
What is Analytic Infrastructure and Why Should You Care?

Robert L Grossman
University of Illinois at Chicago

and Open Data Group

grossman@uic.edu

ABSTRACT
We define analytic infrastructure to be the services, applica-
tions, utilities and systems that are used for either prepar-
ing data for modeling, estimating models, validating mod-
els, scoring data, or related activities. For example, analytic
infrastructure includes databases and data warehouses, sta-
tistical and data mining systems, scoring engines, grids and
clouds. Note that, with this definition, analytic infrastruc-
ture does not need to be used exclusively for modeling but
simply useful as part of the modeling process. In this arti-
cle, we discuss the importance of analytic infrastructure and
some of the standards that can be used to support analytic
infrastructure. We also discuss some specialized analytic
infrastructure applications and services, including applica-
tions that can manage very large datasets and build models
over them and cloud based analytic services.

1. INTRODUCTION
If your data is small, your statistical model is simple, your
only output is a report, and the analysis needs to be done
just once, then there are quite a few statistical and data
mining applications that will satisfy your requirements. On
the other hand, if your data is large, your model is compli-
cated, your output is not a report, but instead a statistical
or data mining model that needs to be deployed into oper-
ational systems, or parts of the work need to be done more
than once, then you might benefit by using some of the in-
frastructure components, services, applications and systems
that have been developed over the last decade to support
analytics.

In this article, we refer to these types of components, ser-
vices and applications as analytic infrastructure. We will
define analytic infrastructure a bit more precisely below.
We discuss the importance of analytic infrastructure and
some of the standards that can be used to support analytic
infrastructure. We also discuss some specialized analytic
infrastructure applications and services, including applica-
tions that can manage very large datasets and build models
over them and cloud based analytic services.

2. DEFINING ANALYTIC
INFRASTRUCTURE

The rest of this article will be clearer if we define some terms.
Define analytics to be the process of using data to make de-

cisions based upon models. By models we mean statistical,
mathematical or data mining models that are derived from
data (“empirically derived”) using techniques that are gen-
erally accepted by the community (“statistically valid”).

As is standard, we divide the process of building a model
into several steps. We use the term data preparation or data
shaping for the process that takes the available data and
transforms it to produce the inputs to the models (features).
We use the term modeling (in the narrow sense) or model
estimation for the process that, given a dataset of features,
computes the model, which usually involves estimating the
parameters of the model. The application that produces the
model is sometimes called a model producer. Finally, after
the model is estimated, it is usually validated.

Once a model is produced, model consumers take a model
and data to produce scores. Often this is called scoring.
Finally, scores are often post-processed using business rules
to produce alerts or recommendations, or used as an input
for a model or for additional data shaping.

In this article, we define analytic infrastructure to be the
applications, services, utilities and systems that are used for
either preparing data for modeling, estimating models, val-
idating models, scoring, or related activities. For example,
analytic infrastructure includes databases and data ware-
houses, statistical and data mining systems, scoring engines,
grids and clouds. Note that with this definition analytic in-
frastructure does not need to be used exclusively for model-
ing but simply useful as part of the modeling process.

3. STANDARDS FOR ANALYTIC
INFRASTRUCTURE

For data mining applications that consist of several services
or components, standards provide agreed upon interfaces for
accessing the services or components. This is particularly
important if you ever need to change one or more services
or cmponents in the application.

Standards for describing statistical and data mining models
are also important. These types of standards provide an ap-
plication and system independent format for persisting and
interchanging models. Data mining projects often gener-
ate several models and providing life cycle management for
these models is easier if there is a standard format for mod-
els. The models in this format can then be persisted in a
repository or otherwise managed. Having a standard format
for models is also useful for business continuity purposes and
for compliance related requirements.

Broadly speaking, there are two basic approaches that have

Volume 11, Issue 1SIGKDD Explorations Page 5



Step Inputs Outputs
Preprocessing dataset (data

fields)
dataset of fea-
tures

Modeling dataset of fea-
tures

model

Scoring dataset (data
fields), model

scores

Postprocessing scores actions

Table 1: The table contains some of the steps when building
and deploying analytic models that are directly relevant to
analytic infrastructure.

been used to capture an analytic process.

The first approach is to think of the analytic process as a
workflow and to think of the workflow as being described as a
directed acyclic graph (DAG), where the nodes are arbitrary
code and the edges indicate that the output of one program
is used as an input to another program. The advantage of
this approach is that it is very general, easy to understand,
and relatively simple to process. A disadvantage is that
from an archival point of view, over time computer code can
present difficulties: the necessary environment to execute it
may not be available for example.

