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Abstract—"Spectrum holes” represent the potential oppor- the time[3]-[5]. A band of spectrum can be considered under-
tunities for non-interfering (safe) use of spectrum and can be ysed if it can accommodate secondary transmissions without
considered as multidimensional regions within frequency, time, harming the operation of the primary user of the barkhe

and space. The main challenge for secondary radio systems is to_ _ . f fi f in which ticular sek
be able to robustly sense when they are within such a spectrum region of space-time-frequency 1n which a particuiar secon

hole. To allow a unified discussion of the core issues in spectrum USE is possible is called a ‘spectrum hole.” Spectrum hales a
sensing, the “Weighted Probability of Area Recovered (WPAR)” defined and discussed further in Section II.

metric is introduced to measure the performance of a sensing  Upon reflection, spectrum holes are a natural consequence
strategy and the “Fear of Harmful Interference” Fur Meliic IS of the gap between the distinct scales at which regulatiah an

introduced to measure its safety. These metrics explicitly consider st be filled with K d still
the impact of asymmetric uncertainties (and misaligned incen- US€ occur —just as a vase can be hiled with rocks and st

tives) in the system model. Furthermore, they allow a meaningful have plenty of room for sandgpectrum regulatory agencies
comparison of diverse approaches to spectrum sensing unlike the perform allocations that are valid for multiple years/dies
traditional triad of sensitivity, probability of false-alarm Pra, and over spatial extents that are hundreds of miles across.
and probability of missed detection Pasp. These new metrics s js despite the fact that useful spectrum use could occur

are used to show that fading uncertainty forces the WPAR f il d di that is | lized
performance of single-radio sensing algorithms to be very low for even over a few milliseconds and in a manner that Is localize

small values of Fy; , even for ideal detectors. Cooperative sensing around transmitter-receiver pairs only tens of meterstapar
algorithms enable a much higher WPAR, but only if users are ~ Why then do not regulatory agencies simply adjust their

guaranteed to experience independent fading. Finally, in-the-field regulatory granularity to deal with scales closer to thoke o
callbrgitlon for wideband (but gncertam) environment variables actual use? If static approach to spectrum access is assumed
(e.g. interference and shadowing) can robustly guarantee sdfe . - . . .
(low Fur) even in the face of potentially correlated users without Whe.reln devices and wireless systems are lnh?rgntly t'e.d to
sacrificing WPAR. particular bands and the regulator acts by certifying devic
and systems before they are put into service, then the regula
tory granularity is lower-bounded by the natural lifesparfis
l. INTRODUCTION wireless systems and the mobility of the devices. The ldesp
Wireless systems deliver real value to their users, butirequof a wireless system is governed by the business models for
radio spectrum to operate. The use of a band of spectrumthg service — the system has to operate for long enough to
one system in the vicinity of a second system’s receivere@unresult in a positive return on the infrastructure investtaefihe
to the same band) will generally degrade the performance lifétime might differ wildly from one application to anotte
that second system if the total interference exceeds a@alriti— and thus by Moore’s law, the technical sophistication of
value! Therefore, spectrum is in principle a potentially scarceireless systems can and will differ greatly from each other
resource. Indeed, across the planet, spectrum is regulafée freedom of innovation and movement for the users of one
so that most bands are allocated exclusively to a particukystem translates into uncertainty for the operators oftemo
service, often with only a single system licensed to use thBfie unknown is feared if it can affect yolio reduce this fear
band in any given location. It is generally illegal to transmof harmful interference, the interaction must be preclubgd
without an explicit license. It is thiear of harmful interference ensuring that different users are in different bands eveer af
that drives this policy of prior restraint. they have physically moved.
This approach has been largely successful in avoidingYet the overall demand mix for different applica-
interference, but in practice it does so at the expense ahtlvetions/services is almost certain to be different from one lo
utilization. Most bands in most places are underused most @#tion to another, and so in a world of heterogeneous waeles

1The performance degradation with increased interferencéeayradual in 2Using the language of interference temperature, undemaiiiin is said
the case of analog systems or catastrophic in the case adldigétems. While to exist whenever the actual interference temperature atatiém has not
the critical value of total interference is therefore rikely unambiguous for Yet reached the specified interference temperature limit[21],However, it
digital receivers, a subjective judgment of “minimally acedgée quality” turns out that interference temperature alone is not encugimderstand the
is required for analog systems. In the literature, the @iiticalue of total concept of a spectrum hole [6]-[8].
interference is called the ‘“interference temperature linjit], [2]. The 3Compare the longevity of analog television to the differealiutar or
terminology itself is meant to suggest that interference carncénsidered Wireless Local Area Network (WLAN) standards that have come gone
to be like additional thermal noise. within the same time period.



services and static allocations, waste is seemingly udatxé.
This also precludes otherwise brilliant approaches (3pd%,

[10]) that design transmissions so that the interference at
receivers is aligned roughly orthogonal to their desirgais.
Such an approach is not practical for heterogeneous service
because it requires the potentially interacting systenjaindy
coordinate their transmissions.

Bridging this gap and filling in spectrum holes requires
a dynamic approach to spectrum access. Wireless systems
must determine where the holes exist and reconfigure to take
advantage of these opportunities. Regulation shifts frobe t
level of the allocations themselves to the level of dynamic
allocation strategies. The goal of this paper is to give &ieohi
perspective on finding spectrum holes without inducing an
unacceptable fear of harmful interference. The subsequsnt

of these spectrum holes as well as the design/enforcement ef----------------------- time === oo oo oo oo om oo oo -

the regulations are both outside the scope of this paper. _ ®) Recovered
Cognitive radios have been proposed to be the next gener Occupied Spectrum Hole B o cctrum

_ g _ > prop h g - Space/Time |:| in Space/Time /A hole

tion devices that can dynamically share underutilized spac

[2], [11], [12]. Spectrum sensing has been identified as dne o
the key enablers for the success of cognitive radios [6]. [1Fig. 1. (a) Spectrum holes in space. Area around each traesrshaded

[ ; ; ) can not be used for secondary transmissions. Howeveshtised green
There has been a lot of work on deS|gn|ng Sensing algomh@?’ga can be used all the time. (b) Spectrum holes in time. Thendacy user

for cognitive radio systems. Table | gives a brief samplingannot transmit while a primary transmission is on (shaded redpcondary
of some representative single-user sensing techniques. Tker can hope to reuse the off times of the primary user (shageth)y

techniques given in Table | are by no means exhaustive. The

reader is encouraged to look into the references withinethes

references for more. In addition to single-user technigudbe level of protection/safety offered to the primary used a
cooperative approaches have also been proposed. A bH secondary system performance, but there is not a one-
survey of cooperative sensing approaches is given in Téble fo-one mapping. Secondary system performance is naturally
However, spectrum sensing is still very much an active argasured using expected throughput, but this makes sense
of research and so in this paper wle notaim to find the only in the context of a complete system model. Thus, the
best possible sensing algorithm for identifying spectrotes. design problem can be stated as a cross-layer optimization
Instead, the goal here is to understand the key concernsPigblem of maximizing the data rate while ensuring that
sensing and how different approaches can be compared to eiénhweighted probability of missed detection (the proxy for
other. primary user safety) is bounded [32], [33].

We start by understanding the basic issues in identifying While the cross-layer optimization approach does allow the
spectrum holes. To do so, it is easier to concentrate 6Amparison of disparate sensing strategies, it does so only
two extreme cases. First consider primary transmitters i1 the context of a complete system model. Conceptually,
television towers that are always communicating to useifys is disturbing because it tightly couples the internafls
in their service area. Some of the area around the prima&§nsing spectrum holes to the communication strategy used
transmitter can never be used (the red area in Figure 1(ayce the holes have been found. We believe that this indicate
while areas further away (the green area in Figure 1(a))(b0[jhat the traditional metrics do not represent the rightllefe
always be used by secondary users. For bands with s@dstraction — to have a unified perspective, we need uniform
primary users, recovering spectrum holesjraceis the major Mmetrics that can compare sensing algorithms (both singge-u
concern. Contrast this to a system that transmits inteentlit and cooperative approaches) at the sensing layer itsedf. Th
but serves the entire area of interest (see Figure 1(b)). Rsivantage of this approach is that it gives us the freedom to
such a band, recovering spectrum holediine is the major design sensing algorithms without explicitly worrying abo
concern. higher-layer consideratiorfs Moreover, these metrics must

Traditionally, the time-perspective has dominated therdit also allow us to incorporate modeling uncertainties, wiigh
ature. The triad of sensitivity, probability of missed deten significantly impact the sensing performance.

(Pyp), and probability of false alarmAx-4) have been used The need to incorporate uncertainties can easily be seen
to evaluate the performance of sensing algorithms [31]. Th® the time-domain. For example, exploiting time-domain
first two are connected to the level of protection for thepectrum holes in the context of Bluetooth and Wireless LAN
primary users while the last is connected to the performaneeexistence has been considered in [34]. The key to expgpiti
of the secondary user. Meanwhile, the time required to sense
provided a measure of the overhead imposed by the sensingnis is also desirable from a regulatory perspective. Réugiire-

. . ceftification of a complete system each time anything changeadibe a
strategy. The tradeoff between these four metrics prowdg endous obstacle to innovation. The main goal of regulasid¢o preserve
the sensing-layer interface to the overall tradeoff betweegafety — and this is largely determined by the operation ofsémesing-layer.



Detection algorithm

Description of algorithm

What is modeled?

To what gain?

Energy detection [14]-[16]

Get empirical estimate of energy in
a frequency band and compare
against a detection threshold.

Average power

Baseline
detector for
comparison.

FFT for DTV pilot
signal [17]-[19]

Partial coherent detection using DTV pilot.

Filter around pilot to reduce noise power.

Signal contains narrowband pilg
tone

itSensing time
and

modulation rate/pilot frequency.

Use FFT as partial coherent detector for robustness
sinusoids.
Run-time noise Noise is calibrated during run-time Asymmetric use of degrees Robustness
calibrated detection [20] | leading to robustness gains. degrees of freedom gains.
Cyclostationary Spectral correlation function reveals Signal is modeled as wide-senseRobustness
detection [21]-[25] peaks at multiples of the cyclostationary gains

Dual FPLL pilot
sensing [26]

Use two Digital PLLs which are preset
to +30kHz around the pilot. Use
time to converge as test statistic.

