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Abstract —A simple construction that will be referred to as an error-
duration model is shown to generate fractional integration and long
memory. An error-duration representation also exists for many familiar
ARMA models, making error duration an alternative to autoregression for
explaining dynamic persistence in economic variables. The results lead to
a straightforward procedure for simulating fractional integration and
establish a connection between fractional integration and common notions
of structural change. Two examples show how the error-duration model
could account for fractional integration in aggregate employment and in
asset price volatility.

I. Introduction

AGROWING body of empirical evidence supports the
notion that important economic data series might be

fractionally integrated.1 Fractional integration and, more
generally, long memory can produce data that appear to be
stationary, but that nonetheless have high-order autocorrela-
tions that are too large to be accounted for by a parsimonious
ARMA model. The basic fractionally integrated process can
be expressed as (1 2 L)dyt 5 h t, where h t is i.i.d. and 0 ,
d , 1. Although (1 2 L)d is well de� ned algebraically for
fractional d, it is not clear what sort of economic process
might generate such data.2 It is known that � nite-order
autoregressive and moving-average approximations for frac-
tionally integrated processes require extremely long lags to
achieve any kind of accuracy.

This paper introduces the error-duration representation
for fractionally integrated processes. It has two goals. First,
it provides a simple mechanism that generates fractional
integration in a way that might plausibly be part of an
economic process. Second, it provides a little additional
insight into what happens at the critical point d 5 1/2 on the
boundary between stationarity and nonstationarity.

Two examples show how aggregate employment and
asset price volatility might be fractionally integrated. Aggre-
gate employment is shown to be fractionally integrated if a
few � rms have surprisingly long lifetimes given the turnover

in new � rms. Asset price volatility is shown to be fraction-
ally integrated if a few asset positions last longer than would
be predicted by the lifetimes of typical positions.

The basic mechanism for an error-duration model is a
sequence of shocks of stochastic magnitude and stochastic
duration. The variable observed in a given period is the sum
of those shocks that survive to that point, and the distribution
of the durations of the shocks determines whether or not the
process is fractionally integrated. Fractional integration requires
that a small percentage of the shocks have long durations,
where that concept is de� ned rigorously in this paper.

The plan of this paper is as follows. Sections II, III, and IV
describe the error-duration model, show how it can induce
long memory, and give a speci� c version that generates
fractional integration. Section V then shows how the error-
duration mechanism can naturally induce long memory in
aggregate employment and in asset price volatility. Section
VI extends the discussion to continuous time. Section VII
considers some implications for estimation and structural breaks.
Section VIII summarizes the theme of the discussion. An
appendix gives a method for simulating error-duration
models.

II. The Error Duration Model

The structure for an error-duration model is as follows.
Let {e t, t 5 1, 2, . . .} be a series of i.i.d. shocks with mean
zero and � nite variance s 2. The error e s has a stochastic
duration ns $ 0, surviving from period s until period s 1 ns.
Let gs,t be an indicator function for the event that error e s

survives to period t. That is, gs,t 5 1 for t # s 1 ns, and gs,t 5

0 for t . s 1 ns. Assume that e s and gs,t are independent for
all t $ s. Let pk be the probability of the event that e s survives
until period s 1 k; that is, pk 5 P( gs,s 1 k 5 1). Assume that
p0 5 1 and that the sequence of probabilities { pk,
k 5 0, 1, 2, . . .} is monotone non-increasing. The realization
yt is the sum of all errors e t2 i, i 5 0, 1, 2, . . . that survive
until period t:

yt 5 o
s 5 2 `

t

gs,te s. (1)

The survival probabilities {p0, p1, p2, . . .} are the fundamen-
tal parameters of this error-duration (ED) representation of
yt. The autocovariances g k, given in proposition (1) below,
are the link that establishes a correspondence between
error-duration models and other representations.

