
What Is Answer Set Programming?

Vladimir Lifschitz
Department of Computer Sciences

University of Texas at Austin
1 University Station C0500

Austin, TX 78712
vl@cs.utexas.edu

Abstract

Answer set programming (ASP) is a form of declarative pro-
gramming oriented towards difficult search problems. As an
outgrowth of research on the use of nonmonotonic reason-
ing in knowledge representation, it is particularly useful in
knowledge-intensive applications. ASP programs consist of
rules that look like Prolog rules, but the computational mech-
anisms used in ASP are different: they are based on the ideas
that have led to the creation of fast satisfiability solvers for
propositional logic.

Introduction
Answer set programming (ASP) is a form of declarative
programming oriented towards difficult, primarily NP-hard,
search problems. As an outgrowth of research on the use
of nonmonotonic reasoning in knowledge representation, it
is particularly useful in knowledge-intensive applications.
ASP is based on the stable model (answer set) semantics of
logic programming (Gelfond & Lifschitz 1988), which ap-
plies ideas of autoepistemic logic (Moore 1985) and default
logic (Reiter 1980) to the analysis of negation as failure.1

In ASP, search problems are reduced to computing stable
models, and answer set solvers—programs for generating
stable models—are used to perform search. The search algo-
rithms used in the design of many answer set solvers are en-
hancements of the Davis-Putnam-Logemann-Loveland pro-
cedure, and they are somewhat similar to the algorithms
used in efficient SAT solvers (Gomeset al. 2008).2 Unlike
SLDNF resolution employed in Prolog, such algorithms, in
principle, always terminate.

The ASP methodology is about ten years old. The plan-
ning method proposed by Dimopoulos, Nebel, & Koehler
(1997) is an early example of answer set programming.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In a more general sense, ASP includes all applications of an-
swer sets to knowledge representation (Baral 2003; Gelfond 2008).

2The reduction of ASP to SAT invented by Fangzhen Lin and
Yuting Zhao (2004) has led to the creation of several “SAT-based”
answer set solvers. These systems performed well in a recent com-
petition (Gebseret al. 2007). On the other hand, as noted in (Lif-
schitz & Razborov 2006), ASP appears to be stronger than SAT in
the sense of the “comparative linguistics” approach to knowledge
representation formalisms described in (Gogicet al. 1995).

Their approach is based on the relationship between plans
and stable models described in (Subrahmanian & Zaniolo
1995). Soininen & Niemelä (1998) applied what is now
known as answer set programming to the problem of prod-
uct configuration. The use of answer set solvers for search
was identified as a new programming paradigm in (Marek
& Truszczyński 1999) (the term “answer set programming”
was used for the first time as the title of a part of the collec-
tion where that paper appeared) and in (Niemelä 1999).

An answer set programming language
SystemLPARSEwas originally created as a front-end for the
answer set solverSMODELS,3 and it is now used in the same
way in most other answer set solvers.4

Some rules found inLPARSE programs are traditional
“Prolog-style” rules, such as

p :- q.

or

q :- not r.

A collection of Prolog-style rules often has a unique stable
model, and that model often consists of all queries to which
Prolog would answeryes. For instance, the program con-
sisting of the two rules above has one stable model, which
consists ofp andq.

The input ofLPARSEcan include also “choice rules,” such
as

{s,t} :- p.

Intuitively, this rule means: ifp is included in the stable
model then choose arbitrarily which of the atomss, t to
include. If we instructSMODELS to find all stable models of
the programP consisting of all three rules shown above, it
will produce the following output:

Answer: 1
Stable Model: p q
Answer: 2
Stable Model: t p q
Answer: 3

3http://www.tcs.hut.fi/Software/smodels/ .
4SystemDLV (http://www.dbai.tuwien.ac.at/proj

/dlv/) is an exception; the syntax of ASP programs written for
DLV is somewhat different.

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

1594

Stable Model: s p q
Answer: 4
Stable Model: s t p q

The head of a choice rule can include numerical bounds.
For instance, the rule

1 {s,t} :- p.

says: ifp is generated then generate at least one of the atoms
s, t. If we substitute this rule for the last rule ofP then
Answer 1 will disappear from the output ofSMODELS.

The definition of a stable model from (Gelfond & Lif-
schitz 1988) was extended to programs with choice rules and
other rules involving numerical bounds by Niemelä, Simons,
& Soininen (1999). At the end of this paper we reproduce
a simple definition of a stable model due to Paolo Ferraris
(2005) that is sufficiently general to cover these and other
useful types of rules.

A constraint5 is a rule with the empty head, such as

:- s, not t.