Signal contains narrowband pilg
tone

it Simplicity of
implementation

Eigenvalue based
detection [27], [28]

Utilizes the fact that white noise is
uncorrelated across samples/antennas wk
a bandlimited external signal is correlated

Bandlimited primary signal
niend secondary radio has
multiple receive antennas

Sensing time
gains

Event-based
detection [29], [30]

The detector tries to detect arrival/departy
of signals. This technique can be
used for identifying time-domain holes.

irerimary user ON/OFF durations
are much shorter than the time
between secondary user
movement

3 Robustness
gains

TABLE |

COMPARISON OF REPRESENTATIVE SINGLEUSER SENSING ALGORITHMS FORDTV DETECTION. THESE ALGORITHMS USE VARIOUS FACETS OF THE
TRANSMITTED SIGNAL TO OBTAIN A BETTER DETECTION SENSITIVITY OVER SIMPLE ENERGY DETECTION

such opportunities in time is the secondary user’s abitityre-

recovering spectrum holes in space. This problem is neiatri

dict the OFF times of the primary users [35], [36]. While thesand is not well understood in the previous literature. A forie
results have established that dynamic spectrum access t@®mparison of the time-domain and the spatial-domain isrgiv
the potential to dramatically increase the amount of speactr in Table II. The main contributions of this paper are:

available for use, a drawback is that these approaches depen, The issue of uncertainty and its modeling is discussed in

on the detailed model for the primary user’s transmissions.
However, real-world uncertainties make it impossible talelo
real-world transmissions precisely (see [37] for an exampl
from computer networking) and deviations from the assumed
model can severely affect the performance of these algosith
leading to interference with the primary sysfem

The essence of the discussion above is the need for hav-
ing unifying sensing metrics that capture the right level of
abstraction while allowing the incorporation of the releva
modeling uncertainties. It is not too hard to intuit the form
of these metrics for the problem of identifying time-domain
holes. To get a unified perspective on spectrum sensing, this

consist

ent with the uncertainty model.

detail. In particular, the asymmetric nature of the incen-
tives regarding uncertainty-modeling is considered to be
at the heart of the dynamic spectrum-recovery problem
rather than being merely an annoying complication.
« An explicit approach is given to quantify the Fear of
Harmful Interference K1) by maximizing the proba-
bility of interference under the worst-case environment

A unified metric, Weighted Probability of Area Recovered
(WPAR), is given to measure overall sensing perfor-
mance. This allows for a simple analysis that decouples
different primary users.

paper develops the corresponding metrics for the problem of,

5This is analogous to open-loop control in stochastic systidak [39].
Systems with open-loop control rely heavily on precise artliste model-
ing. In contrast, closed-loop control systems can be much nubast to
modeling uncertainties. One possible approach to resolige uhcertainty
in the spectrum-sharing context is feedback from the primgsgesn. Such
feedback can significantly help in robustly exploiting ogpaities in the time
domain. Opt-in spectrum markets are an extreme case of exfdmitback
from primary users [40], but other forms of implicit feedback atso possible.

Cooperative approaches are discussed not just under
ideal models, but also with the uncertainty that is the

unavoidable companion to freedom.

In-the-field calibration is introduced as a mechanism to

reduce environmental uncertainties that have a wider
bandwidth than the primary user. Examples of such

uncertainties are interference and shadowing.

The rest of the paper is organized as follows: After Sec-

For example, [41] proposes a spectrum-sharing architecturehich the tjgn || formally defines a spectrum hole, Section Ill dis@ss

secondary user eavesdrops on a packetized primary useomaitit repeat
request (ARQ) messages to stay within the interference buddke primary
users.

the relevant metrics to quantify safety (non-interfergnice
the primary and the area recovered for the secondary. Sec-



tion 1V illustrates the use of the metrics by considering without causing interference. Our attention will mostly be
single-radio approach to finding spectrum holes and reve&tgused on a single one of those towers and the area around
the fundamental limitations of the IEEE 802.22 approach tb

evaluating detectors [42]. The example of the radiometer isFigure 2 shows a primary transmitter and a single primary
used to connect these metrics to earlier perspectives ds weteiver. In the absence of interference, a receiver withén

as to show how to incorporate the impact of finite sensingue circle (Figure 2a) with radius,.. would be able to
times and uncertainty in the fading model. Section V disesissdecode a signal from the transmitter, while a receiver datsi
both the potential gains from cooperative detection sfiage the circle would not. To tolerate any secondary users, the
and their sensitivity to shadowing-correlation uncettaiSec- primary receiver needs to accept some additional intentere

tion VI discusses the use of measurements in nearby bamde green circle represents the protected radius (dengjed
(eg. satellite bands) to enable assisted detection andspoimhere decodability is guaranteed to primary receiversn&ny

to a way to overcome the uncertainty regarding shadowimngceivers between the two circles may not be able to getcgervi
correlation. Section VII revisits the lessons of this paged once secondary systems come on, but this is considered to be
concludes with pointers to future work. To keep the papen acceptable loss of primary user QoSall these “sacrificial
accessible to a general audience, mathematical formaBsnmzones.” The time-dimension equivalent of.. — r, is the

kept to a minimum. Precise formulations and detailed prooghiort sacrificial time-segment at the beginning of a primary

of the results in this paper are given in [43]. transmission during which secondary users are permitted to
cause interferencg.
II. DEFINING A SPECTRUM HOLE IN SPACE Around each protected primary receiver, a no-talk region

. - . exists where a secondary user cannot safely transmit. Hawev
In t|me_ t_he de“'”'?'O” of a spectrum hple IS easy to unde_:fﬁis depends on the nature of the secondary transmission. If
stand — itis the period of time that the primary is not ransmi pas jow transmit power, Figure 2a illustrates how the no-
ting. A spectrum hole in frequency is a little more nuance. | talk zones around each r;aceiver can be small. If it has high
secondary user finds a frequency band empty (no primary Uiahsmit power, Figure 2b illustrates how the radius of the
present in that band), its transmissions can still interfeith y

. . L i o-talk zones become much larger. There are two ways to
primary receivers operating in adjacent frequency bands ( nterpret this effect. One approach is to consider the tréins
to imperfect filters and analog front-ends). Hence, a spectr

hole in frequency is technically defined as a frequency bag wer of the secondary user as its footprint and think of the

: : L . ) ~secondary user as a finite-sized ball (of radits — 7,)). In
in which a secondary can transmit without interfering W'“Phis approach, the question becomes whether the ball fis int
any primary users (across all frequencies). For simplieity '

thi btle distinction in thi q <id the hole. For simplicity, a second approach is followed here
suppress this subtie distinction In his paper and consaoet, secondary user is considered to be a point and the spectru
spectrum hole in frequency to be a contiguous frequency b

S : e itself is not considered to include those points at whic
which is not used locally by any primary user. For furthe

simplicity, we will consider only one such frequency band aét secondary user would not safelyit.
plicity, y a Y The overall no-talk area is thus the union of the no-talk

a time. . . . )
o . . regions of all primary receivers. The spectrum hole is the
Definition 1: Consider a perfect magical detector that tells 9 primary 5P
L : complement of this union. To recover this area, the secgndar
us whether it is safe to use a particular secondary system

at a given point in space-time or not. Denote the outout system must know the locations of all primary receivers (see
adg P P : N 3 P Elgure 3(a)). Since a primary user may know this information
this detector (the safe-to-transmit region) by C R® where

two of the dimensions represent space and the third repEeséS#.Ch complete area recovery might be possible with explicit

. . T ) ., rimary participation. In addition, secondary users thelues
time. A spectrum holén space-time is defined as an indicato . ; . .

. 3 ) may be able to determine the locations of receivers for @arti
function1p+ : R® — {0,1} defined as

ular TV channels by sensing the TV receivers themselves [45]
1pe (x) = 1 if x € D*, However, just because a secondary transmitter safely
b 0 if xeR3\ D*. transmit in a particular location on a particular band does

For further simplicity, we focus on a frequency band©ot imply that it should want to do so. After all, close to

which is licensed to a single primary service. The primary

; ; ; ; ; This can be viewed as either the loss of service to certaitomess of
transmitters dealing with this particular band are assumgé primary system or as an additional cost of transmit powat tust be

to be distributed over a large geographic area with NOBpent by the primary user to maintain service to all the samemess.
overlapping service areas. For example, consider tetevisi SLike its spatial equivalent, this can be viewed as eithesa tif QoS for the

bands where primary transmittérare Stationary and havePprimary user in the sense of a dropped frame or as requiringtimagy user to

| lived . levisi . - lengthen its synchronization preamble before commencingtdatamission.
ong-lived transmissions. A television station’s tranteti is Without this provision, a secondary user could never trangoe to the fear

mounted on a high tower{500 m) and serves a large radiusof primary user reappearance during the secondary transmissi
(= 50 km). Further away, the signal from the tower is VegﬁgFor simplicity, this discussion assumes a single simultansegsndary

. smission. In practice, the secondary system is likelydntain many
weak and a secondary user at such a location can tran mitters operating simultaneously over a distributegh.aBuch systems

can have their user footprints considered in terms of thewegpodensity

SFor simplicity, we ignore the issue of peaceful coexistend wireless as shown in [7], [8]. However, the analysis in [44] shows thiag first

microphones operating in the television band. Such smallalesgrimary interpretation becomes problematic when we really try toestalsecondary
users introduce additional challenges [44]. users with very different footprints.