PROPOSITION (1). If they exist, the autocovariances of yt are
given by

g k 5 s 2 o
j 5 k

`

pj , (2)
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1 Evidence of long memory has been found in traditional business-cycle
indicators such as aggregate economic activity (Diebold & Rudebusch,
1989; Sowell, 1992) and price indices (Geweke & Porter-Hudak, 1983;
Baillie, Chung, et al., 1996). There is also strong evidence of long memory
in asset price and exchange rate volatility (Andersen & Bollerslev, 1997;
Andersen et al., 1999; Baillie, Bollerslev, et al., 1996; Breidt, et al., 1998;
Ding et al., 1993). Baillie (1996) provides an excellent survey of the
literature on fractional integration and long memory.

2 The list of explanations for I(d ) processes is not long. Granger (1980)
shows that an I(d ) variable could arise from aggregation of an in� nite
number of AR(1) variables with their parameters distributed over a range.
For d , 1/2, Liu (1995) explains stock market volatility in terms of a
regime-switching process. Section VI of this paper discusses some
continuous-time explanations.
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which implies

pk 5 ( g k 2 g k1 1)/s 2. (3)

If they exist, the autocovariances of (1 2 L) yt are given by

g k 5 s 2( pk 2 pk2 1), (4)

where the pk’s generate yt, but the g k’s apply to (1 2 L) yt.

Proof: If the autocovariances of yt exist, consider terms
in

g k 5 E[ o
i 5 0

`

gt 2 i,t e t 2 i ] [ o
j 5 k

`

gt 2 j,t 2 k e t 2 j ] . (5)

By assumption, e t2 i and e t2 j are independent for i Þ j, which
implies that terms of the form E( gt2 ie t2 i gt2 je t2 j) for i Þ j are
zero. Survival of e t2 i to period t clearly implies survival to
period t 2 k for t 2 i , t 2 k # t (that is, gt2 i,t 5 1 implies
gt2 i,t2 k 5 1). Terms of the form E( g t 2 i,t

2 e t 2 i
2 ) simplify be-

cause E( g t 2 i,t
2 ) 5 V( gt2 i,t) 1 E( gt2 i,t)2 5 pi(1 2 pi) 1 p i

2 5

pi, E( e t 2 i
2 ) 5 s 2, and e t2 i and gt2 i,t are independent.

If the autocovariances of (1 2 L)yt exist, consider
cov ( yt 2 yt-1, yt2 k 2 yt2 k2 1). The only error that can have a
nonzero impact on yt 2 yt2 1 and on yt2 k 2 yt 2 k2 1 is e t2 k,
which becomes nonzero between periods t 2 k 2 1 and t 2 k
and can return to zero between periods t 2 1 and t. The
probability that gt2 k,t2 1 5 1 and gt 2 k,t 5 0 is pk2 1 2 pk, and,
in that event, ( yt 2 yt2 1)( yt2 k 2 yt2 k2 1) 5 2 e t 2 k

2 .
Several properties of an error-duration process do not

require any further structure on the survival probabilities. If
the parameter

l 5 o
i 5 1

`

pi (6)

is � nite, then the variance of the process is given by
s 2(l 1 l ), the expected number of errors surviving at any
point equals l , the mean duration of any particular error is
given by

l 5 o
i 5 0

`

i( pi 2 pi 1 1),

and the � rst-order autocorrelation is r 1 5 l /(l 1 l ). If l is
not � nite, then the expected number of errors surviving at
any point is in� nite and yt is nonstationary. This condition
for nonstationarity is much weaker than the condition for a
unit root, which is that all errors last forever (or pk ; 1).

III. Long Memory

Whether or not an error-duration model generates a
process with long memory also depends on the survival

probabilities. The McLeod-Hipel (1978) de� nition of long
memory is that limn® ` S j 5 2 n

n g j is not � nite.

PROPOSITION (2). The process yt has long memory if
limn®̀ S k5 1

n kpk is not � nite.

Proof: The result obtains by direct substitution of
equation (2) into the de� nition.

This result shows directly that the survival probabilities
pk 5 k2 2 1 2d generate long memory for 0 , d # 1. More
generally, proposition (2) shows that long memory arises if

pk

cp k 2 2 1 2d
® 1 as k ® ` , (7)

for 0 , d # 1 and some constant cp. This result could also be
derived using equations (3) and (4) and the characterization
of long memory processes that the autocorrelations (if they
exist) follow

g k

cg k 2 11 2d
® 1 as k ® ` , (8)

where c g is some constant and d . 0. Long memory thus
generally requires that the survival probabilities pk approach
zero more slowly than k 2 2. If they approach zero more
slowly than k 2 1, then yt is long memory and nonstationary.

