as: What kind
of behavior is represented by a Petri net?

We will not discuss different semantics in detail. Other contributions to this
book are devoted to this topic [4,11,21,22]. Instead, we provide a rough landscape
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of different behavioral notions that can be formulated for arbitrary Petri net
variants that are equipped with dynamic behaviour, formulated by means of an
occurrence rule.

We distinguish different ways to formalize single runs, namely sequences,
causal runs and arbitrary partially ordered runs. Orthogonally, we distinguish
single runs, tree-like structures representing more than one run, and graphs,
representing all runs and taking cyclic behavior into account.

5.1 Runs

Given a Petri net with initial marking, not only a single transition can occur but
also sets of transitions, constituting a run. We call the occurrence of a transition
in a run an event. In the sequel, runs for different semantics will be sketched.
For each semantics, we provide a Petri net notation for its runs.

The behavior of a net is a net
Runs of Petri nets consist of events and pre- and post-conditions
that generate a (partial) order.
Runs can always be represented by nets.

For sequential semantics, representing runs by nets is not usual. Instead,
often words or sequences are used to formalize totally ordered runs. Automata-
like trees and graphs represent the entire behavior. In this paper, we represent
all types of runs by Petri nets. An obvious advantage is that, using this unifying
approach, different semantics can be easier related and compared which each
other. However, we do not claim that this representation is better readable than
alternative graphical or textual representations.

In the sequel, the Petri net modeling a system will be called system net, to
avoid confusion.

An occurrence sequence describes a sequential view on a single run. In the
initial state, some transition can occur yielding a follower state. In this state,
again some transition occurs, and so on. Hence the events of an occurrence se-
quence are totally ordered and can be represented by a sequence of transition
names (as the name occurrence sequence suggests): t1 t2 . . . tn for finite occur-
rence sequences with n events or t1 t2 t3 . . . for infinite occurrence sequences.
Notice that, for i �= j, ti and tj might denote the same transition. Sometimes all
intermediate global states are represented as well. However, they do not provide
any additional information because each global state can be calculated from the
subsequence leading to it and the initial state, using the occurrence rule.

A sequential run can also be conveniently represented by a very simple Petri
net, where places represent tokens and transitions represent events. An example
is shown in Figure 3. In general, each place in the pre-set of a transition represents
a token of the marking enabling that transition, and similarly for post-sets. In
this example, the number of tokens is two for all markings, but this is not the
case in general. The net representation of an occurrence sequence is unique up
to isomorphism.
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Fig. 3. A Petri net representing the occurence sequence b e a c e of the system net from
Figure 1
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Fig. 4. A process net of the system net from Figure 1

A process net is a Petri net representing all events of a run and their mutual
causal dependencies. Any such dependency states that a transition can only
occur after another transition has occurred. General dependencies are generated
by immediate dependencies, stating that a transition occurrence creates a token
that is used to enable the other transition. These tokens are represented by places
of the process net. Reasons for immediate dependencies are always explicitly
modeled in the system net. So there is a close connection between the vicinities
of a transition representing an event of a process net and the vicinity of the
corresponding transition of the system net. Process nets have specific syntactic
restrictions:

– Each place has at most one input transition and at most one output tran-
sition, representing the creation and the deletion of a token instance in one
single run.

– The places with empty pre-set correspond to the initial token distribution
which is given by the initial state.

– The relation “connected by a directed path” is a partial order, i.e., a process
net contains no cycles. This is due to the fact that this relation represents
the dependency relation, which obviously is acyclic.

Figure 4 shows an example of a process net.
The next semantics under consideration is given by arbitrary partially ordered

runs. Process nets induce partially ordered sets of events. Occurrence sequences
induce totally ordered sets of events. Sometimes arbitrary partial orders which
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Fig. 5. A Petri net representing the process term (b ; (a + e) ; c ; e) of the system net
from Figure 1
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Fig. 6. A Petri net representing a run with the step {b, e}

define more dependencies than a process net and less dependencies than an
occurrence sequence are useful. For example, when a Petri net variant contains
timing information then it might be useful to define a relation “later than”. This
relation can express that an event occurs after another event, even when there
is no token that constitutes an explicit dependency between the events.