(@) (b)

Fig. 2. Weaker secondary users can transmit closer to theqteat primary receivers, whereas louder secondary userndatransmit far from the protected
primary receivers.

a functioning primary receiver there will usually be a lotonsider different approaches to detecting spectrum faolds

of interference from the primary signal itself. It has beehave metrics that can be used to compare their performance.
proposed that the secondary transmitter may be able to decod

the TV signal and use dirty-paper-coding techniques (DP@) Signal to Noise Ratio (SNR) as a proxy for distance

and simultaneously boost the primary signal in the dir@ctio o natyral approach is for the secondary user to estimate the
of interference [46], [47]. However, it has also been showgength of the primary signal as a proxy for the distancenfro
that this approach is not robust since simple phase unegrtaiyne primary transmitter. The problem then becomes: at what
can significantly lower the performance of such schemes [4§l,e| must the secondary user detect the primary system to be
Other forms of partial information like knowledge of theeasonably sure that it is outside the no-talk radius? ifin
primary user’s codebook are also not useful unless the S8Bm) is the transmit power of the primary user amds the
ondary receiver can actually decode the primary signal agflenyation exponel? then the secondary user can transmit

use multiuser detection. Otherwise, it has been shown et ¢ 1e received power from the primary user at the secondary
secondary system is forced to treat the primary transmmissso | cer is less thap, — 10log,,(r%) i.e
o) ie.

noise [49]. Since even marginally decodable primary signal
tend to be far louder than the background noise, this suggest P do ”Qt use 10Tog, (2) B
that knowledge of the locations of the primary receiversas n use b 810\"n)>

that useful in practice. _ where P (in dBm) is the received primary power at the
Consequently, this paper focuses on recovering the reg'é"é‘condary radio. In general is a random variable and its

oquiQe the_ global n_o-talk zone,{) as shown in Figure 3(t_’)' realization can be computed by taking the log of the emgirica
This is the intersection of the spectrum holes correspanttin average of the square of the received primary signal (See
all possible locations for protected primary receiversthis Section IV-B)

picture,. knowledge of the .relative positions o_f the primary The above assumes that a system can perfectly determine
transmitters and the potential secondary user is key. its relative position given only the received signal sttérand
can thereby recover all the area beyond the no-talk radius. |
reality, the primary signal may experience severe mukipat

The main task of the secondary system is to determine #ad shadowing which results in a low received power. Seeing
relative position with respect to the primary transmittersl a low power signal, the secondary user may decide that it is
to start transmission only if it is reasonably sure that il Wioutside the no-talk radius while in fact it is inside. Henae,
not interfere with any of the potential primary receivers) Asystem must somehow budget for such fading. One possible
ideal solution is to require the primary user to registeoélts
transmitters’ positions and for the secondary system tegsss _ '°A commonly used propagation model for DTV signals transmittedhfr

- . . . TV towers is given in [50]. The pathloss function describgdtis model (see

the ability to calculate its own position as well as commatgc Figure 1 in [51]) can be approximated by a continuous piec@widynomial
with the registry that records primary user positions. function. Explicitely, for all the figures in the paper we ume exponent of

While the above works for purely spatial spectrum holes, 4 = 3 for distances below. km, an exponent ot = 2.7 il 30 km, an
nent ofa = 7.65 till 100 km, and an exponent o = 8.38 from

d le well holes th both and
.Oes not sca _e well to spectrum holes that span both space @RER on. However, to keep the expressions in the text sim@ejse a single
time. It also involves a lot of overhead. Therefore, we mugblynomial with exponent: for the pathloss function.

IIl. METRICS AND MODELS



Potentially recoverable
area in protected region

(@) (b)

Fig. 3. (a) Area within the protected region can be recovéfrélde positions of the primary receivers can be determinejl GQlobal no-talk area defined
assuming the primary receivers can be anywhere within theegted region

approach is to introduce a design paramete(in dB), which

is the combined budget for possible fading and shadowing Area lost due

losses. Then, the rule in (1) becomes: o different
do not use choices of A
> p— (10logy ]+ A) @ !

In (2), the parameteA is a constant serving the role of a
safety factor. Its value is determined by the desired opeyat
point of the system, and it is fixed at design time. The valuel
of A impacts the secondary user’s ability to guarantee non-\
interference to the primary user as well as to recover area
for its own operation. IfA is large then the secondary user
acts conservatively and only declares a point usable when th
primary signal there is very weak. In normal circumstances
such weak signals occur very far from the TV transmitter and
the secondary user must forfeit a lot of the area around the _ o
primary transmiter (see Figure 4) ut it i able to ensumengi 0.5 1.0 budee, o Tuivalh a Scouts ® sneg ool hen
interference to the primary user.Af is small, there is a chance e budget for multipath and shadowing is largelarge), then the secondary
that the secondary user will not even sense moderately fadeet forfeits a lot of area outside the no-talk zone.
primary signals. The secondary user will then be intergrin
with the primary user more often but will forfeit a smaller
area (see Figure 4). This tradeoff needs to be captured in theve. The ROC of a detector is the curve that plotshge,

use /
|

appropriate metrics. as a function of thePr 4 for a fixed sensing time, and fixed
operatingSN R [52]. An alternate performance metric for a
B. Traditional sensing metrics detector is itssensitivity The sensitivity of a detector is the

We briefly review the traditional triad of sensing metricéowest value of the operating VR for which the detector
(sensitivity, Pr 4, and Py, p) and motivate the need for systemﬁat'Sf'es a given targetr 4 and Py/p.
level metrics for the problem of identifying spatial spectr ~ The overhead for a detector is traditionally measured by the
holes. sensing time required to achieve a tarffets, Py, p at a given
Any sensing algorithm can be thought of as a systeMVR. This is called thesample complexitpf the detector.
(black box) with inputs, outputs and control knobs. The inpd’he sample complexity and sensitivity are tightly coupled
to the system is the received signal, and the output is the if we want to improve the sensitivity of the detector, we
decision whether the band is usable or not. The contrdlust increase the sample complexity and hence incur a larger
knobs are design parameters like detector threshold, pnsiensing overhead.
time, etc. Traditionally, the performance of such a system i An important functional requirement for detectors opeigti
characterized by itReceiver Operating Characterist{ROC) at low SN Rs isrobustnesso uncertainties in the system. Un-



certainties can be broadly divided into two classes — devicgroducts are in the marketplace. There is an asymmetry here:
level uncertainties (like uncertainty in the noise powenyl a the secondary operator might very well have a uniform-area
system-level uncertainties (like uncertainty in the sheidg business model in mind, but the primary user fears that the
distribution). It was shown in [16] that the traditional me$ secondary operator will end up deploying the system close to
can be suitably modified to characterize detector robustnalse primary’s receivers since that is where the people are. A
to device-level uncertainties. This was done by considerimetric that accurately captures the primary’s fear of hatmf
worst casePr4, Pyrp over the set of uncertain distributions.interference must somehow assume the worst-case deploymen
Furthermore, it was shown that detectors have fundamentélsecondary users.
SNR thresholds calledd N R walls below which detection is Similarly, there is no reason to completely trust the fading
impossible even if the sensing time is increased to infinityhodel. A detector could end up operating in line-of-sight
This showed that under device-level uncertainties, we musgivironments or it could be deeply shadowed. For exampée, th
consider both sensitivity and the detectofsVR wall as a secondary operator may propose roof-top static instafati
measure of performance. (with very little shadowing) of its access devices thinking
Now, the remaining question is: how do we deal withhat people will be using it to get Internet access in single-
system-level uncertainties? The dominant current approaemily homes. However, people living in apartment building
to deal with system-level uncertainties like uncertainty imight also start buying the devices. Some users might notice
shadowing is to incorporate them into the specifications fgiat system performance improves if they bring their device
the system. For instance, to account for possible deep fadggoors (becoming shadowed from primary transmissions). A
the 802.22 working group specifications require detectors fgew multiplayer video game might even arise that encourages
have a sensitivity of -116 dBm (-20 dBNR) [42]. This people to use the device inside their minivans while driving
corresponds to a safety margin of rougtlly= 20 dB [14].  around town. The primary user will not trust the secondary
There are two fundamental problems with this approac§perator to alienate its own paying customers and it is hard t
First, this approach is very conservative. anq leads to sevekrfectly anticipate the environment of the future.
overheads 20 dB ~ 110 km). In most situations detectors g following definition captures these model uncertagntie

do not face such severe fading and hence they are force(befinition 2. Assume that the secondary user runs a

to not use the band even though they are well outside t:Qeectrum—sensin algorithm that outputs a binary decigion
no-talk radius. Secondly, this approach of specifying assen P g a9 P y

o ) ) X . Y about the state of the primary bantkusedd-unused. The
tivity requirement is not compatible with cooperative segs

approaches. It is clearly hard to even define what senyitierObab'my of potgntlal mterfere.r'mé?F,,(D = Ol7actual = 1) .
. . at radiusr < r, is the probability that a secondary user is

means for a whole group of radios [53]. What if one of them. hin th K reai d declaféghat the band is *
is faded and the other is not? within the no-talk region and declaréshat the band is “un-
' used”. HereF:. is the probability distribution of the combined
C. New system-level metrics muItlpgth and shadpwmg—mduced fading at a distand¢em

In the previous section we showed why the traditionfflrl1e primary transmiter.

3 P y The exact value of this probability depends on the assumed

sensing metrics fail to capture the right level of abstmacti model for shadowing and multipath. The primary users (and
between the sensing and communication. Table Il lists the 9 patn. P y

" . ) -regulators) only trust that the true distribution is withire set
guantities/modeling philosophy that we want to capturéhwi . i
. . X ... Hence theear of Harmful Interferenc€Fy ;) is defined
appropriate metrics. For the problem of recovering time-’
domain holes these quantities are well understood (ligted T _ _ _
the second column of Table Il). The analogous quantities in Frr = s . PrD = Olractuar =7). (3)

the spatial domain are listed in the third column of Table II. o
We now give two new system-level metrics — safety td e outer supremum reflects the uncertainty in secondary use

the primary user and sensing overhead given by the lossd@Ployments and the inner supremum reflects the uncertainty
available area. The metrics have been defined to capture fhdhe distribution of the fading. Explicit models for these
essence of the discussion in Table II. uncertain distributions are discussed in Section IlI-D.

1) Safety: The first idea for a safety metric is to just There is an analogous safety metric for spectrum holes
calculate the probability of interference. However, thésai in time where the goal is to reuse the primary user's OFF
metric that is open to serious abuse. A secondary systent mitjie while avoiding harmful interference in ON times. In
do no sensing and just assume that its users will be uniforngigldition to the fading uncertainty, the distribution of iheer-
placed in a large area (much larger than the footprint of thi&nsmission times of the primary transmitters must also be
TV station). Hence the probability of a user landing witHie t viewed as uncertain (see e.g. [37]) to preserve the freedom o
no-talk area is very small and the secondary system can claigtion of the primary system’s users. In addition, the nedat
compliance with a low target probability of interference.  starting time of the potential secondary transmissiondsie a

Such a metric for safety is essentially no better than tiviewed as uncertain just as the secondary position in sgace i
secondary system telling the primary user “trust me, mysuseronsidered uncertain.
are not going to be close enough to interfere with you.”

The primary user has no reason to trust theriori user- 11This does not necessarily mean that a secondary radio willakgt
deployment model of the secondary system once the secondeifsmit and cause interference.



Quantity of interest Time domain Spatial domain

Interference margin Permissible duration of secondary interference Marginal area relinquished by primary users
at the start of primary user's ON period to allow secondary operation

Modeling uncertainty Distributional uncertainty in the primary Distributional uncertainty in the primary
users’ ON/OFF periods signal’s fading/shadowing

Scenario for Worst-case overlap between primary’s Worst-case placement of secondary userg

computing safety metri¢ and secondary’s transmissions within the no-talk region

Performance metric Fraction of primary user's OFF period recoveredrea outside the primary’s no-talk region
for secondary transmission recovered for secondary transmissions

Overhead Sensing time Area outside the no-talk region that

cannot be recovered

TABLE I
CORRESPONDENCES BETWEEN THE QUANTITIES OF INTEREST IN THEME AND SPATIAL DOMAINS.

