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What is a Raindrop Size Distribution? 

A. R. Jameson* and A. B. Kostinski+ 

ABSTRACT 

It is commonly understood that the number of drops that one happens to measure as a function of diameter in some 

sample represents the drop size distribution. However, recent observations show that rain is "patchy" suggesting that 

such a seemingly "obvious" definition is incomplete. That is, rain consists of patches of elementary drop size distribu-

tions over a range of different scales. All measured drop size distributions, then, are statistical mixtures of these patches. 

Moreover, it is shown that the interpretation of the measured distribution depends upon whether the rain iszyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA statisti-
cally homogeneous or not. It is argued and demonstrated using Monte Carlo simulations that in statistically homoge-
neous rain, as the number of patches included increases, the observed spectrum of drop sizes approaches a "steady" 

distribution. On the other hand, it is argued and demonstrated using video disdrometer data that in statistically inhomo-
geneous rain, there is no such steady distribution. Rather as long as one keeps measuring, the drop size distribution con-

tinues to change. What is observed, then, depends on when one chooses to stop adding measurements. 

Consequently, the distributions measured in statistically inhomogeneous rain are statistical entities of mean drop 

concentrations best suited to statistical interpretations. In contrast, steady distributions in statistically homogeneous rain 

are more amenable to deterministic interpretations since they depend upon factors independent of the measurement 

process. 

These findings have implications addressed in two additional questions, namely, 

• Are computer-created virtual drop size distributions really the same as those observed? 

• What is the appropriate drop size distribution when several measurements used in an algorithm for rain estima-

tions are made at different resolutions? 

1. Introduction 

The meaning of a drop size distribution is one of 

those things that everyone "knows" yet no one has 

really ever bothered stating. In part this is because there 

has been no apparent reason to. In the past, the mea-

surement of drop sizes was a straightforward albeit 

very laborious task involving sifting for and measur-

ing dried raindrop pellets captured in a box of flour 

(Laws and Parsons 1943). The drop size distribution, 

then, was simply what was collected in the box; that 
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is, what you measured is what you got. In search of a 

faster technique, Marshall et al. (1947) and Marshall 

and Palmer (1948) switched to dye paper that revealed 

the impact of each drop on a surface. By involving sev-

eral students they were able to collect an impressive 

array of data in several stratiform rain events of dif-

ferent intensities. Because they had an ensemble of 

measurements they were then able to combine them 

to form the well-known Marshall-Palmer families of 

average raindrop size distributions (fit with expo-

nentials) and to perform parametric fits of distribution 

parameters that correlated with the rainfall rate, R. In 

this sense they were the first to go beyond the "what 

you see is what you get" philosophy by generating 

statistical distributions formed by combining many 

observations of individual spectra. 

At the ground, the study of drop size distributions 

was really revolutionized, however, with the introduc-

tion of the electromechanical disdrometer (Joss and 

Waldvogel 1967), used in a number of fundamental 
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studies (e.g., Waldvogel 1974; Joss and Gori 1978; 

List et al. 1988; Smith et al. 1993; Tokay and Short 

1996, and many others) far too numerous to catalog 

here. Another giant leap occurred with the recent de-

velopment of the optical disdrometer having high spa-

tial and temporal resolution capabilities without the 

technical problems associated with mechanical devices 

(see Sheppard and Joe 1994). A similar revolution in 

the measurement of rain by aircraft occurred when the 

cumbersome and limited slide and foil techniques were 

replaced with the Particle Measuring Systems (PMS) 

2D optical probes (Knollenberg 1981) in the 1970s. 