The conditional survival probabilities pk1 1/pk converge to
one for a long-memory process. To see this, note that, if
pk1 1/pk were bounded from above by f , 1, then pk would
go to zero faster than f k, but S k5 0

` kf k 5 f /(1 2 f )2 is � nite
for 2 1 , f , 1. (This is the AR(1) case discussed below.)
The conditional survival probabilities pk1 1/pk can, however,
converge to one even if the process is not long memory. If
pk 5 ka for a , 2 2, then pk1 1/pk converges to one, but the
summation in proposition 2 is � nite.

IV. Fractional Integration

The fractionally integrated process (1 2 L)d yt 5 h t where
h t is i.i.d. can be explained intuitively within the error-
duration framework by applying proposition 1 to obtain the
following result.

PROPOSITION (3). For 0 # d # 1, the survival probabilities
for an I(d ) process are

pk 5
G (k 1 d )G (2 2 d )

G (k 1 2 2 d )G (d )
. (9)

Proof: For d , 1/2, the autocovariances are

g k 5
G (k 1 d ) G (1 2 2d )

G (k 1 1 2 d ) G (1 2 d ) G (d )
s 0

2, (10)
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where s 0
2 is an error variance (Granger & Joyeux, 1980). For

0 , d , 1/2, equation (9) follows from equation (3). For
1/2 # d , 1, equation (9) follows from (4) by showing that
the autocovariances from (10) for d 2 1 are the � rst
differences of the probabilities from equation (9). Speci� -
cally, for 0 , d , 1/2, the factors involving k yield

G (k 1 d )

G (k 1 1 2 d )
2

G (k 1 d 1 1)

G (k 1 2 2 d )

5 (1 2 2d )
G (k 1 d )

G (k 1 2 2 d )
.

For 1/2 # d , 1, the factors involving k yield

G (k 1 d )

G (k 1 2 2 d )
2

G (k 1 d 2 1)

G (k 1 1 2 d )

5 (2d 2 2)
G (k 1 d 2 1)

G (k 1 2 2 d )
.

These survival probabilities generate an I(d ) process
precisely. The approximation (7) can be veri� ed using cp 5

G (2 2 d )/ G (d ) and a variation of Stirling’s formula k2(1 2 d ) ·
G (k 1 d)/G (k 1 2 2 d ) ® 1 as k ® ` . (Abramowitz &
Stegun (1972, p. 257).

The I(1/2) process on the boundary between stationarity
and nonstationarity is an important special case. The sur-
vival probabilities for an I(1/2) process are

{pk} 5 1, 1/3, 1/5, 1/7, 1/9, . . . .

The variance of yt is in� nite because the sums of this
well-known series diverge. The MA representation param-
eters are

{c k} 5 1, 3/8, 15/48, 105/384, 945/3840, . . . .

The variance of yt is in� nite because the sums of the squares
of this series diverge. Although both representations are
mathematically valid, trying to guess the next term in each
series suggests that the ED representation gives a more
intuitive view of the boundary between stationarity and
nonstationarity.

The ED representation adds a new perspective on the
difference between fractionally integrated processes and
ARMA models. The I(d ) survival probabilities in equation
(9) follow the recursion

pk1 1 5
k 1 d

k 1 2 2 d
pk (11)

with p0 5 1. For an AR(1) model (1 2 f L)yt 5 h t with h t

i.i.d. and 0 # f , 1, the autocorrelations are r k 5 f k, and

normalizing to p0 5 1 shows that the survival probabilities
are pk 5 f k. These survival probabilities follow the recur-
sion

pk1 1 5 f pk.

For large k, the conditional survival probabilities pk1 1/pk for
the I(d ) model approach unity, while those for the AR(1)
model are constant at f .