The effect of adding a constraint to a program is to eliminate
some of its stable models. For instance, the constraint above
prohibits generatings if t is not generated. Adding this
constraint toP eliminates Answer 3.

A program with variables is grounded (replaced by an
equivalent program without variables) byLPARSE before it
is passed on toSMODELS.6 For instance, grounding turns

p(a). p(b). p(c).
q(X) :- p(X).
2 {r(X) : p(X)}.

into

p(a). p(b). p(c).
q(a) :- p(a).
q(b) :- p(b).
q(c) :- p(c).
2 {r(a),r(b),r(c)}.

Programming methodology:
Generate, define, test

Recall that aclique in a graph is a set of pairwise adjacent
vertices. If our goal is to find a clique of cardinality≥ 10 in
a given graph then the following programC can be used:

10 {in(X) : vertex(X)}.
:- in(X), in(Y), vertex(X), vertex(Y),

X!=Y, not edge(X,Y), not edge(Y,X).

To use this program, we combine it with a description of the
graph, such as

5Expressions with numerical bounds, such as1 {s,t} in
the rule above, are sometimes called “cardinality constraints” or
“weight constraints.” This is not related to the use of the term “con-
straint” in this paper.

6Thus the search process employed bySMODELS does not in-
volve unification. In this sense, in answer set solvers we see a
more radical departure from traditional Prolog search than in con-
straint logic programming, which generalizes unification to con-
straint solving.

vertex(1..99). % 1,...,99 are vertices
edge(3,7). % 3 is adjacent to 7
. . .

The atoms of the formin(. . .) in a stable model will rep-
resent the vertices in a clique of size≥ 10. If SMODELS
reports that the program has no stable models then the graph
has no cliques of required size.

The structure of programC illustrates the “generate-and-
test” organization that is often found in simple ASP pro-
grams. The first line ofC is a choice rule that describes a set
of “potential solutions”—an easy to describe superset of the
set of solutions to the given search problem; in this case, a
potential solution is any set consisting of at least 10 vertices.
The second rule is a constraint that eliminates all “bad” po-
tential solutions; in this case, all sets that are not cliques.
(The search process employed bySMODELS is not based of
course, on examining potential solutions one by one, just as
SAT solvers do not operate by testing all assignments.)

More complexLPARSE programs include, in addition to
choice rules (“generate”) and constraints (“test”), a third
part, which defines auxiliary predicates that are used in the
constraints. This “define” part usually consists of traditional
Prolog-style rules.

Such a definition is needed for instance, if we want to use
ASP to find a Hamiltonian cycle in a given directed graph
(a closed path that passes through each vertex of the graph
exactly once). The ASP program below should be combined
with definitions of the predicatesvertex andedge, as in
the previous example. It uses the predicatein to express
that an edge belongs to the path; we assume that0 is one of
the vertices.

{in(X,Y)} :- edge(X,Y).

:- 2 {in(X,Y) : edge(X,Y)}, vertex(X).
:- 2 {in(X,Y) : edge(X,Y)}, vertex(Y).

r(X) :- in(0,X), vertex(X).
r(Y) :- r(X), in(X,Y), edge(X,Y).

:- not r(X), vertex(X).

The choice rule in line 1 of this program is its “generate”
part. It says that an arbitrary set of edges is counted as a
potential solution. (Without it,LPARSEwould have decided
that the predicatein is identically false.) The “test” part
consists of three constraints. Line 2 prohibits sets of edges
containing “forks”—pairs of different edges that start at the
same vertexX. Line 3 prohibits “forks” with two different
edges ending at the same vertexY. The constraint in the last
line of the program requires that every vertexX be reach-
able from0 by a non-empty path consisting entirely ofin-
edges. This reachability condition is expressed by the auxil-
iary predicater, recursively defined in lines 4 and 5. These
two lines form the “define” component of the program.

Representing incomplete information
From the perspective of knowledge representation, a set of
atoms can be thought of as a description of a complete state
of knowledge: the atoms that belong to the set are known

1595

to be true, and the atoms that do not belong to the set are
known to be false. A possibly incomplete state of knowledge
can be described using a consistent but possibly incomplete
set of literals; if an atomp does not belong to the set and
its negation does not belong to the set either then it is not
known whetherp is true.

In the context of logic programming, this idea leads to the
need to distinguish between two kinds of negation: nega-
tion as failure, used above, and strong (or “classical”) nega-
tion, which is denoted in the language ofLPARSEby- (Gel-
fond & Lifschitz 1991). The following example, illustrating
the difference between the two kinds of negation, belongs to
John McCarthy. A bus may cross railway tracks under the
condition that there is no approaching train. The rule

cross :- not train.

is not an adequate representation of this idea: it says that it
is okay to cross in the absence of information about an ap-
proaching train. The weaker rule, that uses strong negation
instead of negation as failure, is preferable:

cross :- -train.