2) Performance:Next we consider a metric to deal withprimary transmitter, the total area of the spectrum hole is
the secondary user’s performance — its ability to identifinfinite. We propose a discounted-area approach analogous t
spectrum opportunities. If there were only a single primaihe present-value of consumer utility proposed by [54].
transmitter, every point at a radial distance- r,, would be Definition 3: The Weighted Probability of Area Recovered
a spectrum opportunity. For any detection algorithm, thisre (WPAR) metric is
a probability associated with identifying such an oppoitiin o0
called the probability of finding the holBry: WPAR = / Prg(r)w(r) rdr, (5)

Py (r) = Pr.(D = Oractuat =7), 1> Tn. @ where w(r) is a weighting function that satisfies

In reality, secondary users might also be uncertain aboﬁn w(r) rdr=1.

the shadowing and fading distributions. In this case the sec The numerical results in this paper have been computed us-
ondary users can compute performance assuming the WOfst an exponential weighting functiom(r) = A exp (—#r).
case distribution in their uncertainty set. This uncetiaet \yhjle similar results can be obtained for any other weighting

is typically much smaller than the uncertainty set used ) (§nction, the exponential weighting is not unreasonabietfe
to compute the safety performance to the primary user. -Ehisfé)llowing reasons.

because the primary user does not trust the secondary users’ _. _

deployment model and hence assumes a larger uncertainty set Since T_V towers_ are often located around areas .Of high
On the other hand the secondary users know their deployment population den_3|ty, areas arounc_i the no-talk region are
model accurately as there is no incentive for the secondary MOre valuable in terms of deploying a secondary system
users to lie to themselves. So, they can work with a much than areas“ far avv,ay..Thls c.an”t.)e vn?wed as a'spat|al
smaller uncertainty set to compute performance. For sanpli analogy to “banker’s d|§countlng n which MOoney In the

ity, we just shrink the uncertainty set to a single point and future is worth progressively less in present units. By Sut-

) 2 H H 5
assume complete knowledge of the combined shadowing and tonf] law’?, tge ecfonomlc_vzlalue of an arez; IS pr(;portllon_al
fading distribution,F,. to the number of potential customers there. Population

The goal is to combine the probabilitieBry (r) into a densities are often modeled as decaying exponentially as

: . . one moves away from the central business district [56].
single performance metric that allows a comparison among As we move away from any specific tower, there is a
diffgrent sensing algorithms. Ong choice is the underlying chance that we may enter the no-talk zoné for another
utility of the secondary system, like the total throughput o primary tower transmitting on the same frequency. This
profit. However, such holistic utility functions are inteibed can be viewed as a spatial analogy to “drug-déaler's
with the system architecture and business models along with discounting” in which money in the fu¥[ure is worth less
as_sumptions regarding .the plaqemgnt of all the.primarystran than money in the present because it is uncertain whether
mitters and the population distribution of potential cuseos. the drug dealer will survive into the future because of the
It is useful to find an approximate utility function that deeo

ples the evaluation of the sensing approach from all of these .arrlval of the police or_a rival gang [57]'_
other concerns. Figure 5 shows the locations of TV transmitters for Channel

We make the reasonable assumption that secondary utiﬁ‘ﬁ/ all around the United States [58]. In keeping with the

will increase whenever additional area is recovered by gharrent r'“_'(;al ?gploy(;nerpt ,aszymptlor?s ,?thEEE 8d02r.12'2, we
sensing algorithm. Since we would like to decouple the srgwsiJUSt consider “drug-dealers discounting” here and thits se

metric from the detailed model for primary deployments, it , ,
When asked why he robbed banks, the famous bank robber Wilttersu

is usefgl to be ablle_to Sta_te it in _terms Of. a single pr_imari¥ believed to have said “because that is where the money ig"santhis
transmitter. The difficulty is that if there is only a singlegeneral principle has been named after him [55].



the value ofx = 2 x 107>m~! for the paper, given the (yi(7,51),...,7(r, Bx)). A distribution F,. € F,. iff Vi <k
other parameters that are commonly used for digital tetavis

signals: primary transmit powe; = 90 dBm, no-talk radiu%? Pr (P <7i(r, 5i) = Bi. )
rn = 150.3 km, and a piecewise polynomial propagation gqr consistency, the quantiles are chosen so that the nbmina
model fitted to match Figure 1 in [51]. GaussianV (u(r), o) is always one of the possible distribu-

When dealing with intermittent primary users (i.e. tryingigns for P.
to recover holes in time), the goal is to reuse the OFF time
while minimizing the sensing time. To understand the reéati v(r,B) = Q71 (1 = B)a + u(r), (8)
burden of the sensing time, we need to appropriately Weig\nwere o-!
recovered opportunities in time. “Drug-dealer’s discangit
is appropriate since potential opportunities in the futonay

(-) is the inverse of the standard Gaussian tail
probability function.

Figure 6 shows a picture of the distributions allowed under

?g\;er Saa:ﬁ]”agéfokrffﬁgﬁeggsge tﬁe&:ec?sagc\::/e?f ::2 dplgrr‘:j]lggbli{ﬁe guantile modelylearned quantiles) defined in this section.
bp g . ' g The set of allowed Cumulative Distribution Functions (CEF’

of Time Recovered (WPTR) metric that is analogous to tt}er P under our quantile model is precisely the set of all

WPAR metric proposed in this section. In the interests of . . .
. o possible non-decreasing curves sandwiched between theg upp
space, this metric is not pursued further here.

and lower bounds shown in Figure 6. The dashed (black) curve
in the figure shows the nominal Gaussian CDF for and
D. Models for fading uncertainty the quantile constraints can be thought of as samples of the

The received primary signal strengfh (in dBm) can be nominal CDF (the triangle points (in red) in the figure).

modeled asP = P, — ({(r) + S + M), where P, is the

power of the transmitted signdlr) is the loss in power due Quantile model for signal power distribution
to attenuation at a distance from the primary transmitter, ‘ ‘ ‘ ‘ P
S is the loss due to shadowing and is the loss due to 09
multipath fading. Unless specifically mentioned, we assun
that all powers are measured in dB scale. We assume t
I(r) = 10log,o(r®), anda is the true attenuation exponéit.

1) Nominal model:For convenience$S and M are assumed
to be independent of and to follow a nominal model for
S + M that is Gaussiany + M ~ N(us,0?)) on a dB
scale. This implies thaP ~ A (u(r), 0?), whereu(r) = P, —
(I(r)+ps). This is the distribution used to compute the WPAF
as in (5). For the plots in this papet,s = 0dB and the
standard deviationr = 5.5 dB were chosen to match standart
assumptions in the IEEE 802.22 literature [51].

2) Quantile models:To computeFy;, we cannot always [
use the nominal model for shadowing and multipath as it B T - -
important to model the fact that the primary user does nattrt
this model completely. Instead, it is possible that the priym
user trusts only a quantized version (or a coarse histogram)
of the fading distribution. Mathematically, we model thidig. 6. The quantile model for the received signal powe) (listribution.

T . . .1 The dashed (black) curve is the nominal Gaussian CDPfand the triangle
as a class of distributionsFf) that satisfy given quantile points (in red) show the quantile constraints on the CDF. dashed-dotted

constraints. (magenta) curve is the upper bound and the solid (blue) cuertbe lower
Definition 4: A single quantile modeF.. is a set of dis- bound on the allowable CDF foP. The actual CDF can lie anywhere in
Lo . . T . Petween, and must pass through the 5 triangle points (geastiistraints).

tributions for the received signal power defined by a single

number0 < 8 < 1 and a function ofr denotedv(r, 5). A

distribution F,. € . iff

0.8-

0.7

0.6

0.5

0.4

0.3

0.2

Cumulative Distribution Function

Received signal power, P (in dBm)

P (P <~(r,3) = 0. (6) IV. SINGLE-RADIO SENSING PERFORMANCE

A k-quantile modelis a set of distributiongF, for the
received signal power defined by a list of numbéfs < The tradeoff betweerf;; and WPAR depends on the

B, < ... < fB) and a corresponding list of functionsdetector used by the secondary user. We start with a hypo-
thetical detector that meets the current specificationipec

13This corresponds to WRAN basestations in 802.22. UsiegiBm for 1N the IEEE 802.22 process. The issue of finite sensing time is
secondary transmitters gives the0.3 km radius [51]. illustrated next through the example of a radiometer. A lsimi

14We could include an uncertainty model for the attenuatioroeept since analysis could be carried out for any other detection albmi
the antenna heights can vary and include this in the computatf Fiy;.

However, for simplicity we assume complete knowledge of thenattion an_d SO th_e role of uncerta_in fadirjg .di_StribUtio_ns i§ ingzstted
exponent in this paper. using an ideal detector with an infinite sensing time.
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Fig. 5. Location of transmitters for Channel 30 (566-572Migitted using Google Maps.

A. Evaluating an ideal -116dBm detector Let D denote the set of all detection algorithms satisfying

The currently understood detector specifications in theflEENe |EEE 802.22 specifications. Then, the fear of harmful
802.22 working group require any proposed sensing alguritinterference is,
to be able to detect digital television signals-at16 dBm to
a probability of mis-detectiorP,;p, = 0.1 and probability of

D
false alarmPr, = 0.1 [42].Y> We now show that detectors Fur = 03}2 Fsg [s)‘é% Er, [Pyip(P)]
based on such specifications lead to very poor area recovery (@) o
and also do not guarantee safety beyondthdevel without = sup sup Py, (—00)P(P < —116) +
additional unspoken assumptions. 0555”" beb
Suppose a detection algorithm meets tha16 dBm, Prrp(=116)P(P = —116)
Pyp = 01 Pra = 0.1_ §pe0|f|cat|on. Since only the11§ ® sup sup[(1— PFDA)P(P < —116) +
dBm level is specified, it is natural to assume that the pryymar 0<r<r, DED
user only has confidence in a single quantile that correspond PD 5 (—116)P(P > —116)]
to that level, i.e.,P(P < —116) = f(r), where 3(r) = .
(o)
— —u(r = . -
0 ( 16— u( >). ,Sup [6(r) +0.1(1 — B(r))]
o STrsSTn
R o = sup (0.95(r) +0.1)
15The specified sensitivity of -116dBm was based on the obsenvthat it 0<r<ry,
is easier (think shorter verification times) to verify a prbitity specification (d)
of 0.9 than it is to verify a probability specification of 0®9Furthermore, = O.Qﬁ(rn) +0.1.