The AR(1) model with f 5 0.500 and the I(d ) model with
d 5 0.333 illustrate the differences. Both models have
� rst-order autocorrelations r 1 5 0.500 and average error
durations l 5 1.000. The AR(1) model’s survival probabili-
ties for k 5 1, . . . , 6 are pk 5 1/2k or 0.500, 0.250, 0.125,
0.063, 0.031, 0.016, . . . . The I(d) model’s survival probabili-
ties are 0.200, 0.100, 0.064, 0.045, 0.035, 0.028, . . . . The
latter series starts out lower, but decreases much more
slowly toward zero. The probabilities that an error lasts at
least ten periods are p10 5 0.001 for the AR(1) process and
p10 5 0.015 for the I(d ) process. The effect of these survival
probabilities is apparent in the autocorrelation functions. For
the AR(1) process, the values {r 1 , r 10, r 20 , r 100} are
{0.500, 102 3, 10 2 6, 10 2 30}. The same autocorrelations for the
I(d ) process are {0.500, 0.232, 0.184, 0.108}. This dramatic
difference in high-order autocorrelations is due—in the
context of the error-duration model—to the high conditional
survival probabilities for I(d ) errors that survive the � rst few
periods.

V. Examples

Having an elegant representation is not nearly as impor-
tant, of course, as having an economic mechanism, and that
issue has been an important cause of the mystery surround-
ing fractional integration. The following two examples
illustrate how aggregate employment and � nancial asset
volatility might exhibit long memory as a result of the
survival probabilities for businesses and the survival prob-
abilities for asset positions. In both cases, the focus is on
providing a simple example rather than a complete, realistic
model.

A. Example 1: Aggregate Employment

Suppose that a � rm is created in period s, and gs,t is an
indicator function for whether that � rm is still in business in
period t. Let e s be the effect of this � rm on aggregate
employment, and assume that this effect is independent of
gs,t and constant as long as the � rm is in business. Assume
that aggregate employment is given by

Et 5 o
s 5 2 `

t

gs,t e s 1 E,
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where E is a constant term.3 The question of whether total
employment is short memory or long memory depends on
the survival probabilities for � rms. Employment will be a
long-memory process if the survival probabilities pk for
� rms approach zero more slowly than k2 2. If that is the case,
we would expect to observe a fairly rapid turnover in new
businesses, but some examples of businesses that have
survived over many periods.

Table 1 presents empirical survival rates for U.S. busi-
nesses. Sk is the fraction of U.S. business establishments
starting in year 0 that survive to year k. These � gures
certainly do not favor a short-memory interpretation. The
conditional survival rates Sk/Sk2 1 clearly increase as � rms
age. Squaring the � ve-year survival rate S5 5 0.401 to obtain
a prediction of the ten-year survival rate would be appropri-
ate if the business survival rates implied an AR(1) model for
employment, but the actual ten-year survival rate S10 5

0.246 is 50% greater than 0.4012 5 0.161.
The support for a long-memory interpretation can be

assessed by � tting the approximation pk 5 cp k 2 2 1 2d from
equation (7) to these survival rates. The value for d can be
calculated by inverting the relation pn/pm 5 (n/m) 2 2 1 2d to
obtain4

d 5 1 1
1

2

log ( pn/pm)

log (n/m)
. (12)

Using the empirical estimates S5 and S10 of p5 and p10 in
equation (12) produces the estimate d 5 0.65. Using S7 and
S10 produces the estimate d 5 0.62. Table 1 shows the
predicted survival probabilities for d 5 0.65 and d 5 0.62
with cp chosen to match S10. The former function � ts S5

through S10 to within 0.006, and the latter function � ts S7

through S10 to within 0.001. The survival rates for � rms are

thus quite consistent with an error-duration explanation for
long memory in employment.

B. Example 2: Asset Price Volatility

A second example shows how the survival probabilities
for � nancial asset positions can lead to long memory in asset
price volatility. Let gs,t be an indicator function for the event
that an asset position taken in period s lasts until period t.
Suppose that the conditional probability that an asset
position survives an additional period increases as the
position ages (perhaps following equation (7) or (11)).