Another example is given by a so-called process term semantics (see e.g.
[11]). A process term such as (b ; (a+ e) ; c ; e) is a generalization of the sequence
representation of a sequential run. It describes that transitions a and e occur
concurrently, both after b, and both before c, which occurs before e. A Petri net
representation of this term is given in Figure 5. As discussed in [11], process terms
do not have the expressive power to describe arbitrary process nets. However,
sets of process terms can be used to specify an arbitrary process net.

Steps represent sets of simultaneous events. Simultaneous occurrences and
concurrent occurrences of transition are different in general. Being simultaneous
is a transitive relation whereas concurrency is not (in the above example of
process nets, the events labeled by b and e are concurrent, the events labeled by
e and a are concurrent but the events labeled by b and a are not concurrent). In
general, concurrent events can occur in a step but not each step refers to a set
of concurrent events. A Petri net representation of the run given by the process
net of Figure 4 using the step {b, e} is shown in Figure 6.
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Since a run can be infinite, all the mathematical objects corresponding to
the above representations of a run can be infinite as well.

5.2 Trees

Two different runs can start identically and then proceed differently. A compact
representation of these runs contains the common prefix only once and then
splits for the different continuations. This representation also explicitly shows
after which events there exist alternative continuations (in Petri net theory, alter-
natives are also called choices or conflicts). This construction can be performed
for arbitrary sets of runs and for all representations of runs listed above. Taking
the Petri net representation of occurrence sequences and our above example, the
occurrence tree of Figure 7 is obtained this way. Notice that this net, seen as a
graph, is not really a tree but only a tree-like structure which we call tree by
abuse of notation. When markings are represented by single vertices, which is
the usual way to draw occurrence sequences, then the resulting graph actually
is a tree.

If the reason for constructing an occurrence tree is only to identify the set of
reachable markings, then it is not necessary to consider any event leading to a
marking that was already identified as reachable before. In our example shown
in Figure 8, it suffices to consider the occurrence sequences e b and b because
the marking reached after e d or b a is the initial marking, the marking reached
after e c is also reached after b and the marking reached after b e is also reached
after e b (these are all possible continuations). In other words, we can cut the
complete tree after the occurrence of e b and after the occurrence of b.

In the example, any sequential construction of the occurrence tree will stop
after three events if the above cut criterion is used. In general, a Petri net
can have infinitely many different reachable markings. Then there still exists a
finite tree-like structure that provides at least some information on the reachable
markings: If the above stop criterion is changed to: “stop if a transition that
occurred previously produced a marking that is smaller than the one produced
by the current transition” then the so-called coverability tree is obtained (see
[8]).

Tree-like structures can also be constructed from process nets. The resulting
nets are called unfoldings of the system net. Again, cut criteria can be used
to obtain finite representations of the behavior. For unfoldings representing all
process nets, these criteria are given by cut-off transitions, as defined in [15]. A
similar concept can be used for unfoldings obtained from an arbitrary subset of
process nets [10].

When process terms do not only have operators for sequential and concurrent
composition but moreover allow to express alternatives, then the corresponding
Petri net representation is a tree-like structure obtained by glueing common
prefixes of their Petri net representations. Likewise, it is not difficult to define a
corresponding concept for steps.
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Fig. 7. A Petri net representing an occurrence tree of the system net from Figure 1

5.3 Graphs

In addition to the glueing of common prefixes of runs, one can identify sets of
places that represent the same marking, to be explained next. In the previous
subsection we suggested to stop the tree construction when the post-set of an
event represents a marking that is already represented by the places of the post-
set of another event. The next step to obtain graphs is simply performed by
adding the new event and drawing arcs from it to all places of the set of places
that represent the reached marking. The graph obtained this way is the reach-
ability graph of the system net. Actually, the usual definition of a reachability
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Fig. 8. A Petri net identifying all reachable markings of the system net from Figure 1
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Fig. 9. The reachability graph of the system net from Figure 1

graph employs markings as nodes and transitions as arc labels, see Figure 9. It is
not difficult to see that our Petri net notion of reachability graphs is equivalent,
see Figure 10.

Similarly, one can construct coverability graphs from coverability trees to
obtain a smaller representation of the entire behavior. Steps can also be taken
into account in reachability graphs in the obvious way. However, for process
nets and other Petri nets describing partially ordered runs or trees there is no
obvious way to construct graphs representing the entire behavior. The reason is
that markings of these nets are properly distributed. In fact, glueing all places
and transitions with respective equal label usually resembles the original net,
and in this case nothing is gained by the construction.