Many of these observations inspired innovative 

attempts to understand distributions physically using 

experiments in which water was released to fall over 

long distances thereby allowing the distribution to 

evolve through drop breakup (Blanchard and Spencer 

1970). While cumbersome and incomplete, since the 

water could never fall a distance sufficient for the 

drops to achieve "equilibrium," such experiments were 

a convincing demonstration that the size distributions 

did indeed approximately evolve through drop 

breakup and coalescence toward those observed in 

nature. With the advent of readily available computer 

technology, however, researchers soon abandoned 

such difficult physical experiments for numerical stud-

ies. But in the transition from three-dimensional real 

space (excluding time) to one-dimensional virtual 

space, are such computer-created virtual drop size dis-

tributions really the same as those observed in nature? 

The question of what a drop size distribution 

means, however, is not simply of academic interest. 

For example, the concept is used extensively through-

out remote sensing when developing and applying al-

gorithms for estimating rain using radars and 

radiometers. Measurements are often collected over 

sampling volumes of vastly different sizes. Moreover, 

the most advanced techniques combine different mea-

surements using different instruments each having its 

own "beamwidth" so that, in effect, they are looking 

at different ensembles of rain patches, that is, at dif-

ferent total drop size distributions. What, then, is the 

appropriate drop size distribution when the measure-

ments used in an algorithm are made at different 

resolutions? 

In this article we attempt to address these questions. 

In the process we hope to illuminate the increasing 

subtlety of the concept of drop size distributions and 

to develop an awareness of what is really being mea-

sured. If nothing else we hope at least to instill an ap-

preciation of how the measurement process, the 

statistical structure of the rain, and the extent of "av-

eraging" all determine the proper interpretation, that 

is, meaning, of the drop size distribution. 

2 . The proble m of sampling 

Whether on the ground or in an airplane, the mea-

surements of all drop size distributions reduce to 

counting drops and placing them into "size categories" 

or "bins." While simple enough, an immediate ques-

tion arises. How does one know when to stop count-

ing? When have we "adequately sampled" the 

distribution? 

Until very recently, the answer was to count until 

you reached some level of confidence based upon 

some statistical criteria. In physics and other fields, 

counting is usually treated using Poisson statistics, and 

it is probably one of the reasons Cornford (1967) ap-

plied Poisson statistics to the problem of raindrop 

counting. Another likely reason Cornford used Pois-

son statistics is that it has the very useful property that 

the variance equals the mean. Thus, just by counting 

drops one can immediately say something about the 

uncertainty (variance) of the number of drops counted. 

Hence, the answer to the question of when to stop is 

simply to continue counting until the number reaches 

a value consistent with what is needed to achieve a 

certain level of statistical confidence in the average 

value. The measurement interval in time or space, then, 

is simply that required "until the drops are adequately 

sampled" according to Poisson statistics. (It is worth 

noting that the search for "adequate samples" of rarer 

large drops has often greatly extended the measure-

ment interval.) As beautifully simple as this approach 

is, however, it is, by and large, incorrect. 

Why? Because in general, drop counts do not obey 

Poisson statistics and are correlated from one measure-

ment volume to the next. Consequently, in most cases, 

if one continues to count even after satisfying the Pois-

son criteria, the drop size distribution continues to 

change sometimes substantially even as the number of 

drops increases. This is illustrated in the example below. 

In Fig. 1, the radar reflectivity factor, Z, and rain-

fall rate,zyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA R, are plotted as functions of sampling 

pathlength (distance) for video disdrometer observa-

tions in a modest 20-min shower using successive 

100-L sample volumes. [The sample volume is fixed 

because remote sensors do not measure over volumes 

that differ depending upon the size of the drop as is 

assumed when directly converting drop flux measure-
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FIG. 1. Profiles of the radar reflectivity factor, Z, and rainfall 

rate,zyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA R, measured in a shower using a video disdrometer (described 

in detail by Jameson and Kostinski 1998). 

ments into estimates of Z and R. Consequently, the 
time series of moments of arrival for each drop is used 
to place the drops into proper relative positions in 
sample space. This space is then resampled using 
100-L volumes (10 m x 100 cm2, the sample area of 
the video disdrometer), as discussed in greater detail 
in Jameson and Kostinski 2001.J1 