While a complete model of asset pricing with heteroge-
neous agents is beyond the scope of this paper, a simple
structure serves to illustrate the basic idea. Assume that

j The market price pt is an average of the expectations of
agents currently holding positions in that market.

j Prices will change even given no change in the set of
open asset positions because the traders’ information
sets change over time.

j Informed traders lower volatility and uninformed
traders increase volatility because agents with better
information have smaller changes in their expecta-
tions. (On average, their forecasts are closer to the
perfect foresight price that all expectations are converg-
ing toward.)

The volatility of returns vt will be a function of the average
quality of information of agents currently holding positions
in the market:

ln (vt) 5 o
s 5 2 `

t

gs,t e s,

where e s measures the quality of an agent’s information.5

The log-volatility will be short memory if the current age of
an asset position has no effect on the probability that it will
survive for one more period. The log-volatility will be long
memory if the survival probabilities of asset positions
approach zero more slowly than k 2 2. If the latter case
prevails, then we would expect to see a high volume of

3 The assumption that e s has mean zero is analytically convenient, but not
essential. A zero mean is not implausible, especially if total employment is
determined by the efficiency with which a target amount of output is
produced. While some � rms add to employment, others, by virtue of
improved technology or increased capital, decrease employment.

If E( e t) 5 µ, then yt can be viewed as the sum of two processes: one
generated by errors e t 2 µ and one generated by µ. If either of these
processes has long memory, then yt will have long memory, so the analysis
for the zero mean errors e t 2 µ will be sufficient to establish the existence
of long memory.

4 Equation (12) re� ects an important point about time scaling. Suppose
the time interval is changed from annual to quarterly so that the probability
pk of surviving k years becomes known as the probability p4k of surviving
4k quarters. The ratios p4m/p4n and 4m/4n do not change, and the d obtained
from equation (12) is invariant to the time scaling.

5 This discussion assumes that volatility at time t is a reasonable concept.
For example, if the period of observation for vt is a day, then vt would be
computed from high-frequency price changes within that day. Andersen et
al. (1999) provide an illustration of this idea.

TABLE 1.—SURVIVAL RATES SK FOR U.S. BUSINESS ESTABLISHMENTS

Year k 1 2 3 4 5 6 7 8 9 10

Empirical Sk 0.812 0.652 0.538 0.461 0.401 0.357 0.322 0.292 0.266 0.246
1.25k 2 21 2(0.65) 1.248 0.765 0.575 0.469 0.401 0.352 0.316 0.288 0.265 0.246
1.40k 2 21 2(0.62) 1.401 0.830 0.611 0.491 0.415 0.362 0.322 0.291 0.266 0.246
Sk/Sk2 1 0.812 0.803 0.826 0.857 0.868 0.891 0.902 0.908 0.911 0.923

Note: The � gures for Sk are obtained directly from Nucci (1999, table II). They are based on all 5,727,985 active U.S. business establishments in the 1987 U.S. Bureau of the Census Standard Statistical
Establishment List. Nucci measures survival rates between 1987 and 1988 conditional on the age of the � rm as determined using earlier SSEL data. He then applies the conditional survival rates to a new
� rm to obtain the empirical survival rates shown here.
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short-term trading and a small minority of positions that are
held long-term.

VI. Continuous Time

The primary goal of this paper is to present the most
intuitive possible construction that matches the discrete time
I(d ) autocorrelations precisely. The employment and asset
price volatility examples, however, naturally raise the impor-
tant question of whether the long-memory property will
disappear for large numbers of � rms or asset positions. That
issue is most conveniently addressed in continuous time.
This section will consider some continuous-time extensions
to the error-duration model and then review some known
results that imply that employment and asset price volatility
can exhibit long memory even if there are thousands of
businesses or asset positions.

If the condition that yt is observed at discrete time
intervals is retained, allowing errors to originate in continu-
ous time does not present any particular complications. To
keep the probability structure simple, it is important to have
independence among three things: the errors e s, the dura-
tions ns, and the mechanism that creates new errors.6 The
simplest step in that direction is to assume that yt is observed
at times {t} 5 1, 2, 3, . . . , but the errors e s originate at times
{s} 5 1/m, 2/m, 3/m, . . . , where m is a positive integer. The
proof strategy of proposition 1 yields

g k 5 o
j 5 0

`

pk1 j /m

for the case that the autocovariances exist, where pk is now
de� ned for fractions of the observation time interval. If the
errors originate stochastically in continuous time at a
constant rate µ per unit of time (this is known as a Poisson
process (Haight, 1967, p. 23)), then the summation above is
replaced by the integral

g k 5 e
t 5 k

`

ptµ dt.