For process terms, loops in the corresponding graphs correspond to additional
operators for iteration.
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Fig. 10. The Petri net representing the reachability graph of the system net from
Figure 1

6 A Formalism Equipped with Analysis Methods

A considerable amount of the huge number of Petri net articles published in
the past thirty year is devoted to the analysis of Petri nets. Clearly, here is no
space to give a survey of all these results. Instead, we provide a classification of
different methods that are often summarized under the word “analysis”.

6.1 Simulation

Simulation means creation and investigation of runs. In most cases, not all runs
of a model can be generated. Runs might be infinite, and the set of runs might be
infinite. But even in the case of finitely many finite runs their number often is too
large to allow a complete simulation of all runs of a given Petri net. Therefore,
simulation usually considers only a part of the system’s behavior. Like testing
of programs, simulation can thus only identify undesirable behavior but cannot
prove the correctness of a model, as long as not all possible runs of a model are
simulated.

Simulation can be performed by playing the token game by hand or even in
mind. This procedure is quite error-prone. When finding an undesirable behavior,
it is hard to say whether the identified error is due to a design error or to a
simulation error. Therefore simulation is usually done by computer tools.

Many simulation tools just offer a visualization of the token game such that
the constructed run is represented only implicitly. Other tools create runs which
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can be represented to the user and also can be input to further analysis. For ex-
ample, the VIPtool [10] creates process nets which can be analyzed with respect
to a given specification.

There are other applications of simulation approaches in the context of perfor-
mance evaluation, where quantitative measures, e.g. about the average through-
put time of a system, are derived in a simulative way.

6.2 Analysis

Analysis in a narrow sense means to gain information about a Petri net model.
For example, results of analysis can be the information on deadlock-freedom,
liveness, boundedness and the like. Analysis can also yield information which is
useful for proof methods. For example, an analysis tool can calculate a set of
place invariants (see below).

Analysis of syntactical properties such as the free-choice property [5], strong
connectedness etc. are based on the structure of the net, whereas analysis of
behavioral properties such as deadlock-freedom usually needs the construction
of a tree or graph representing the behavior. For many properties of general Petri
nets it can be proven that essentially there does not exist any more efficient way
to decide the property [16]. Exceptions only exist for subclasses of Petri nets
such as free-choice nets.

Quantitative analysis provides quantitative results. In contrast to simulation,
quantitative analysis computes these results from quantitative parameters and
attributes associated to a Petri net.

6.3 Verification

The term “Verification” often comes along with the term “specification”. Veri-
fication finds out whether a given specification holds true. There are numerous
ways to formulate a specification. Like analysis, a typical approach to verifica-
tion is based on the construction of the reachability graph of a Petri net which is
then further investigated. More efficient approaches construct reduced reachabil-
ity graphs that still carry all the information that is relevant for verification. For
example, reachability graphs can be reduced by employing symmetries and meth-
ods reducing the redundancy which is caused by concurrency. In particular, the
so-called stubborn set method [34] has proved to yield significant reductions of
reachability graphs without spoiling information about the possible enabledness
of transitions. An alternative efficient approach to verification employs unfold-
ings of nets, i.e. a behavior description based on process nets, see [15].

6.4 Semi-decision Methods

A semi-decision method is a method for verifying a given property which has
either the possible answers “yes” and “don’t know” or the possible answers
“no” and “don’t know”. Thus, one possible output provides a useful information
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whereas the other one just states that this method is of no use in the current
case.

A well-known example for an efficient semi-decision method for deciding
reachability of a marking of a place/transition net is given by the marking
equation: For every reachable marking this equation system has a nonnegative
integer-valued solution. A marking is proven to be unreachable if it is shown that
no such solution exists, whereas the existence of a solution does not prove any-
thing. Weaker but more efficient methods look for arbitrary integral solutions,
for nonnegative rational-valued solutions or even for rational-valued solutions.
For a discussion of the respective expressive power and the complexity of these
approaches, see [9].