In order to see how the net distribution changes 
with increasing sampling (volume), these samples are 
then combined one by one and the resulting fraction 
of the total number of observed drops is calculated and 
plotted for the different drop sizes in Fig. 2. In spite 
of increases in the total volume sampled, at no time 
do the contributions at any of the sizes become 
"steady." At first with increasing distance the maxi-
mum in the fractional contribution peaks at increas-
ing sizes (solid line). The contributions from the larger 
drops then decrease while at still greater distances 
(sampling pathlengths) there is a subsequent resur-
gence in the fractional contributions at the smaller 
sizes to the right of the dashed line. 

This can be seen as well by looking at some se-
lected size distributions as shown in Fig. 3. As the 

FIG. 2. Fractions of the total number of drops as functions of 

increasing sample pathlength (sample size) for the seven indicated 

drop size categories corresponding to Fig. 1 as discussed in the 

text. Note that the distributions never become steady (i.e., simul-

taneously horizontal at all sizes.) 

sampling distance (volume) increases, the diameter 
distribution keeps changing even though the total num-
ber of observed drops in all seven size bins increases 
from 116 for the 100-m distribution, to 16 324 drops 
for the 3-km distribution. 

'Note that this approach ignores drop transformations due to coa-

lescence and breakup. However, with respect to averaging, this 

approach is not substantially different from using flux measure-

ments when computing average drop size distributions with in-

creasing sample duration (volume). At no point in this work do 

we claim nor is it important to this discussion to have recreated 

the "true" distributions for which no information is available 

anyway. 

FIG. 3. Observed distributions of diameter corresponding to the 

indicated sample volumes (V) and corresponding sample 

pathlengths (L). As in Fig. 2, the distributions never become steady 

in spite of a 30-fold increase in sampling. 
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While this result may seem almost "trivial" given 

the variability evident in Fig. 1, this is precisely how 

many drop size distributions are actually measured. 

Yet, such distributions are often then misinterpreted 

as though they were steady. They are not, as we dis-

cuss below. zywvutsrqponmlkjihgfedcbaYWVUTSRPONMLJIHGFEDCBA

3 . A brief statistical characterizat ion of 

ra in a nd its re lat ion to the m e a ning 

of ra indrop size distribut ions 

Obviously from the discussion above, the measure-

ment of a drop size distribution is very much a statis-

tical process. A Poisson process is characterized by 

three assumptions (e.g., Ochi 1990), namely, 1) that 

the probability of detecting more than one drop in a 

given volumezyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA SV is vanishingly small for sufficiently 

small SV, 2) that drop counts in nonoverlapping vol-

umes are statistically independent random variables (at 

any length scale), and 3) that the process is statistically 

homogeneous. With regard to rain, the first point can 

usually be satisfied. The second assumption, however, 

is usually found not to be true for single size bins 

(Kostinski and Jameson 1997) nor for several size bins 

either (Jameson and Kostinski 1998; Jameson et al. 

1999). That is, the presence of a drop enhances (or in 

some cases decreases) the likelihoods that there are 

other drops of the same or different size in the neigh-

boring volume. In other words, the drop counts in 

neighboring volumes are correlated. Such correlations 

do not exist for a Poisson process since counts in all 

neighboring volumes at all separations are statistically 

independent. Thus, natural rain cannot normally be 

described using Poisson statistics. 

The correlations in natural rain arise because rain 

appears to consist of "patches" of different dimensions. 

That is, there are locations rich in drops interspersed 

with regions where drops are scarcer (see discussion 

in Jameson and Kostinski 1999, p. 3921). Before we 

explore the nature of these patches below, let us first 

return once more to the discussion of Poisson statis-

tics. Assumption 3 means that Poisson statistics can 

never apply in statistically inhomogeneous conditions 

that likely often exist in nature. As we will see, how-

ever, the entire topic of statistical homogeneity is subtle 

and has implications for the meaning of drop size dis-

tributions well beyond concerns about Poisson statistics. 