Another approach is to agree via a standardization process
on the meaning of the necessary elements to define a statis-
tical model and then to specify these in the description of
the model. For example, a regression tree model can specify
that a regression tree consists of nodes and nodes are associ-
ated with predicates, etc. Then to describe a specific model,
one just needs to specify the assignments for all the elements
in the model. The advantage of this approach is that the
description of a model is quite explicit, and, in principle, will
be just as easy to understand ten years later as it was when
it was created. Another advantage is that updating a model
does not require testing new code, but instead just requires
reading new parameters for the model. This approach can
dramatically reduce the time to deploy new models.

The second approach is the approach taken by the Predictive
Model Markup Language (PMML) [5], which defines several
hundred XML elements that can be used to describe most
of the common statistical and data mining models.

4. THREE IMPORTANT INTERFACES
Table 1 describes some of the steps in the data mining pro-
cess that are most relevant for analytic infrastructure.

Interfaces for producers and consumers of models.
Perhaps the most important interface in analytics is the in-
terface between components in the analytic infrastructure
that produce models, such as statistical packages, which
have a human in the loop, and components in the analytic
infrastructure that score data using models and often reside
in operational environments. Recall that the former are ex-
amples of model producers, while the latter are examples of
model consumers. The Predictive Model Markup Language
or PMML is a widely deployed XML standard for describ-
ing statistical and data mining models using XML so that
model producers and model consumers can exchange models
in an application independent fashion.

Many applications now support PMML. By using these ap-

plications, it is possible to build an open, modular standards
based environment for analytics. With this type of open
analytic environment, it is quicker and less labor-intensive
to deploy new analytic models and to refresh currently de-
ployed models.

Interfaces for producers and consumers of features.
Since Version 2.0 of PMML was released in 2001, PMML
has included a rich enough set of transformations that data
preprocessing can be described using PMML models. Using
these transformations, it would be possible to use PMML
to define an interface between analytic infrastructure com-
ponents and services that produce features (such as data
preprocessing components) and those that consume features
(such as modeling applications). This is probably the second
most important interface in analytics.

Interfaces for producers and consumers of scores.
The current version of PMML is Version 4.0 and the PMML
working group is now working on Version 4.1. One of the
goals of Version 4.1 is to enable PMML to describe post-
processing of scores. This would allow PMML to be used
as an interface between analytic infrastructure components
and services that produce scores (such as scoring engines)
and those that consume scores (such as recommendation en-
gines). This is probably the third most important interface
in analytics.

Today, by using PMML to describe these interfaces, it is
straightforward for analytic infrastructure components and
services to run on different systems. For example, a modeler
might use a statistical application to build a model, but scor-
ing might be done in a cloud, or a cloud might be used for
preprocessing the data to produce features for the modeler.

5. ANALYTIC INFRASTRUCTURE FOR
WORKING WITH LARGE DATA

Today, it is still a challenge to build models over data that is
too large to fit into a database. One solution is to use grids
[7]. Today, grids have two main limitations. First, they were
not designed for working with large data per se, but rather,
to support virtual communities. Second, many programmers
found the MPI-based programming model rather difficult to
use.

An alternative approach that overcomes both of these lim-
itations was outlined in a series of three Google technical
reports [8], [6] and [3]. The architecture consists of a dis-
tributed storage system called the Google File System (GFS)
[8] and a parallel programming framework called MapRe-
duce [6]. GFS was designed to scale to clusters containing
thousands of nodes and was optimized for appending and
for reading data. Contrast this to a traditional relational
database that is optimized to support safe writing of rows
with an ACID semantics and usually supported by a single
computer (perhaps with multiple cores) over a RAID file
system.

A good way to describe MapReduce is through an exam-
ple. Assume that GFS manages nodes i spanning several,
perhaps many, racks. MapReduce assumes that the data
consists of a key-value pair. Assume that node i stores web
pages pi,1, pi,2, pi,3, . . ., pi,ij . Assume also that web page
pi contains words wj,1, wj,2, wj,3, . . .. A basic structure im-
portant in information retrieval is an inverted index, which
is a data structure consisting of a word followed by a list of

Volume 11, Issue 1SIGKDD Explorations Page 6



web pages

(w1; p1,1, p1,2, pi,3, . . .)

(w2; p2,1, p2,2, p2,3, . . .)

(w3; p3,1, p3,2, p3,3, . . .)

with the properties:

1. The inverted index is sorted by the word wj ;

2. If a word wj occurs in a web page pi, then the web
page pi is on the list associated with the word wj .

A mapping function processes each web page independently,
on its local storage node, providing data parallelism. The
mapping function emits multiple <key, value> pairs (<word,
page id> in this example) as the outputs. This is called the
Map Phase.

A partition function m(w), which given a word w, assigns a
machine labeled with m(w), is then used to send the outputs
to multiple common locations for further processing. This
second step is usually called the Shuffle Phase.