there was an expectation that detector performance would tooically
increase with increased received power. Hence, a detdwbrdemonstrated In th b hai f lit h 3 d
a probability of detection of 0.9 at -116dBm would (hopefiltiemonstrate n the above chain of equalities the supersciipts use

a much higher detection probability at -110 dBm [59]. to denote a detection algorithm from the class of allowed
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detection algorithm®. Equality (a) follows from the fact that where\ is the design parameter called the detector threshold.
the maximizing distributionF’* € F,. corresponds to placing Here,Y [n] = X[n] + Wn], whereX[n] is the faded primary

a mass ofg(r) at —oo and (1 — 5(r)) at —116 dBm. This is signal at timen and Wn| is the background noise at time
the maximizing distribution irrespective of the actualetgion n. For convenience assume that Bfl[»] are independent and
algorithm D € D. This is becaus®’) ,(p) is a monotonically identically distributed as\V'(0,52). Also, let N be the total
decreasing function gp, for all D € D. Equality (b) follows number of samples that are collected for sensing.

from the fact thatPL) ,(—oc) is the mis-detection probability ~The average power of the received primary signal is given

when the signal is absenp (= —oc). This corresponds to py p = 101og;, [limy 0o %Zi\’:l |X[n]\2] (in dBm). The

the event when noise-only received signal samples do RgPAR does not depend on any uncertainty and so
cause a false-alarm. Hencel) ,(—o0) = 1 — PE,. Equality

(c) follows from the fact thatupcp(1 — P2,) = 1, and Pru(r) = E[P(T(Y) <AP=p), (12)

suppep P H(—116) = 0.1. Finally, equality (d) follows L -
DeD * MD . RN . > where the outer expectation is with respect to the nominal

from the fact tha3(r) is a monotonically increasing function. 5 \ssian distribution? ~ N (u(r),o2). Substituting (12)
Now, for any D € D, the probability of finding a hole is (5) gives the WPAR for the radiometer.

given by The analysis to compute the fear of harmful interference
Pru(r) = Ep[P(TP(Y) < \P)] for t.he_ radiometer unde_r tr_]e singlg quantile uncertaintxd_aho
—  Ep[PD,(P) is similar to the analysis in Section IV-A, and hence is not
(Z) PEMD repeated here. Note that the secondary user has two paramete
< PP,(—00)P(P < —116) + (9) to adjust. It can adjust the threshokd on its own and it
PE,(—116)P(P > —116) can negotiate with the regulator/primary user regarding th
0 MD = appropriate value for3. We assume that it does both and
< B(r)+0.1, for r>r,. (10) chooses the optima$ and A so as to maximize the WPAR.

This can be done numerically. Figure 7 shows the resulting

The bound in(e) follows from the fact that the function safety/performance tradeoff for a single radio with botmdi
Pyp(p) < Pip(=00), for —oo < p < —116, and and infinite number of samples. For the case whér- oo,
Pyip(p) < Pi7p(—116), for —116 < p < oc. These inequal- it is easy to see that the optimal choice for= ~(r,, 3) =
ities follow from the fact thatPl),(p) is a monotonically cQ~1(1 — B) + u(r,). From Figure 7 we can see that the
decreasing function op. The bound in(f) follows from impact of the uncertainty is substantial when the sensing i
observing thatPf),(—oc) < 1, P(P < —116) := B(r), is finite.
PD(—116) < 0.1 VD € D, andP(P > —116) < 1.

Shockingly, there is a benefit from missed detections above Single Detector Performance
This suggests that a clever detector designer would do we ‘ ‘
to introduce intentional missed detections to improve grerf
mance while still meeting the official specification. Thidlsa
into question the unspoken assumption that deployed detect
implementations would have better probabilities of missec
detection when the primary signal is stronger thaii 6 dBm.

Using (10) in the definition of WPAR (See (5)) and applying
our nominal model gives &V PAR < 0.16. This clearly
shows that while the-116 dBm requirement seems very
conservative, the detector specification is actually not safe
and simultaneously has a poor area recovery irrespectitheof
actual detector used. In the worst-case, the signal careihde
fall as low as -116 dBm at the no-talk radius. However in the
average case the signal is a lot stronger and this leads to a |
of valuable area going unrecovered.

-

= Perfect detector, Number of Samples (N) = /
= = = Complete knowledge, Number of Samples (N) = 100 ¢
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B. The radiometer

In the rest of the paper we assume that the received signatii 7.  Performance of a perfect detector (infinite samplesycaspared

sampled and hence we work in discrete time for simplicitye Thwith a radiometer using a finite number of samples.
radiometer collects the samples of the received sigfal,

computes its empirical power and compares it to a detection

threshold. The test-statistic for the radiometer can bdtevri -

as C. The value of additional samples

N Next we look at the gap between the safety-constrained
L Y [n]|2 Dg A, (11) performance with only a single (but optimized) trusted dil@n

TY)=—
) N £ D= and what can be achieved with the entire fading distribution

Il
-
|



12

being trusted. The first step is to increase the sensingidarat If the Fiz; were to be held constant, the WPAR performance
Figure 8 shows the performance as the number of samipleswould improve instead. By gaining additional consensus re-
is scaled but thé"; of the system is constrained to beé~3. garding the fading distribution, the sensing threshold ban
An infinite number of samples leads to a perfect detect@et more aggressively without increasing the fear of harmfu
and it turns out that having a single trusted quantile leadsterference. This aggressive threshold in turn incredles
to the same performance as having complete distribution&PAR.
knowledge. This is because that single quantile can be nhose

in an optimal fashion based on the targét; itself. Hence the

two curves achieve the same WPAR value as the number ¢ 08 —— Uniform selection of quantiles
samples are scaled up. However, they need different numbe = 7 = Greedy selection of quanties
of samples. If the entire distribution were trusted, a ngl 05
radio only needs- 10* samples whereas 107 samples are
needed if only a single quantile can be trusted.

Gains from the knowledge of additional quantiles

=}
>
T

Gains from increasing the number of samples (FHI = 10’3)
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Fig. 9. TheFpg of an energy detector with 100 samples but distributional

005 uncertainty approaches tti&;; with no uncertainty as the number of known

Weighted Probability of Area Rcovered (WPAR)

B quantiles is increased. Different ways of choosing the tjlesshow different
; performance. The threshold used in this plot corresponds t6'; of 0.1
g without distributional uncertainty.
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E. The value of improved detection algorithms

Fig. 8. Performance of a radiometer with finite samples appemdhe From Figure 7 we can see that even a perfect radiometer
performance of the perfect detector as the number of samplesrisased.  yacovers only &.37 fraction of the weighted area for a safely
low Fpr (=~ 1072). It is tempting to believe that performance
could be improved by considering more powerful detectors
like pilot detectors and cyclostationary feature detex{60].

The previous section shows that there is a clear value I{Ohas certainly been shown that pilot detectors anq (;yalost
agreeing on a single model for the entire distribution. Haeve t'o.”ary feature detectors are more robust to .uncertamnme
this is likely to be impossible in practice. Instead, suppthat NOISE process [16]. However, at best such smgile-usertd&d;ec .
the primary user, secondary user, and regulators agreed orft a_chleve the performance of a perfect radiometer, bst thi
few quantiles of the fading distribution instead of a singhe. is limited due to the need to budget for deep fades.

Figure 9 shows the fear of harmful interferendeéy() for

a fixed WPAR as the number of quantiles is increased while
the sensing time is kept constant. Two methods for quantileOne possible approach to solve the problem mentioned in

selection are compared. In the first method the quantiles &ection IV-E is to use the sensing results from multiple bgar
chosen uniformly (e.g. if three quantiles were neededccseleadios to make a decision on whether the band is free to use
the 1/4th, 1/2 and 3/4th quantile). In the second method, tbe not. This mirrors previous research in cooperative com-
best additional quantile is chosen greedily given the eéhoic munications and sensor networks [61], [62]. Several groups
the previous quantiles. Both methods approach the samg lirhiave proposed cooperation among cognitive radios as a tool
but the greedy choice clearly performs better. The threshdb improve performance [13], [63]-[69]. Table Il lists the
used in this plot corresponds to By; of 0.1 if the entire major research themes in the area of cooperative spectrum
distribution is trusted. A moderate number of quantilesl()) sensing and representative references. Gains from cdagrera
are needed for the safety to be reasonably close to the safey either be viewed as diversity gains where multiple dio

with complete distributional knowledge, for the same dédec reduce the collective probability of getting a bad fade [13]
threshold. [63] or as a mechanism to reduce sensing overhead [64], [65],

D. The value of additional consensus

V. COOPERATION
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[69]. Dealing with uncertainty (in the form of correlatedtda distance from the tower. Using this model, it is easy to see
measurements and/or malfunctioning/malicious radiogn$o that the ML detector is equivalent to

a major component of this research. In addition, the design o M B
optimal cooperative sensing schemes under various comstra 1 Z P Dg A (13)
(communication/synchronization constraints for exampte M~ p=o

also an a_ct|ve area of resear_ch._ ) . . This detector computes the average received signal power
We believe that the most significant gains from cooperation

(from the standpoint of recovering spatial holes) are ditgr on a dB scale (This is an example of a soft-decision combining
) P gsp ) N rule since the radios have to send their received power salue
gains. Hence we look at cooperation as a tool to incre

48 a central combiner rather than just sending 1-bit dee#io
WPAR. We assume that a group 8f cognitive radios are J 9 ecs)

. : . : . nd compares it to a thresholdl The frequency band is

listening to the primary signal on a given frequency band, . : :
. - eclared free if the mean signal power is less than

This group makes a common decision on whether the ban

IS
free to use or not. For simplicity, we assume that each radj

Assuming thatP; ~ N (u(r),0?), we have "M P, ~
0_2 . n
gets a perfect estimafeof the received primary powe?; (in (u(r), 37). Therefore if we assume that the primary user

dB)i =1,---, M. We make this assumption to isolate tht.§ISO trusts the nominal model,
gains due to cooperation from those due to a longer effective 1 M
sampling time. Fyr = 1-P <M Z P; > MNractual = m)
Each of the received signal strengths is writterPas- p, — i=1
(10log,o &+ S; + M;), wherep, is the transmit power of the _ 1.0 ()\ — M(%)) (14)
primary signal,r; is the distance from thé&h radio to the TV o ﬁ ’

tower, andS; and M; are respectively the losses due to shadow
and multipath fading at théth radio. All cooperating radios The detector threshold must be chosen such that;; <

target :
are assumed to be located at approximately the same distafige * - Hence (14) gives
from the TV tower, i.e.p; =r foralli =1,2,--- , M. This o target
models the case when the scale of cooperation is much smaller A= 579 (L= Fy™) + plra). (15)

than the scale of the primary transmissiéh3his assumption For this choice

: : X of\, the probability of finding a hole is
also guarantees that all the cooperating radios are tryng t

identify the same spectrum hole in space. 1 X

To start with, shadowing and multipath are modeled to be ~ Tru(r) = P <M ZH- < Alractual = T)
independent across the different radios. It is safe to asshat =1
the { M, } are independettt of each other since multipath is in- - 1-0 A —p(r) (16)
dependent at distances on the order of a few wavelengths [83] \/% ’

By contrast, shadowing is independent only on a much Iarg_gr N .
spatial scale [84]. Even though independence might not be e WPAR can be computed by substituting (16) into (5).

accurate modeling assumption, we first analyze cooperatﬁ/gure 10 shows the performance of the maximum I|_k(_eI|h00d
gains under this best-case assumption. Then, Section \FJBtectorfor several values of the number of cooperatinigpsad

computes the loss in performance if the shadowing is nM' It is clear that the performance significantly improvesreve
independent with a few cooperating radios (M=5). f/ — oo, all the area

is eventually recovered.