It is, therefore, worth dwelling here briefly on this topic. 

Statistical homogeneity means that the expected 

value (mean) and, in its broader sense, the variance of 

a random variable remain constant throughout the 

domain of observations. Unfortunately, the term ho-

mogeneity seems to generate a great deal of confusion, 

because it is often assumed that the random variable 

is then also physically homogeneous and has no ap-

parent structures of any significant size. This is sim-

ply not the case because fluctuations can be correlated. 

That is, a fluctuation from the mean in one volume 

may be correlated with a fluctuation in a neighboring 

volume so that taken together larger-scale "structures" 

or "features" can appear. That is, statistical homoge-
neity does not imply spatial homogeneity. This is il-

lustrated in Fig. 4 when in both cases the rainfall rates 

are statistically homogeneous, but correlated fluctua-

tions obviously introduce significant "spatial" struc-

tures. Nevertheless, the presence of such features on 

scales less than the correlation length in statistically 

homogeneous rain should not be misinterpreted as evi-

dence of statistical inhomogeneity [see Wunsch (1999) 

and the appendix in Jameson and Kostinski (2000) as 

well as Jameson and Kostinski (2001) for more exten-

sive discussions]. 

There are two effects of correlated fluctuations in 

statistically homogeneous rain. One is to increase the 

variance, as Fig. 4 illustrates. The second occurs be-

cause the presence of correlation acts to reduce the 

effective number of independent samples thereby 

slowing the convergence toward the expected value 

FIG. 4. Rain rate profiles for a Monte Carlo simulation of cor-

related and uncorrelated (Poisson) rain plotted as a function of 

dimensionless time. The horizontal line represents the mean for 

both types of simulated rain. Note the considerably larger fluc-

tuations associated with the correlated rain (from Jameson and 

Kostinski 1999). 
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(see discussions in Jameson and Kostinski 1998, 
p. 284; Kostinski and Jameson 1999, 114-116; 
Kostinski and Jameson 2000, p. 914). This contrasts 
sharply with random variables obeying a statistically 
homogeneous Poisson process having no correlation 
in whichzyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA every single sample corresponding to the 
smallest observation volume is independent so that the 
convergence is quite rapid. 

The logical opposite of statistical homogeneity is 
statistical inhomogeneity in which the expected value 
and, in its broader sense, the variance ofywvutsrponmljihgfedcbaWVSRPONMJIHFECBA R change from 
location to location within the observation volume. 
Statistically inhomogeneous rain is also patchy as well. 
So, then, just what does all this mean with regard to 
drop size distributions? 

To address this question, we first return to rain 
patches. When the drops in patches are combined, they 
add up differently depending upon whether the rain is 
statistically homogeneous or inhomogeneous. 
Statistically homogeneous rain by definition means 
that the rainfall rate, R, is statistically homogeneous; 
that is, expected value of R, E(R), and the variance, 
var(/?), remain constant with regard to shifts in the 
origin. But since R is the sum of the number of drops 
over each of the different sizes times their mass times 
their terminal fall speeds, the statistical homogeneity 
of R implies that the expected number of drops E(n) 
for each drop size is also fixed throughout the obser-
vation volume. If this were not so, then E(R) and/or 
var(/?) would change so that R could not be statisti-
cally homogeneous, in conflict with the initial assump-
tion.2 This means that in statistically homogeneous 
rain, there is a steady drop size distribution indepen-
dent of the measurement process. That is, when the 
drops in these patches are combined, they converge to 
an overall, steady drop size distribution as illustrated 
in Fig. 5. 