In the third step, the processor m(wi) sorts all the <key,
value> pairs according to the key. (Note that there may be
multiple keys sent to the same node, i.e., m(wi) = m(wj).)
Pairs with the same key (keyword in this example) are then
merged together to generate a portion of the inverted index
<wi: px,y, . . .)>. This is called the Reduce Phase.

To use MapReduce, a programmer simply defines a parser
for input records (called a Record Reader) and a Map, Par-
tition, Sort (or Comparison), and Reduce functions and the
infrastructure takes care of the rest.

Since many applications need access to rows and columns of
data (not just bytes of data provided by the GFS), a GFS-
application called BigTable [3] that provides data services
that scale to thousands of nodes was developed. BigTable is
optimized for appending data and for reading data. Instead
of the ACID requirements of traditional databases, BigTable
chose an eventual consistency model.

Google’s GFS, MapReduce and BigTable are proprietary
and not generally available. Hadoop [11] is an Apache open
source cloud that provides on-demand computing capacity
and that generally follows the design described in the tech-
nical reports [8] and [6]. There is also an open source ap-
plication called HBase that runs over Hadoop and generally
follows the BigTable design described in [6].

Sector is another open source system designed for data in-
tensive computing [13]. Sector was not developed following
the design described in the Google technical reports, but
instead was designed to manage and distribute large sci-
entific datasets, especially over wide area high performance
networks. One of the first Sector applications was the distri-
bution of the 10+ TB Sloan Digital Sky Survey [10]. Sector
is based upon a network protocol called UDT that is de-
signed to be fair and friendly to other flows (including TCP
flows), but to use all the otherwise available bandwidth in a
wide area high performance network [9].

On top of the Sector Distributed File System is a parallel
programming framework called Sphere that can invoke user
defined functions (UDFs) over the data managed by Sector.
From the perspective of Sphere’s UDFs, MapReduce is sim-
ply the concatenation of three specific, but very important
UDFs, namely Map, Shuffle and Reduce UDFs as described

above. These specific UDFs are available with the Sector
distribution, as well as several others.

As measured by the MalStone Benchmark [12], Sector is
approximately twice as fast as Hadoop.

Table 2 contains a summary of GFS/MapReduce, Hadoop
and Sector.

6. CLOUD-BASED ANALYTIC
INFRASTRUCTURE SERVICES

Over the next several years, cloud-based services will be-
gin to impact analytics significantly. Although there are
security, compliance and policy issues to work out before it
becomes common to use public clouds for analytics, I expect
that these and related issues will all be worked out over the
next several years.

Cloud-based services provide several advantages for analyt-
ics. Perhaps the most important is elastic capacity — if
25 processors are needed for one job for a single hour, then
these can be used for just the single hour and no more.
This ability of clouds to handle this type of surge capacity
is important for many groups that do analytics. With the
appropriate surge capacity provided by clouds, modelers can
be more productive, and this can be accomplished in many
cases without requiring any capital expense. (Third party
clouds provide computing capacity that is an operating ex-
pense, not a capital expense.)

Packaging. One of the advantages that clouds instances
provide is that all the required system software, application
software, auxiliary files, and data can be integrated into a
single machine image [1]. This can sometimes significantly
simplify the process required to prepare data, build models,
or score data.

Preparing data. For interactive exploration of small datasets,
for preparing a single dataset for analysis, and related tasks,
single workstations with desktop applications usually work
just fine and are probably the easiest to use.

On the other hand, for the pipelined analysis of multiple
datasets with the same pipeline, a cloud that provides on
demand computing instances offers several advantages. By
pipeline here, we mean a sequence or workflow of computa-
tions where the inputs of one computation are the outputs of
one or more prior computations. These computations occur,
for example, quite frequently in bioinformatics.

Once the pipeline is prepared and an appropriate computing
instance is defined, handling new datasets in the future is
quite simple. When a new dataset arrives, simply invoke a
new computing instance, supply the dataset, and save the
results of the analysis.

With this approach, computing instances can easily manage
surge requirements that arise when multiple datasets must
be processed at the same time. To handle such a surge,
simply invoke a new computing instance for each dataset so
that the datasets can be processed in parallel.

MapReduce for clouds that provide on-demand computing
capacity has proven to be particularly effective for prepar-
ing data in which large numbers of relatively small records
have to be prepared for modeling, such as web pages [6],
transactional business data [2], and network packet data.

Building models. For very large datasets, several tradi-
tional statistical and data mining algorithms have been re-

Volume 11, Issue 1SIGKDD Explorations Page 7



Design Decision Google’s GFS, MapRe-
duce, BigTable

Hadoop Sector

data management block-based file system block-based file system dividing data into seg-
ments & using native file
system

protocol for message pass-
ing with system

TCP TCP Group Messaging Protocol

protocol for transferring
data

TCP TCP UDP-Based Data Trans-
port (UDT)

programming model MapReduce MapReduce User defined functions,
MapReduce

replication strategy at the time of writing at the time of writing periodically
security not mentioned not yet HIPAA capable
language C++ Java C++

Table 2: Some of the similarities and differences between Google’s GFS/MapReduce, Hadoop and Sector.

formulated as MapReduce jobs, which enables Hadoop and
similar systems to be used for computing statistical models
on very large datasets (see, for example [4]).