A. Maximume-likelihood detector: soft-decision combining - . .
B. Soft-combining with uncertain models

Our goal is to find the optimal estimate of the dis- . . L -
tance r, given the vector of received power observations The improvements with cooperauqn |IIustrateq n F.|gu_re 1.0
(Py, Py, --- , Par). When the model is completely known thedSsume complete consensus regarding the fading distributi
SR, ’ reality it is likely that the primary user of the channel

optimal detector is the ML detector. We assume a nominlé\

Gaussian model for both the shadowing and multipath distrib 0€s nqt trugt t_he _nomlnal Gaussian models_ for s_had_owmg
tion, i.e., P, ~ N (u(r),02), wherep(r) is some deterministic and fading distributions. The cost of addressing this dsdtr

monotonically decreasing function of Under this model, the of primary users is a reduced performance for the same value

mean of the received power is dependent on its distance fr&fnsafety. For now, the independence assumption for fading

the TV tower and the standard deviation is independent of tREMOSS dlffere_nt USETS 1S maln.talned. . o .
Under the independent fading assumption, it is illusteativ

16We can obtain a perfect received primary power estimate byimgna t0 use the quantile models discussed in Section IlI-D foheac
radiometer for very long sensing times, i.&/, — oc. received powerP;. Start with a single quantile that can be

17 . . . . . i : L - ’
_ In reahty, tht_a radial fqotprlnt of the cooperating radioashto be dealt optlmlzed. Let the class of marglnal distributions saimgy
with as a minor increase in the no-talk radiys. However, we assume that

the footprint of cooperation is much smaller than the margin £ r,) and  the Sth quantile constraint be denoted By. For simplicity,
thus ignore this small effect. consider the two cooperating radios case, i\é.= 2.

18This is not true strictly speaking. In generalj;'s are conditionally inde- The maximume-likelihood estimate detector under uncertain
pendent given the shadowing environment since the shadogvigigonment . s . . . .
can determine if there is or is not a strong line-of-sight p&tbwever, we fading distributions (even for a single-quantile uncentypi
are assuming indoor operation and so there are no line-bt-pigths. model) does not even make sense. Hence, we do not attempt to
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Research Theme Main idea/goals References
Cooperation as diversity Cooperation can be seen as providing diversity gains | [13], [63]

by reducing sensitivity requirements for individual reglio
Cooperation as gains Cooperation can be seen as reducing sensing time [64], [65], [69]
in degrees of freedom or lowering false alarms for the same level of detection.
Impact of/Dealing with correlation Determining the impact of channel correlation on [63], [68], [70]

cooperation gains as well as mechanisms of
dealing with correlation uncertainty.

Impact of/Dealing with Determining the impact of incorrect sensing responses [63], [71]-[73]
malicious/lying users and mechanisms for weeding out misbehaving users.
Cooperation and Communication| Determine the impact of communications/synchronizat|of64], [65], [74]-[76]
constraints on cooperation performance.
Fusion rules Investigation of various soft/hard combining rules. [67], [69], [77]-[80]
Utilizing sparsity/ Utilize multiple frequency bands for cooperative gains.| [81], [82]

multiband information

TABLE Ill
DESCRIPTION OF VARIOUS RESEARCH THRUSTS IN THE AREA OF COOPERVE SPECTRUM SENSING
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Fear of Harmful Interference (F )
Hi Fig. 11. The averaging detector for two user cooperatioreutite single-

quantile fading model. The solid (black) box in the perimetpresents the
_ ) ) P, P> plane, the solid (blue) line represents the 2-user ML detent(13),
Fig. 10. Performance of the ML detector in (13) with completewd®edge and the dashed (red) lines represent the quantiles dewgtie distribution of
of the fading/shadowing distribution. Py and P». The shaded area represents the region of the received paivsr
(P1, P) for which the detector declares the band unused and the dedha
area represents the region where the detector declaresutiteds used. The
thresholdp,;, in the figure is used to denotg(r,, 3).

solve for the best possible detector under modeling uricerta

ties. Instead, we continue to work with the averaging detect

given in (13). As discussed in Section V-A, this detectohis t , . o ,
ML detector under perfectly modeled Gaussian fading. ~ 9raphically from Figure 11. In this figure, the,, P, plane is

For this detector, we can show that for a given choice ?d)#vided into four quadrants as marked by the dashed-dotted

quantile 3, the best choice o that minimizesFy; is A — Ines (red). The single quantile constraint on the marginal

+(rn, B), Wherey(rn, 3) is the fth quantile threshold in (8). distributions can be written as probability mass constsain

: ) : . 7" within each quadrant. The averaging detector in (13) for a
For this choice of\, the fear of harmful interference is g|venﬁxed X can be drawn as a straight line dividing ttig, P,

by plane into two half planes (the solid (blue) line in Figure.11
r ~ sup sup P P+ P <Alr _, If the received powet Py, ) falls in the shaded region, the
o 0<r<ry F.cF., F g = "actual band is declared ‘free to use’, otherwise the band is datlare

= 1-(1-p9)> (17) ‘used’. Hence, the probability of harmful interference liee t
supremum of the probability mass in the shaded region, where
The expression forFy; in (17) can easily be derived the supremum is taken over all distributiofis= IF 3. Similarly,
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the probability of finding a hole is the probability mass ie th Two user cooperation: ML vs OR rule
unshaded region, under the nominal distribution. [T~ == WL rie with complte knowiedge ‘ A
: : = =1ORmul 2
lf >\ < Pths Wherepth = ’}/(Tn,ﬁ) (the deteCtor llne IS 0.9*—Ave::g?ngrulewithsinglefquamileknowledgs * /-

on the left of the black dot in the figure), thefy; is the
sum of probabilities in quadrant&l, 11, and IV. This is
because one can always choose a distribution that satisfi
the quantile constraints and puts all the probability mass i
quadrants/ I, 111, and IV within the shaded region. Thus,
in this caseFgr = 1 — (1 — 8)2. On the other hand i\ >
pen, then Fyr = 1. Therefore, the optimal choice of for a
given quantiles that minimizesF'y; and maximizedV PAR
is A =v(rp, B).

Assuming that thesth quantile for the marginal distribution
is the same as that of the nominal Gaussiafu(r,, ), o?), we

havey(r, 3) = u(r) + cQ~1(1 — 3). To evaluate the WPAR,
the nominal fading distribution can be assumed and so:

o I o o o 4
w > 15 o ~ ©

Weighted Probability of Area Recovered (WPAR)
o

4
o

P, + P 10" 10° 107 10 10°
Pru(r) = P ( - ;r 2 < Nractuat = 7') Fear of Harmful Interference (F,,)
_ 1_gf2r=H0)
% Fig. 12. Averaging detector for two user cooperation: pennce under

complete knowledge of the fading/shadowing distributiorsus performance
o <M(Tn) + 0Q71(1 - B3) — M(T)> (18) under the single-quantile uncertainty model for fadingdgiweing distribution.

V2
The WPAR can be computed by substitutinge g (r)
from (18) into (5).
Figure 12 plots the performance of the averaging detector
under the single-quantile model for the fading distribatio Two user (M =2) averaging rule with varying quantile knowledge
The dashed curve (blue) is the performance of the averagin 1{

T T
ML rule with complete knowledge
== Averaging rule with three quantile knowledge
= = = Averaging rule with two quantile knowledge
= Averaging rule with one quantile knowledge I
[ ”

detector when the fading distribution is completely known (
this case the averaging detector is the ML detector). Thd sol
curve (black) is the performance of the averaging detecto
under minimal knowledge of the fading distribution, i.eittw
knowledge of a single quantile. From the figure it is clear
that the 2-user averaging detector is highly non-robust to
uncertainties in the fading distribution.

The performance of the averaging detector improves if we
assume multiple quantile knowledge for shadowing and fadin
distributions. The mathematical analysis of multiple diles
is similar to that of the single-quantile model and is onditte
here in the interest of space. The performance is shown i
Figure 13 and it is clear that the performance of the avegagin
detector improves as we learn more quantiles about thedadin ; - . =
distribution. However, the first few quantiles learned give 10 Fear of Harmful Interference (F“’) 10
more performance improvement than the later ones — witt. H
performance approaching that of a fully trusted nominal ehod
as the number of trusted quantiles increases. Fig. 13.  Performance of the averaging detector under varginantile

Although this section’s mathematical analysis of the @eraknowledge ft_)r_ the shadowing _and fading distributions. Theardiles were
. . . chosen to minimizel'y ; for a given WPAR value.
ing detector covered the two cooperating radios case(2),
it is fairly straightforward to extend the analysis #d > 2.

See [43] for the complete details.