In statistically inhomogeneous rain, however, this 
is not the case since the mean and variance of R change 
throughout the observation volume. Thus E(n) changes 
for each drop size from patch to patch so that adding 
patches together does not yield a steady drop size dis-

2It can be proven mathematically that these remarks apply to all 

drop size distributions described using exponential and gamma 

functions. For more complex drop size distributions, "steadiness" 

requires that statistical homogeneity extend to higher moments of 

the distribution of R as well. In the limiting case of strict sense 

homogeneity, the entire distribution of R is invariant with respect 

to origin (Feller 1971, p. 88), and there is always an accompany-

ing steady drop size distribution, regardless of form. 

FIG. 5. The convergence of observed distributions of drop 

fluxes across a 100 cm2 surface (video disdrometer) in a Monte 

Carlo simulation of correlated but statistically homogeneous rain 

(see Jameson and Kostinski 1999 for details) as a function of in-

creasing number of samples. In statistically homogeneous rain, 

the measured distributions converge toward a steady function. 

tribution. Rather the addition of each new patch 
changes the net E(n) for each drop size. This is pre-
cisely what is happening in Figs. 2-3. 

So what are these patches? Using plots of accumu-
lated numbers of drops at different sizes (see discus-
sion in Jameson and Kostinski 2000, p. 378) as 
illustrated in Fig. 6 (from that paper), it appears that 
the patches are characterized by quite steady fluxes 
at the different drop sizes. That is, they are apparently 
associated with well-defined, local drop size distribu-
tions (see Fig. 11 in Jameson and Kostinski 2000) over 
a spectrum of dimensions likely ranging from tens of 
centimeters to several tens or hundreds of meters. 
They even appear in Monte Carlo simulations of sta-
tistically homogeneous rain (Fig. 7), apparently the 
result of "stochastic accidents."3 It appears, then, that 
they are what may be called basic or elementary drop 
size distributions from which other measured distri-
butions are constructed. In the case of statistically ho-

3This may explain why these elementary distributions often ap-

pear to be approximately exponential as well if such "accidents" 

were the result of a "memoryless" process. It is also worth noting 

that the summation of exponentially distributed random variables 

is itself gamma distributed, a function often used to describe ob-

served drop size distributions. 
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steady distribution that exists outside the measurement 

process. In statistically inhomogeneous rain, however, 

the drop size distributions should be viewed as statis-

tical mixtures or, alternatively, as distributions of mean 

concentrations that depend critically upon where and 

how the measurements were made. Yet, a review of 

the literature reveals that often the distributions likely 

measured in statistically inhomogeneous rain are 

treatedzyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA as though the measurements were made in sta-

tistically homogeneous rain and are often misinter-

preted as if they were steady distributions having 

intrinsic, deterministic meanings independent of the 

measurement process. They are not. This has some 

important implications as discussed below. 

FIG. 6. Accumulated counts of 0.625-mm-diameter drops are 

plotted as a function of accumulated counts of those at 2.125-mm 

diameter for video disdrometer observations in rain. There are 

several regions or patches of linear relations between the two 

counts consistent with the presence of steady drop size distribu-

tions. Also note the slopes of the lines change indicating that the 

"slopes" of the distributions themselves are different for each 

patch (from Jameson and Kostinski 2000). 

mogeneous rain, the measured distributions approach 

the overall, steady distribution as more and more 

patches are combined. Since such distributions exist 

independently of the measurement process, they have 

intrinsic and presumably deterministic meanings. In 

statistically inhomogeneous rain, however, the drop 

size distributions continually change as more and 

more data are added so that the final drop size distri-

butions depend upon where one stops. Thus, unlike 
drop size distributions in statistically homogeneous 
rain, the net distribution in statistically inhomoge-
neous rain depends critically upon the measurement 
process. Consequently, such distributions are statis-

tical mixtures of several elementary drop size distri-

butions, and they represent "mean conditions." They 

are statistical entities that, unlike the steady distribu-

tions in statistically homogeneous rain, no longer have 

well-defined intrinsic, deterministic meanings as the 

addition of more data demonstrates. 