MapReduce and similar programming models enable basic
statistical models to be built on very large datasets with very
little effort, something that was not so easy just a short time
ago. For example, the technical report [2] describes how a
statistical model to identify potentially compromised web
sites was built on log files containing over 10 billion records
on a 20 node cluster using just a few lines of MapReduce
code.

Once a source of data is well understood, it is sometimes
required to estimate models for different instantiations of
the data. For example, this is a common scenario for some
analytic models used in online systems. Here a separate
model may be required for each visitor to the web site or
each user of an online application. In this case, given data
from the user, an on-demand computing instance can be
invoked to build a visitor-specific or user-specific model.

Scoring models. As mentioned above, once a model has
been estimated, it is usually straightforward to apply this
model to a file or stream of data to produce scores (outputs
of the model). To say it another way, it is usually easier
to develop a model consumer than it is to develop a model
producer.

Given a dataset and a model described in PMML, it is
straightforward to create an on-demand computing instance
that can score the data using the model. An architecture like
this that i) separates model producers and model consumers
and ii) scores data using on-demand computing instances
provides three important advantages:

1. First, with this approach, the computing instance can
be pre-configured so that essentially no knowledge is
required by the system scoring the data other than the
name of the pre-configured computing instance, the
name of the data file, and the name of the PMML file.
In contrast, estimating a statistically valid model us-
ing a statistical or data mining package often requires
considerable expertise.

2. Second, by using on-demand computing instances for
scoring, it is straightforward to invoke multiple com-
puting instances so that multiple datasets can be scored
at the same time (in other words to handle surges).

3. Third, it is also straightforward to score very large
datasets by partitioning them and scoring each parti-
tion in parallel using on-demand computing instances.
It is often not straightforward to estimate models by
partitioning the data, but it is almost always easy to
score large datasets by partitioning.

7. SUMMARY
In this article, we used the term analytic infrastructure to
refer to the tools, services, applications and platforms that
support the analtyic process.

Except for the most basic models, building models requires
specialized software. For example, for many years, databases
have been an important component of analytic infrastruc-
ture: both to manage data, as well as to help prepare data
for modeling. More recently, a variety of other analytic tools
and services are becoming more common, including scoring
engines to deploy models, workflow systems for managing
analytic tasks that need to be repeated, and cloud-based
services for a variety of tasks, including data preparation,
modeling, and scoring.

With the proper analytic infrastructure, models can be built
more quickly, deployed more easily, and updated more effi-
ciently. For these reasons, the proper analytic infrastructure
is often the difference between a successful and unsuccessful
analytic project.

8. REFERENCES
[1] Amazon. Amazon Web Services.

http://aws.amazon.com, 2009.

[2] J. Andersen, C. Bennett, R. L. Grossman, D. Locke,
J. Seidman, and S. Vejcik. Detecting sites of compro-
mise in large collections of log files. submitted for pub-
lication, 2009.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. In OSDI’06: Seventh Symposium on
Operating System Design and Implementation, 2006.

[4] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Y. Ng, and K. Olukotun. Map-Reduce for machine
learning on multicore. In NIPS, volume 19, 2007.

Volume 11, Issue 1SIGKDD Explorations Page 8



[5] Data Mining Group. Predictive Model Markup Lan-
guage (pmml), version 4.0. http://www.dmg.org, 2009.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI’04: Sixth Sympo-
sium on Operating System Design and Implementation,
2004.

[7] I. Foster and C. Kesselman. The Grid 2: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann,
San Francisco, California, 2004.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google
file system. In SOSP ’03: Proceedings of the nine-
teenth ACM symposium on Operating systems princi-
ples, pages 29–43, New York, NY, USA, 2003. ACM.

[9] Y. Gu and R. L. Grossman. UDT: UDP-based data
transfer for high-speed wide area networks. Computer
Networks, 51(7):1777—1799, 2007.

[10] Y. Gu, R. L. Grossman, A. Szalay, and A. Thakar. Dis-
tributing the sloan digital sky survey using udt and
sector. In Proceedings of e-Science 2006, 2006.

[11] Hadoop. Welcome to Hadoop!
http://hadoop.apache.org/core/, 2008.

[12] MalGen: A utility for generating synthetic site-entity
log data for testing and benchmarking data intensive
applications. http://code.google.com/p/malgen, 2009.

[13] Sector. http://sector.sourceforge.net, 2008.

Volume 11, Issue 1SIGKDD Explorations Page 9