6.5 Proof Methods

The most prominent formal concepts for Petri net analysis are place invariants
for almost all variants of Petri nets and siphons and traps for place/transition
nets. Perhaps surprisingly, these concepts are of little use for analysis in the
narrow sense of 6.2. Usually the existence of a specific place invariant is not a
property relevant for a user. In general, the number of minimal (non-negative
non-zero integral) place invariants, the number of siphons and the number of
traps can grow exponentially with the size of the net. So even an enumeration
of these objects is not feasible.

Instead, place invariants, siphons and traps can be used very elegantly for
proving that a desirable property holds. However, the user has to find the nec-
essary invariants, traps and siphons first. Tools can help to verify that a sug-
gested invariant actually is an invariant of the investigated net. Place invariants
have close relations to the semi-decision method based on the marking equa-
tion. Namely, there is a place invariant for proving a property if and only if
the marking equation has no rational-valued solution. A similar result holds for
so-called modulo place-invariants and integral solutions of the marking equation
[7]. In this sense, the proof methods based on these concepts can be viewed as
nondeterministic semi-decision algorithms; if the right place invariant, siphon,
or trap is guessed, then its characteristic property can esily be verified and it
can be used to prove the desired property.

Place invariants, siphons and traps are based on simple arguments on asser-
tions; the associated properties are preserved by arbitrary change from a (not
necessarily reachable) marking to a follower marking that is allowed by the oc-
currence rule. Actually, only the changes from reachable markings are relevant.
The restricted expressive power is due to the possibility that the property under
consideration is not preserved by an unreachable marking change, and hence
the argument cannot be used, although it might be preserved for all reachable
changes. However, the restriction to reachable changes is not easy because it re-
quires the construction of all reachable markings. In most cases this construction
is very time consuming and provides an immediate proof of the desired property
without using assertions.
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6.6 Validation

Whereas verification checks a model against a given specification, validation
checks a model against the modeled system or against desired properties of the
system. If the model is not correct then analysis and verification of the model is
of little use because in this case the behavior of the system might significantly
differ from the behavior of the model.

Validation of a model means to compare the model with either the existing
system or a planned system where some properties are known. It can be done on
a structural level by comparing all the components (elements and connections)
of the model with reality. A further step in validation uses simulation: Simulated
runs of the model should correspond to runs of the system and vice versa. Ver-
ification and analysis can also be used; when applied to the model, the results
should coincide with corresponding properties expected from the system.

The investigation of a system by analysis of its model only makes sense if the
model can be assumed to be valid. So it is useful to proceed in two steps: First
the above mentioned methods are applied to ensure that the model is correct
with respect to the modeled system, i.e., that it is valid. After that, it can be
assumed that the model’s behavior and the system’s behavior are closely related,
and further application of the above methods to the model provides information
about the system’s behavior.

7 A Model of a Distributed System

Complex distributed systems with a large number of connected components ex-
hibit a very complex behavior. Every component might depend in some way on
each other component. The set of global states reachable by consecutive transi-
tion occurrences often grows exponentially in the size of the system. The central
feature of Petri net theory is that

Petri nets can manage the complexity of large systems.

Instead of yielding rapidly growing state spaces, the number of places grows
linearly with the size of the modeled system. The reachable states do not have
to be represented explicitly but are implicitly given by the many combinations
of local states. Instead of explicitly stating all direct or indirect dependencies,
only the immediate dependencies are represented – other dependencies follow
transitively in runs of the model. It does not matter whether transitions and
their vicinities are taken as elementary building blocks, as discussed in Section
4, or whether places and their vicinities representing the relevant actions are
considered. The result is the same: a Petri net. This way of modeling has not
only the advantage of keeping the complexity of the model manageable, it also
resembles the modular structure of the modeled system.

However, in general the single components of a system and their connections
cannot be identified in its Petri net model. Petri nets are not equipped with
notions for physical distribution, channels, messages or locality (at least, this
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holds for the most common Petri net variants). The lack of these apparently
important concepts is often claimed to be a disadvantage of Petri nets. Other
modeling languages are based on local components, have means for communi-
cation such as message passing or synchronization and provide elegant ways for
composing components, refinement of components etc.

Comparing Petri nets with such notions, it turns out that Petri nets support
all these concepts as well. Since Petri nets constitute a very general language,
different concepts for locality, refinement, composition and communication can
be expressed.