So what does this mean? In a real sense, the most 

basic or elementary drop size distributions that can be 

observed are of those found in patches. However, 

sometimes it is really more useful to have "represen-

tative" distributions over larger dimensions. In statis-

tically homogeneous rain this is easy since the more 

one measures, the more one converges to the overall, zywvutsrqponmlkjihgfedcbaYWVUTSRPONMLJIHGFEDCBA

4 . Some implicat ions 

We are now in a position to respond to the ques-

tions originally posed: namely, 

1) How does scaling affect what one means by a drop 

size distribution? 

2) Are computer-created virtual drop size distribu-

tions really the same as those observed? 

3) What, then, is the appropriate drop size distribu-

tion when the measurements used in an algorithm 

are made at different resolutions? 

Beginning with the third question, if the rain is sta-

tistically inhomogeneous, it is now clear that differ-

ent remote sensing instruments, even if pointed at the 

same target, will see different total drop size distri-

butions simply because the beamwidths are not the 

same. (There are other more sophisticated reasons 

such as differences in illumination functions as well 

but that is not the thrust of this paper.) Yet, almost all 

algorithms assume that different instruments are view-

ing the same set of drops. Consequently, this dispar-

ity introduces errors into subsequent estimates of rain 

parameters. Moreover, these errors vary in a complex 

and unknown fashion depending upon the spatial vari-

ability of the drop size distributions themselves. Such 

errors, then, are not equivalent to white noise so that 

even abundant averaging will not reduce the biases nor 

variances associated with estimates of the rain param-

eters. It is no wonder, then, that there is often substan-

tial scatter in such estimates. It is disappointing, 

though, that the associated variances are routinely 

ignored or are estimated using inappropriate statistics. 

At the very least, results from multi-sensor programs 
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such as NASA's Tropical Rainfall Measuring Mission 
(TRMM) should be viewed with healthy skepticism. zyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA
One important lesson is that if observed drop size dis-
tributions are to be used in algorithms, it is impor-
tant that the scales over which they are measured 
match the scales of the remote sensors to be used. In 
particular, one must then question the use of Marshall-
Palmer distributions, derived for a particular set of 
statistically inhomogeneous rain events, in the devel-
opment of general retrieval algorithms that are sub-
sequently applied to locations and to scales of 
observations that are inconsistent with the original 
Marshall-Palmer data. 

It is also just as important to match aircraft obser-
vations to the beamwidths of remote sensing devices 
when such observations are to be used to develop and 
test the relevant algorithms. Of particular concern here 
are analyses of aircraft measurements in which it is 
assumed (often implicitly) that the observed distribu-
tions of raindrops are steady. However, as we have just 
seen, that can only happen when the rain in statisti-
cally homogeneous. Yet, aircraft distributions are usu-
ally collected over long traverses using instruments 
having small cross-sectional areas that act to maximize 
the effects of raindrop clustering and statistical mix-
ing of many distributions. Hence, it is highly likely that 
most if not all aircraft drop size distributions are sta-
tistical mixtures in inhomogeneous rain. Therefore, 
they are most likely not steady but, rather, are only 
distributions of mean concentrations that change con-
tinually as more and more data are added. Hence, they 
have little if any intrinsic meaning independent of the 
measurement process and should only be interpreted 
statistically, not deterministically. 