Figure 14 shows the performance of the averaging detector
under the single-quantile model fav/ > 2, with Fy; =
10~2. The solid curve is the averaging detector with single-
guantile knowledge, the dashed-dotted curve is the ‘OR-rukule and the averaging detector under complete distribatio
detector (discussed in the next section) and the dasheé cutmowledge improve with increasiny, the averaging detector
is the averaging detector with complete trust in the nominelith single-quantile knowledge does worse as the number of
distributional (in this case the averaging detector is the Mcooperating radiod/ increases! This is because the number
detector). Note that whereas the performances of the ®@Rquantiles contributing towardBg ; increases exponentially
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with the number of user$. This shows the non-robustness of The system finds a hole only if all the radios find a hole.
blindly using the form of the ML detector under modeling M
uncertainties. PFH,system (’/‘) = (PFH,'mdio)

M
_ |:1 _ Q ()\'mdw,M - /‘(T)>:| (20)
C. OR-rule detector: hard decision combining g

We now explore a more robust detection algorithm thaubstituting (20) in (5), we get the WPAR for the OR rule.
performs well even under minimal models for the fading It iS clear from substituting (19) into (20) that under the
distribution — the “OR-rule” [63]. This is a hard_decisionsingle—quantile model of uncertainty and nominal Gaussian
combining strategy where each radio compares its recei@ding, the WPAR tends to for the OR rule as the number
power to a threshold. It tentatively declares the band feee @f cOOperating users increases. Figure 12 compares therperf
use if its received power is below the threshold. Then, eafince of the OR-rule detector with the averaging detecttr wi
radio sends its tentativé-bit sensing decision to the centralomplete knowledge, and the averaging detector with single
combiner (there are other ways to fuse decision based on g&ntile knowledge for the case of two cooperating radios
radio topology [85]). The global decision to use the band (¢4 = 2) while Figure 14 compares the same for the case
made only if all the sensors declare the band to be free. of M > 2. Itis clear that the OR rule is much more robust to

The safety/performance of the OR rule is easy to computlcertainty in the fading distribution than the averagiotgr
Assume that each radio uses a detector threshgld;o 1/ Gains by using the OR rule are accomplished by taking the
(detection threshold for a single radio assuming a total 8fgle quantile to correspond to ever more favorable fading
M cooperating radios). Then, the tentative fear of harmfif@lizations. This is problematic since it involves acigv

interference for each radio is given by a consensus regarding the rare best fading events — this
is as implausible as achieving a consensus regarding the

Furradio = P (P < Avadio,M |Tactuat = Tn) rare worst fading events. In addition, there is a very natura

_ 1.0 (Amdio,M - M(M)) deployment scenario — outdoors on a rooftop — in which

o ’ the best fading events cannot be too good. This is a little

This is the same as the fear of harmful interference for tﬁzgunterlntwnve, but remember that multipath fading cesuit

radiometer discussed in Section IV with infinite sampless It !n both destructive and constructive interference. Ineloar

thus clear that a single quantile at the threshold is goodgmo Inan urbgn canyon, the best-case fadmg corresponds 'ty luck
for a single radio asv — occ. The system of cognitive radiosc_onstructlve interference. _Out_doors, with a dominant-tifie
causes harmful interference only if every radio individyal sight path, such consiructive interference cannot occur.

fails to detect the primary user, and so by the assumption o tr_an_gely enough, wh_en cooperation Is involved, itis this
independence: possibility of a clean line-of-sight path that requires the

uncertainty modelF, to impose a bound on how lucky the
FHr system = (FH,_ymdw)M. fading can be. This effectively caps..q4i, t0 the fade that

In order to meet the targeFy;;, each radio must choose acorresponds to a single line-of-sight path. Once the nuraber

Aradios Satisfying cooperating users has reac_hed a point _that they can support t
. desiredF'y; using that particular quantile, there is no further
o) (w) =1 [Figoet)™ benefit to increasing the number of users if the OR rule is.used
g

) In fact, the performance will drop if cooperating users are
= Avadio = 0Q " (1 — [Frree] W) + u(rs). (19) blindly added as there is an increased chance of a single user
(who happens to be in a rich multipath environment) getting a
very lucky constructive fade and thereby deciding that ey

n within the no-talk radius. The kinked-green curve in Figlife
target Fi;;, the term [Fy/7*|™ — 1 and so the threshold jjjystrates what happens if the uncertain fading modelides

(and thus target quantile) approaches the case of extrem@ly possibility for a line-of-sight path at tH6%-best quantile.

As M — oo, it is immedialtely clear that for any given

favorable fading. Other weighted-percentage rules for hard-decision combin
For such a choice ok;q4io,1, the probability of finding a jng have also been proposed and these are a little moreriblera
hole at a radial distance ofis given by of modeling inaccuracies [63] in general. In particularctsu
Prtradio(™) = P (Pi < Aradio |Tactual = T) rules are required.to avoi(_j the performan_ce. pene}lty thaeari
Avadion — p(r) from the .fear of line-of-sight, but there is insufficient spa
= 1-9 (W) here to discuss them.

19To understand why the averaging detector is so vulnerahladertainties D. Performance of cooperation under loss of independence
of this form, remember that the empirical average is very sepsiti outliers. . .
A single very negative number can dominate the entire aver@gentile We have shown that safety/performance can improve sig-
models can be thought of as histograms. As such, they do not enmog  nificantly if radios cooperatively sense for the primarynase

restriction on how negative the rare bad fading can be siheeotitermost Compared to sensing individually. This assumed that the-cha
bin of a histogram includes everything from the top of that bh down to

—oo. Consequently, the averaging detector cannot afford eveingle user nel?’ from the primary transmitter to the ipdividual SeCFWO'a
experiencing a fade from that lowermost bin. radios are independent. However, the primary user might not
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From the above equation we can choose such that the
target Fy; requirement is met. Given this we compute the
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| Figure 15 shows the performance of the averaging detector
designed for different values ap,,,.. It is clear that as
the amount of uncertainty in the correlation increases, the
Y 4 performance of the averaging detector decreases. Evenla sma
W | amount of correlation results in a significant drop in perfor
mance. As the number of users increases, this particulaeimod
of correlation is even more harmful. This can be seen by givin
a simple interpretation to this correlation — fading for arser
is the sum of a common random fading and a fade local to this
user. Itis clear that no amount of cooperation can overctie t
, non-spatially-ergodic common fade. Without a way to combat
the fear of such non-spatially-ergodic shadowing uncetyai

] W P AR performance assuming the nominal model, which cor-
e responds to complete independenee; 0, i.e., 2 SN | P; ~
1 N (u(r)

there is no way to safely recover the full spectrum hole.

Fig. 14. Performance of detectors as a function of the numbeoaperating
usersM for a fixed targetFy; = 1072,

trust this assumption since all the cognitive radios may be
behind the same obstacle and hence see correlated shadowi
We show that this implies that the detector needs to set it
thresholds conservatively, leading to a loss in WPAR perfor-
mance. The issue of correlated-shadowing is also discusse
in [70], where the authors examine the performance of thei
proposed linear-quadratic detector with correlation uiadety.

The proposed detector is shown to have better probability o
detection than a simple counting rule for correlation value

Ten user (M=10) ML detector with varying correlation uncertainty
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greater than 0.4.

As before, let(Py, P,,--- , Pys) be the received powers at
the M secondary users. To isolate the effect of depender ; . : ;
shadowing, we assume that the marginal distributionsFor 10 L ar of Harmful Interference (Fl:l) 1
are completely known, but there is some uncertainty in the
correlation across users. For ease of analysis, we asswane th
(P, Py, -+, Py) is a jointly Gaussian random vector withFig. 15.  Performance of the averaging detector with varyingpunt of
marginals given b)P ~ N(,u(r) 02) wherer is the common correlation uncertaintypmaz. These plots correspond to the case of ten
. . ! ) ’ . cooperating users, i.eM = 10.
radial distance from the primary transmitter. Further, Mex P 9
M covariance matrixC' has entrie<” (i, j) given by
AN - | 2
C(Za])_{ 0.2 |fZ:_]
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N
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VI. CALIBRATION AND ASSISTED DETECTION

where the correlation coefficientis uncertain within known ~ Section IV analyzed the issues with a single radio trying to
achieve a very lowF'y;. Such a detector must budget for the

bounds, i.e.p € [0, pmaz], With 0 < prae < 1. ( _ the
Under this uncertain correlation model it is easy to show th\évorst—case multipath and shadowing and hence loses signifi-

the averaging detector in (13) is the ML detector no mattgi:’mt. area wh_enever the channel is npt badly shadowed. The
what the value ofy is. Further, it is straightforward to showPrevious section argued that cooperation among indepégden

that to meet a lowf'y; constraint, the averaging detector mus?h"’ldowed users can help, but offered no hope for the physi-

L : . cally important case of users that might experience common
design its\ for the worst case correlatiop,= p..q.. FOr this ! . .
: 1 —M 1 shadowing. For example, the uncertainty in the deployment
choice of p we have; > .7 P ~ N(u(r), 37[1 + (M — . . . .
1) |6%). Therefore ¢ scenario of indoor vs outdoor use can easily manifest asuser
Pmaz ' that are all indoors (and thus shadowed) or outdoors.

Fur=1-

o) A— M(Tn>
\/ﬁ[l + (M - l)p'maar}a'2

If such a radio had information about its shadowing envi-
ronment it could budget for the actual shadowing and thus
improve on its probability of finding a spectrum hole without
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giving up any safety. A detection mechanism where side infanominal model, the ML estimate fqr(r) is given by
mation is used to aid the detector is called calibrated ostasb o1

detection. One example of assisted detection in the cogniti T(P, Py) = P+ pCTZSZ' (23)
radio context is interference calibration. If interferenitom
other radios extends beyond a single primary frequency,baq,d

then adjacent bands can be used to estimate the interferende. ¢ inside or outside the no-talk radius:

This test statistic is compared to a threshold to determine

level and improve the robustness of the detector [16]. Agroth T(Py, Py) Dgl A\ (24)
such example is assisted GPS, where a GPS receiver obtains D=0

side information from TV/cell-towers to reduce its uncérta The distribution of the test statistic is given by:
about its location, time, etc [86], [87]. This section shdvesv
assisted detection improves tiig; ;/WPAR performance of a Pt pZtSy ~ N (m + 08 o, 02(1 — p2)> . (25)
single-radio spectrum sensor. g2 g2

Using this distribution (with no additional uncertainty),
Frir(ry) and Ppy(r) are:

One of the advantages of satellites is that the path loss A= (ulrn) + pZtpe2)
from a satellite is constant to all places within a large area Fpr=1-2Q o \/1_72 ’ (26)
(for example the San Francisco Bay Area). Hence the signal ! P
strength of satellite can be deterministically subtracted A= (u(r) + pZp2)
reveal the shadowing + multipath component. So how is Pru(r)=1- Q( \/722 > @7)

. . . 01 1-— P

satellite shadowing in a separate frequency band related to
shadowing from a TV tower in the band of interest? Consider The performance of this detector compared to a single
two hypothetical radios: one on the roof of a building anthdio is shown in Figure 16. From the figure, it is evident
the other in the basement. The radio in the basement vilat the performance improves as the level of correlation
see both the satellite and TV signals at low power leveBstween the satellite fading and TV-tower fading increases
as compared to the radio on the roof. This suggests tHdtis corresponds to when both the signals are wideband and
shadowing can be broken up into a directional compone$ multipath is relatively less significant. In the extren@o-
that depends on the location of the transmitter and a portiBiitipath (o = 1), all the area can be recovered by a single
that is direction agnostic. Furthermore, the directionamgic ~satellite-assisted spectrum sensor. There is insuffigpate

shadowing is also wideband — it remains the same acrd¥¥Je, but it turns out that if the number of cooperating senso
frequencies [81]. increases and the non-common shadowing were guaranteed

to be independent across sensors, then satellite-assisted

niques can completely overcome the deployment uncertainty

that otherwise manifests as the fear of correlated shadpwin
To evaluate the potential gains from using satellite-#sgis across users.

detection, consider this very simple model.