The survival probability function pk 5  g k/  k, where g k is
given by equation (10), will then produce an I(d ) process.

More-fundamental issues are involved if yt is observed in
continuous time. A variety of functional central-limit theo-
rems describe convergence of processes (some similar to the
one described here) to fractional Brownian motion, which is
the continuous-time counterpart to an I(d ) process with
1/2 , d , 3/2. Two lines of argument show convergence
from processes involving elements resembling the indicator
functions gs,t used here. Cioczek-Georges and Mandelbrot
(1995) propose a model with micropulses with survival
probabilities pk 5 k2 2 1 2d for 1/2 , d , 1. The process

converges to fractional Brownian motion with 1/2 , d , 1.
Taqqu et al. (1997) study a model of Ethernet packets with
survival probabilities pk 5 k2 2 1 2d for 0 , d , 1/2, in which
the number of sources of these packets goes to in� nity. The
aggregate process converges to fractional Brownian motion
with 1 , d , 3/2, which has increments that are fractional
white noise with 0 , d , 1/2.

These functional central-limit theorems are not needed to
establish the main results in this paper because the discrete-
time fractionally integrated process I(d ) can be constructed
precisely with an error-duration model. They do, however,
contribute two important results to the discussion.7

First, the long-memory property survives the transition to
large numbers of shocks. Indeed, the transition to large
numbers of shocks is fundamental to how these functional
central-limit theorems construct fractional Brownian mo-
tion. This suggests that the long-memory properties for the
discrete-time examples that are considered here carry over to
continuous-time markets with large numbers of agents.

Second, a wide range of structures are covered by
functional central-limit theorems. Neither construction dis-
cussed above, for example, multiplies the counterpart to gs,t

by a stochastic component e s, which suggests that the error
durations are fundamental to the long-memory property and
the error magnitudes are not. In particular, these continuous-
time results reinforce the intuition that the fundamental
feature generating long memory is tail survival probabilities
proportional to k 2 2 1 2d for 0 , d # 1.

VII. Estimation, Generalizations, and Structural Change

The ED, AR, and MA representations for an I(d ) process
may provide some insight into the nature of the process, but
they do not lead directly to practical estimation procedures.8

The ED representation does, however, shed some light on
the properties of some estimation methodologies in the
presence of long memory.

The class of ARMA and ARFIMA models is more general
than the class of ED models because the autocorrelations of
an ED model must satisfy two constraints. To yield a
monotone series {pk}, the autocovariance function must be
monotone g k $ g k1 1. To yield pk $ pk1 1, it must also satisfy
g k2 1 2 g k $ g k 2 g k1 1. Estimated autocorrelations will
often fail to satisfy these constraints even for an I(d ) process
because the autocorrelations are subject to considerable
sampling error, especially at the higher orders. Estimating
the survival probabilities from the autocorrelation function
is thus not likely to be any more effective than directly
estimating the AR or MA representations of an I(d ) model.

6 In discrete time, allowing multiple errors to be created at a given period
s does not present difficulties if the process determining the number of
those errors is independent of the errors and their durations.

7 Although it is not of primary importance in this paper, fractional
Brownian motion is self-similar, which means that the autocorrelation
structure is the same for time aggregates over widely different observation
frequencies. This property can be very helpful in identifying long memory
if sufficient data is available to permit a range of time aggregation
frequencies. (See Andersen et al. (1999) and Leland et al. (1994).)