It is okay to cross if we know that no train is approaching.
Combining both forms of negation in the same rule allows

us to express the closed world assumption—the assumption
that a predicate does not hold whenever there is no evidence
that it does (Reiter 1978). For instance, the rule

-q(X,Y) :- not q(X,Y), p(X), p(Y).

says that the binary relationq does not hold for a pair of el-
ements ofp if there is no evidence that it does. The program
obtained by adding this rule to the rules

p(a). p(b). p(c). p(d).
q(a,b). q(c,d).

has a unique stable model, which includes the “positive
facts” shown in these two lines and 14 “negative facts”
aboutq: -q(a,a), -q(a,c),. . . .

An ASP program with strong negation can include the
closed world assumption rules for some of its predicates and
leave the other predicates in the realm of the open world as-
sumption.

ASP solution to the frame problem
The frame problem is the problem of formalizing the com-
monsense law of inertia:Everything is presumed to remain
in the state in which it is(Leibniz, “An Introduction to a
Secret Encyclopædia”,c. 1679). Ray Reiter expressed this
default in default logic (Reiter 1980, Section 1.1.4).7 Here
is an ASP counterpart of his “frame default”:

p(T+1) :- p(T), not -p(T+1), time(T).

Like the formalization of the closed world assumption
above, this rule uses both negation as failure and strong
negation. It says that if the truth-valued fluentp is true at

7Steve Hanks and Drew McDermott (1987) argued, on the basis
of their Yale shooting example, that Reiter’s solution to the frame
problem is unsatisfactory. Hudson Turner (1997) showed, however,
that it works correctly in the presence of appropriate additional pos-
tulates.

timeT, and there is no evidence that it becomes false at time
T+1, then it remains true.

This solution to the frame problem is widely used in re-
search on the automation of reasoning about actions, includ-
ing the work on decision support for the Space Shuttle men-
tioned in the following section.

Applications of ASP
Answer set programming has been applied to several areas
of science and technology. Here are three examples.
Automated Product Configuration.The early work in this
area mentioned in the introduction has led to the creation
of a web-based product configurator (Tiihonenet al. 2003).
This technology has been commercialized.8

Decision Support for the Space Shuttle.An ASP system ca-
pable of solving some planning and diagnostic tasks related
to the operation of the Space Shuttle (Nogueiraet al. 2001)
has been designed by a group led by Michael Gelfond, one
of the creators of ASP, in collaboration with Matthew Barry
of United Space Alliance.
Inferring Phylogenetic Trees. An ASP-based method for re-
constructing a phylogeny for a set of taxa has been applied
to historical analysis of languages and to historical analysis
of parasite-host systems (Brookset al. 2007). The group of
authors includes a zoologist, two linguists, and two special-
ists on answer set programming.

By the way, what’s the definition of “stable”?
The definition of a stable model below tells us when a model
of a propositional formulaF (that is, a truth assignment sat-
isfyingF) is considered “stable.” It provides a semantics for
grounded ASP programs in view of two conventions. First,
we agree to treat rules and programs without variables as
propositional formulas “written in logic programming no-
tation.” For instance, we identify theLPARSE programP
shown above with the formula

(q → p) ∧ (¬r → q) ∧ (p → ((s ∨ ¬s) ∧ (t ∨ ¬t))).9 (1)

The second convention is to identify any setX of atoms with
the truth assignment that makes all elements ofX true and
makes all other atoms false.

According to (Ferraris 2005), thereductFX of a proposi-
tional formulaF relative to a setX of atoms is the formula
obtained fromF by replacing each maximal subformula that
is not satisfied byX with ⊥ (falsity). We say thatX is
a stable modelof F if X is minimal among the sets satis-
fying FX . The minimality ofX is understood here in the
sense of set inclusion: no proper subset ofX satisfiesFX .

8http://www.variantum.com/en/ .
9The third conjunctive term of (1) is, of course, a tautology, so

that dropping it would not change the set of models of this for-
mula. But such a simplification would change the set of itsstable
models. Many equivalent transformations preserve the stable mod-
els of a formula, but there are exceptions. Examples of “forbid-
den” equivalent transformations include replacing an implication
¬p → q with its contrapositive¬q → p, and replacing the for-
mula ¬¬p (which represents the constraint:- not p) with p.
See (Lifschitz, Pearce, & Valverde 2001) for detailed analysis.