A. Satellite bands as a calibration mechanism

B. Satellite-assisted detector

Assisted Detection

Pl = p— (10 IOgIO <TO¢> + Sl)) Perfecltcorrellation,pzl .
L == Partial Correlation, p = .8 o
Py = pg—(Lg+52), (21)

== Partial Correlation, p = .5 v
= Single radio .
where the new termp, is the transmit power of the satellite : . .
signal, andL, is the path loss from the satellite transmitter
to any radio in this given geographic aref. is the loss due
to shadowing and multipath fading encountered by the TV
signal, i.e.,S; = S+ M. Similarly, S is the loss encountered
by the satellite signal due to fading and can be written as
Ss = S+ M. We conjecture that the shadowing in the satellite
band and the TV band are highly correlated and for simplicity
they are modeled as being identicaf;, M, are independent
multipath random variables for the TV and satellite bands.
We assume that; and S, are normally distributed and are
correlated with an correlation coefficient pf Hence, 10* 0 0 w0 10°

p 9 Fear of Harmful Interference (FHI)
& (W [ me ) e
So 142 —po1 09 05
o 9 . Fig. 16. Average case performance of a satellite band adswsteiver versus
where u(r) = p; — (10logyo(r) + ps, ), o1 is the variance inat of a single radio with no assistance. The variance efliatband fading
of the primary user’s received signal power amgl is the was half the variance of the TV fading.

variance of the satellite’s received signal level. Undes th
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C. Performance of assisted detection with quantile models ML versus Threshold detector

The ML detector (weighted-average detector) performs wel
when the distribution is completely known. Therefore, it is
important to consider the effect of uncertainty. For exampl
suppose that all we knew was that there is onli”achance
that the satellite shadowing is small (say 5dB) while the TV
signal is severely shadowed (say greater than 20dB). Ho\
would the weighted energy detector perform with this liite
information?

A percentile is chosen foP; and another forS; (i.e. we
choose 1, B2, f12) such thatP(Py < ~(r,f1)) = B,
P(S2 <vg(B2)) = B2 andP(P1 < (r, B1), S2 < 74(B2)) =
(12). Because these are two different bands, there is no reast
to assume that the quantiles are the same. Even so, Figure
can be used to understand the worst-case performance. T
weighted-average detector B, + pILSs which is similar o
to the diagonal blue line detector in Figure 11, but with a
slope that depends on the correlation and relative magrstud
of the fading variances. For the satellite-assisted datect
the probability of region 1 i8(1 — f — 5y + fha). This L L% Perfernance of e doutle treshold detecor a2 s a0
means that the best value for the threshalds given by is preferred.

V(rn, Br) + pZLg(B2). With this A the Fiy; is given by:

Fry1(Bi, B2, Bi2,7n) . . .
the “spectrum holes” left by the static allocations. Dynami
=P+ B2 = Bra. (28) spectrum access can allow the utilization of these spectrum
As before, the WPAR is evaluated using the complet®les.
model. The achievable region is the convex hull of all the To do this, strategies for sensing spectrum holes musfygatis
points generated by changing the valuesipfand 3. This two objectives. The first is safety — the primary users must be
region is shown in Figure 17. The performance is signifigantiuaranteed that they will not experience undue interfaenc
worse than the performance when the channel model is colihe second is efficiency — as much of the spectrum hole
pletely trusted. The main reason for the poor performanceds possible must be reclaimed. The core problem is that the
that three quadrantsP[{P < ~(r, 51)} U{S2 < 7(62)})] incentives of those proposing and implementing the sensing
contribute to thef'y; for the ML rule. strategy are aligned with the second objective, but not tee fi
The counterpart to the OR rule of Section V-C here i&s a result, the primary users have no rational reason to trus
the double-threshold detector. This detector declaresttiga the secondary users’ assurances and this results in asyimmet
primary user is absent only i < y(r, 1) and Sz < v4(82) uncertainty.
i.e. when the primary signal is low enough and the satellite To reflect this tension and to allow a unified treatment of
signal is not significantly faded. Thél;; for this detector gpectrum sensing, this paper has introduced two distintt me
is 312 which is less than thé'y; for the weighted-average rics. To guarantee safety, the “Fear of Harmful Interfeegnc
detector (1 + (> — f12)). The performance of this detectorr,,; from the detector must be kept low enough no matter
is compared to the weighted-average detector in Figure Iyhjch radio deployment and environmental model turns out to
This shows that if the information about the channel modgk trye. It is only the primary user’s uncertainty set thattera
is limited, the double-threshold detector is preferredfdet, nere. Consensus between the regulators, primary users, and
the double-threshold rule with limited knowledge can ottpesecondary users has to be achieved regarding this undgrtain
form even a single-radio detector with complete knowledggng so it is likely to remain large. Every sensing strategy wi
This shows that additional information about the shadowirggye its own critical uncertainties that must be bounded.
environment is useful even if it is only binary information In this paper, quantile models have been proposed for
(i.e. whether we are indoors (deeply shadowed) or outdoorg)certain probability distributions (e.g. for shadowingile
secondary radio positions have been considered uncoresirai
VII. CONCLUSIONS In multiuser settings, the degree of shadowing correlatioms
Static frequency planning results in bands being allocatedt to be a very significant uncertainty. It has been sugdeste
to homogeneous services over large spatial areas and fr ldimat it might be easier to achieve a firm consensus regarding
times in order to isolate and thus protect the robust opmratithe correlation of shadowing across different frequenties
of heterogeneous wireless systems while preserving thair i a single radio than it is to achieve a consensus regarding
vidual freedom. This results in significant underutilipatiof the shadowing correlation across users. This remains to be
the spectrum from the perspective of users that could operakplored more fully, but thé'y; metric seems to be the right
on much smaller space-time scales and thereby fit withivay to capture the otherwise vague notion of safety while sti
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allowing significant innovation at the detector level.

For performance purposes, the secondary user has no reas 1
to lie and is free to analyze its own performance using any
desired probability model and utility function. The corsus
here is one of simplicity and generalizability. To enablghhi
level comparisons between detection strategies, it is itapd
to be able to decouple the interaction among different pyma
users while capturing the key effects. Restricting attento
spectrum holes that are very long lived in time, we have atgue
that the most significant terms are:

Primary P3

P1 Space time hole P1

Space

Primary P2

. : Ti
o As we get further away from any primary transmitter, me

there is an increasing chance that we will be within the
service footprint of another primary transmitter.

« Area closer to the primary user’s footprint is more valu-
able (in a business or utility sense) than area far away| | Interference margin (time) I Interference margin (space)
because primary users are likely to have positioned their
transmitters so as to serve a maximal number of humaln@, 18. A space-time hole. Primary usePs, P> and Ps occupy different

Therefore, the proposed "Weighted Probabilty of Area Reco e i [IUE bt (oo 22 iicion alblt with some e 1o due
ered” (WPAR) metric uses a discounting-function to weigh the temporal sensing overhead. WhEnreappears, the secondary user can still
probability of recovering area at a given distance away feomtransmit for a finite duration (temporal interference margigrresponding
single primary transmitter. While exponential discountm@ zgﬁtrlea.l interference margins and sensing overheads aresht®en in the
been used here for convenience, it remains an interestieg op

guestion to determine what the right discounting functiares
for different application scenarios. noise process [16]. The role of SNR walls must also
By using these metrics, this paper has shown that the be understood in the context of WPAR atitl;; since
popularly used metrics of sensitivityz 4, and Py p (such as sensitivity is now implicit rather than explicit.
the -116dBm rule used by the IEEE 802.22 process) are overly, The simple quantile models that have been proposed
constraining. Even an ideal detector (one wWithy = Pyp = here are intuitively clear and easy to use but clearly
0 for a desired sensitivity) has poor WPAR performance do not represent the form of uncertainty representation
when facing uncertain fading. Too much valuable area must that is both unambiguously verifiable and realistic. The
be sacrificed to achieve the desired robustness — effegtivel example of the subtle role of constructive interference in
turning this into a static guard band by another name. Howeve  Section V-C made that clear. Since consensus is required
the Fiyr and WPAR metrics allow the principled consideration  petween primary and secondary users, one would prefer
of alternative strategies such as multiuser cooperatich an  an uncertainty model that came with a experimental
show exactly which uncertainties must be resolved (and to certificate of correctness.
what resolution) in order to be able to guarantee both safety, The Fy; metric currently captures only one dimension
and high performance for a detector of a given complexity. of fear — that of optimistic assumptions regarding the

I Sensing overhead (time) D Sensing overhead (space)

Therefore, we suggest that specifications for detecticatestr environment. In practice, there is also the fear of dishon-
gies be expressed at ttf¢;; and WPAR level rather than in est implementation® The regulators, primary users, and
terms of a desired sensitivity and ROC. secondary users should only need to achieve consensus

This paper represents the beginning of a story rather than regarding some key features of the wireless system im-
the end of one. Much remains to be done. In particular: plementation rather than for every asp&ciThe safety

. Cooperative sensing strategies that utilize assisted de- ©Of the rest of the implementation should rely on self-
tection need to be analyzed. The performance of such regulation (or peer regulation) through the design of an

strategies under our nef;; and W P AR metrics needs appropriately lightweight enforcement mechanism.
to be evaluated [88].
« The tradeoffs between the time-overhead (sensing time + ACKNOWLEDGMENTS

C\(X/Og) :éativf? n:esEage exchi\/ln'gg) a; d tthe SSsapace—O\ée:he%e thank the United States National Science Foundation
( effects + sensing-MAC effects [89]) nee %N|-3265o3, CNS-403427, CCF-729122), C2S2 (Center for
rcuit System Solutions), and Sumitomo Electric for their

be understood. It is here that different signal-processi
strategies are likely to distinguish themselves. Such nerous funding support. Students Kristen Ann Woyach,

space-time hole is illustrated in Figure 18 where th
combination of temporal and spatial margins/overheadsogyen after we agree to the rules of a game, we still need a way ke ma
is illustrated. sure that players adhere to those rules [90].

« Under the traditional metric of sensitivity, an SNR wall >*Some might wonder “why can't we all just get along?" It is impatéo
remember that there are business reasons why primary users wigghto

for a sensing algor'th_m sets a bound _on how Sens't'\ﬁ%der secondary use so as to forestall competition [91]sThis preferable
a detector can be given the uncertain model for the have only a few such regulatory hurdles.
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