When using Petri nets for modeling distributed systems of a specific kind, this
model is easier to understand when its components, the communication between
components etc. are easily identified in the model. Since in conventional Petri
nets the information about these concepts is lost, it is useful to define languages
that are based on Petri nets but restrict to certain macros defining possible
building blocks in a given paradigm. Petri nets are general enough such that
this kind of macros can be easily defined for different modeling paradigms. On
this macro level, it is easy to understand the model from a behavioral view,
because the model is still a Petri net. It is also easy to identify components and
communication because they are formulated in terms of macros. By definition of
the macros, restricting to certain sets of macros ensures that the model obeys the
rule for the given paradigm. For example, a model of a message-passing system
can not use a macro representing a shared variable. Here are some examples for
suitable macros:

A local component can be given by a subnet which is connected to other sub-
nets in a very restricted way. Different states of a component can be represented
by different places or by a single high-level place (i.e., a place of a high-level
Petri net). It is useful to give a graphical representation for the subnets that
represent components. In a more compact representation, a single subnet of a
high-level net might represent a set of similar components [27].

A variable can be represented by a special kind of place that is only connected
to transitions that read or write the variable (see Section 4). It is useful to give
a special graphical representation for variables.

A message channel can be represented by a specific place. Only transitions
of components that actually have access to the channel can remove a token.
Sometimes a channel is represented as a chain of places and transitions. In this
case it is useful to provide a coarser view by a single place that is refined to this
chain.

Synchronous communication can only be applied to transitions that model
interfaces of components. It is useful to provide a graphical representation for
these transitions. When synchronized, two transitions occur together. This can
either be defined as part of the semantics or an additional common transition is
introduced.

The concept of Asymmetric Synchronization means that a transition can
only occur together with another transition, which in turn can only occur alone
if the first one is not enabled [33,19,12]. This concept frequently occurs when



“What Is a Petri Net?” Informal Answers for the Informed Reader 23

modeling modular technical systems. There exist translations to traditional Petri
nets. However, the number of transitions in such translation can grow rapidly.
Also, a macro notation using special event arcs keeps the nets more readable.

8 Conclusion

This paper presented the author’s selection of possible readings of Petri nets,
commenting on them from the personal perspective. It was not meant to be
technical and attempted no comparisons between models, nor between different
variants of nets. Instead, it tried to concentrate on the common grounds of Petri
net variants. There would have been hundreds of opportunities to add references
to other work but the authors avoided to create an annotated bibliography. So
also the selection of pointers to the literature was a (sometimes biased) personal
choice.

Some readers my feel that some topics should have been treated in greater
detail, or in a more technical fashion. We will end the paper with a couple of
links to further readings which we left out because their respective topics concern
only a part of the world of Petri nets.

There exists prosperous research on Petri nets equipped with time. Time can
be associated to transitions, to places, or to arcs. Time can be deterministic, i.e.,
the occurrence of a transition always lasts the same amount of time, or it can
be stochastic. Timed Petri nets and the concept of concurrent runs are not a
very good match but they do not totally exclude each other. The major part of
research on timed Petri net is considered with performance evaluation, i.e. with
the calculation and estimation of throughput time, delays etc. of the modeled
systems.

As mentioned at some places above, there are different levels of Petri nets
– from low-level to high-level. Actually, this dimension allows for many more
variants than suggested by these terms. Different high-level Petri nets emphasize
a syntactial view or a semantical view or a functional view etc. On the highest
level in this classification, a Petri net represents an entire class of models which
all satisfy a syntactically given specification. These nets are called algebraic
Petri nets. They involve algebraic specifications. Any interpretation of such a
specification leads to another concrete Petri net.

There exists very many translations and correspondences between Petri nets
and other formalisms for concurrent systems, some of them mentioned above.
A related topic is the integration of nets and other formalisms. For example,
transitions can be inscribed by expressions of a programming language. Then
every occurrence of a transition corresponds to a run of the respective program,
taking the tokens as input and output values. Other integrating approaches
combine Petri nets with formal data models. When Petri nets are used in the
process of system design then there is no way of using them totally separated
from other methods. So integration concepts, as well as respective tools, are
necessary. Although some solutions in this directions have been developed in the
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last years, we consider this research direction most urgent to further disseminate
the very idea of Petri nets in practical applications.
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