1596

Clearly, every set that is a stable model ofF according
to this definition is a model ofF . Indeed, ifX does not
satisfyF thenFX is⊥.

For instance, to check that{p, q, s} is a stable model of (1)
we take the reduct of (1) relative to that set

(q → p) ∧ (¬⊥ → q) ∧ (p → ((s ∨ ⊥) ∧ (⊥ ∨ ¬⊥)))

or, equivalently,

(q → p) ∧ q ∧ (p → s),

and verify that{p, q, s} is minimal among its models.

Acknowledgements
Many thanks to Esra Erdem, Selim Erdoğan, Michael Gel-
fond, Joohyung Lee, Yuliya Lierler, Victor Marek, Yana
Todorova and Mirosław Truszczyński for useful comments.
This research was partially supported by the National Sci-
ence Foundation under Grant IIS-0712113.

References
Baral, C. 2003.Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.

Brooks, D. R.; Erdem, E.; Erdoğan, S. T.; Minett, J. W.;
and Ringe, D. 2007. Inferring phylogenetic trees using
answer set programming.Journal of Automated Reasoning
39:471–511.

Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encoding
planning problems in non-monotonic logic programs. In
Steel, S., and Alami, R., eds.,Proceedings of European
Conference on Planning, 169–181. Springer-Verlag.

Ferraris, P. 2005. Answer sets for propositional theories.
In Proceedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), 119–
131.

Gebser, M.; Liu, L.; Namasivayam, G.; Neumann, A.;
Schaub, T.; and Truszczynski, M. 2007. The First Answer
Set Programming System Competition. InProceedings
of the International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), 3–17. Springer-
Verlag.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R., and
Bowen, K., eds.,Proceedings of International Logic Pro-
gramming Conference and Symposium, 1070–1080. MIT
Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases.New Generation
Computing9:365–385.

Gelfond, M. 2008. Answer sets. In van Harmelen, F.;
Lifschitz, V.; and Porter, B., eds.,Handbook of Knowledge
Representation. Elsevier.

Gogic, G.; Kautz, H.; Papadimitriou, C.; and Selman, B.
1995. The comparative linguistics of knowledge represen-
tation. InProceedings of International Joint Conference on
Artificial Intelligence (IJCAI), 862–869.

Gomes, C. P.; Kautz, H.; Sabharwal, A.; and Selman, B.
2008. Satisfiability solvers. In van Harmelen, F.; Lifschitz,
V.; and Porter, B., eds.,Handbook of Knowledge Represen-
tation. Elsevier.
Hanks, S., and McDermott, D. 1987. Nonmonotonic logic
and temporal projection.Artificial Intelligence33(3):379–
412.
Lifschitz, V., and Razborov, A. 2006. Why are there so
many loop formulas? ACM Transactions on Computa-
tional Logic7:261–268.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs.ACM Transactions on Compu-
tational Logic2:526–541.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer sets
of a logic program by SAT solvers.Artificial Intelligence
157:115–137.
Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. InThe Logic
Programming Paradigm: a 25-Year Perspective. Springer
Verlag. 375–398.
Moore, R. 1985. Semantical considerations on nonmono-
tonic logic. Artificial Intelligence25(1):75–94.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable
model semantics for weight constraint rules. InProced-
ings of International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), 317–331.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm.Annals of
Mathematics and Artificial Intelligence25:241–273.
Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. An A-Prolog decision support sys-
tem for the Space Shuttle. InProceedings of International
Symposium on Practical Aspects of Declarative Languages
(PADL), 169–183.
Reiter, R. 1978. On closed world data bases. In Gallaire,
H., and Minker, J., eds.,Logic and Data Bases. New York:
Plenum Press. 119–140.
Reiter, R. 1980. A logic for default reasoning.Artificial
Intelligence13:81–132.
Soininen, T., and Niemelä, I. 1998. Developing a declara-
tive rule language for applications in product configuration.
In Gupta, G., ed.,Proceedings of International Symposium
on Practical Aspects of Declarative Languages (PADL),
305–319. Springer-Verlag.
Subrahmanian, V., and Zaniolo, C. 1995. Relating sta-
ble models and AI planning domains. InProceedings of
International Conference on Logic Programming (ICLP),
233–247.
Tiihonen, J.; Soininen, T.; Niemelä, I.; and Sulonen, R.
2003. A practical tool for mass-customising configurable
products. InProceedings of the 14th International Confer-
ence on Engineering Design, 1290–1299.
Turner, H. 1997. Representing actions in logic programs
and default theories: a situation calculus approach.Journal
of Logic Programming31:245–298.

1597