These same comments apply when using Doppler 
radar profilers to calculate drop size distributions by 
converting observed Doppler vertical velocity spectra 
into distributions of fall speeds after accounting for air 
velocities. (The most sophisticated method is to use 
the air velocity spectrum observed at a lower frequency 
to extract the fall speed distribution using deconvolu-
tion techniques. However, the air and precipitation 
observations are usually made over significantly dif-
ferent sampling volumes. The standard assumption, 
often likely invalid because the different beam dimen-
sions imply different cutoffs of observed scales of air 
motion, is that the air velocity spectrum applies as well 
to the smaller sampling volume of the profiler observ-
ing the precipitation.) At the very least, the sampling 
volumes and times associated with the precipitation 
spectra are usually quite large so that the deduced drop 

FIG. 7. Similar to Fig. 6 except that the counts correspond to 

video disdrometer "measurements" in a Monte Carlo simulation 

of statistically homogeneous rain as described in Jameson and 

Kostinski (1999). Drop size distribution patches are clearly 

identifiable. 

size distributions are often most likely samples from 
statistically inhomogeneous rain. Such spectra should 
then be interpreted as statistical distributions of mean 
values that depend on the measurement processes. 

With regard to the first question, in some sense the 
meaning remains the same, namely, what you measure 
is the drop size distribution. Yet, in a very real sense 
the definition is different now because the interpreta-
tion and meaning of what you measure depend upon 
the match between the measurement scales and the 
stochastic structure of the rain itself. Measurements of 
distributions in rain patches are likely the most el-
ementary. Most other measurements involve statisti-
cal mixtures of these distributions. In the case of 
statistically homogeneous rain, these mixed distribu-
tions converge toward a steady spectrum that exists 
independently of the measurement process. In statisti-
cally inhomogeneous rain, however, such mixtures do 
not converge and simply represent a distribution of 
mean values that depend heavily on the measurement 
process, that is, the location and sampling volume. It 
is no longer appropriate always to assume that such 
measurements represent a steady distribution having 
intrinsic, deterministic meaning like those in statisti-
cally homogeneous rain. 

With regard to the second question, one should not 
use numerical studies blindly. In the atmosphere, there 
are no "control volumes" in which the same drops in-
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just what you measure. But it must be remembered 

that, unlike size spectra in statistically homogeneous 

rain, these are statistical distributions of mean concen-

trations that should be interpreted in a statistically 

appropriate manner, not as steady distributions hav-

ing intrinsic, deterministic meanings independent of 

the measurement process. At a minimum it behooves 

those making observations to report intervals (time-

distance) and sample volumes of the measurements so 

that they may subsequently be compared meaningfully 

to the distributions observed by others. zyxwvutsrqponmlkjihgfedcbaWVUTSRQPONMLKJIHGFEDCBA
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FIG. 8. Scatterplots between different average powers of the 

diameter (zero moments) observed during the first 29 samples in 

Fig. 1. Linearity between such moments may be useful as an in-

dicator of statistical homogeneity. 

teract sufficiently to reach an equilibrium between 

coalescence and drop breakup. More importantly, such 

virtual distributions do not include three-dimensional 

spatial variability, an important characteristic of real 

rain. Consequently, while such studies no doubt serve 
the purpose of establishing the relevance of different 
physical mechanisms responsible for the formation of 
a drop size distribution, direct comparison to observed 
drop size spectra in real, three-dimensional space 
characterized by drop advection and drop clustering 
is likely to be misleading. 

Obviously an important characteristic of rain is 

whether or not it is statistically homogeneous. Yet, 

determining this characteristic is not trivial. One 

promising approach may be to use the observation that 

in statistically homogeneous rain, since the drop size 

distribution is steady, averages of powers of the di-

ameter (so-called zero moments of the size distribu-

tion) are linearly related (see the discussion in 

Jameson and Kostinski 2001). Consequently, one ex-

pedient approach for identifying statistically homo-

geneous rain may be to use scatterplots along the lines 

illustrated in Fig. 8 corresponding to the first 29 

samples in Fig. 1. Where such near linearity exists, 

there is at least a chance that the data may be statisti-

cally homogeneous. 

In summary, then, with the exception of statisti-

cally homogeneous rain, we really are back to the re-

sult that in many cases, the drop size distribution is zywvutsrqponmlkjihgfedcbaYWVUTSRPONMLJIHGFEDCBA
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