8 The employment and asset volatility examples do suggest that we might
learn something useful about the time-series properties of aggregate data
by studying survival probabilities for the underlying error mechanism.
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The ED representation can be generalized to account for
non-monotone autocorrelations. Suppose that the observed
time series zt is the sum of two components

zt 5 xt 1 yt, (13)

where xt is an I(d ) process and yt is an independent
ARMA( p, q) process. The high-order autocovariances of zt

will be dominated by xt, but the low-order autocovariances
can have the � exibility of the ARMA component. The sum
(13) can be expressed (in a variation on equation (1)) as

zt 5 o
s 5 1

n

e s ds,t 1 yt, (14)

where ds,t is one for the interval (s, s 1 ns) and zero
otherwise, and {e s} is as in section II. Estimating the three
sets of unknowns {e s}, {ns}, and the parameters of the yt

process is not possible because there are more than twice as
many parameters as observations. Interpreting the errors {e s}
as random coefficients on {ds,t} does, however, provide some
insight into how long memory might affect traditional
estimation techniques. Individually, each of the terms e sds,t

could be thought of as representing structural change
augmenting a model yt that would otherwise explain zt.

An empirical researcher with a model yt and suspicions
about structural change is likely to be drawn toward
identifying errors in equation (14) with large magnitudes e s

and long durations ns as structural change, adding dummy
variables or trimming the sample period as a result. Many of
the structural changes thought to be found in economics thus
might be evidence in favor of the existence of fractional
integration, which will tend to produce occasional errors
with very long durations.

Suppose output in an economy follows a nonstationary
I(d ) process with annual shocks and d 5 0.6. The expected
number of twentieth-century shocks surviving to the year
2001 if d 5 0.6 is about 4.5. Suppose there were � ve: mass
production of automobiles and trucks, the Great Depression,
the Second World War, the energy price shock in the 1970s,
and the development of microelectronics. Even if these are
the only � ve historical shocks that affect the economy in
2001, they are numerous enough to be consistent with d 5

0.6 and nonstationarity. A researcher using the post-WWII
data might, of course, treat the last two shocks as structural
changes and proceed to put forward a stationary model for
the remaining data.9

VIII. Summary

The error-duration models for aggregate employment and
asset price volatility help to illustrate how fractional integra-
tion and long memory might naturally occur in economic
models. These examples illustrate a more general difference
between the various members of the ARFIMA(p,d,q) class
of representations and the ED representation.

The ARFIMA( p, d, q) representation, f (L)(1 2 L)dyt 5

u (L)h t, which includes AR and MA representations as
special cases, establishes a linear relationship between h t

and yt 1 k for all k. In this framework, the effect of h t on yt 1 k is
the same as the effect of h t 1 i on yt 1 k1 i for any i. If any error
has an effect � fty periods into the future, then all errors have
the same effect � fty periods into the future. The only
stochastic feature is the magnitude of the error.

The ED representation, on the other hand, assumes that
errors do not fade out uniformly, but instead have stochastic
durations. For a long-memory process, most errors have
only short-term effects, but occasional errors have long-term
effects. The aggregate employment and asset price volatility
examples are convenient because it is possible to identify
businesses and asset positions as model elements that have
stochastic durations.
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Appendix A

A Simulation Algor ithm

The algorithm described in this appendix generates long-memory data
directly from the error-duration model. While other methods are available
for special cases such as an I(d) process, the direct approach given here
may prove useful in simulating less-pure processes that are likely to arise
in applications to things like employment and asset price volatility where it
might prove interesting to examine the implications of, for example,
dependence between gs,t and e s.

Step 1: Error and Duration Draws. Drawing the errors e t and the
durations nt given s 2 and p0, p1 , . . . for t $ 1 is a straightforward process.
The probabilities p0, p1 , . . . , pT can be calculated just once using the
recursion (11). The duration nt for the error e t can be found by drawing an
independent error ut uniformly distributed on the unit interval and setting nt
equal to the index i such that pi $ ut . pi1 1.

Step 2: Drawing a Presample. A presample of size K consisting of
errors e 1 2 K, . . . , e 0 and durations n1 2 K, . . . , n0 can be added by extending

step 1 to include the range of probabilities p0, p1 , . . . , pT1 K. The error e 12 j
has no effect on y1, . . . , yT and need not be drawn unless n12 j $ j. If n1 2 j
falls between j and j 1 T, then e 1 2 j should be added to y1, . . . , yk, where
k 5 n1 2 j 2 j. The value of K needed to achieve a good approximation could
be substantial, but the following strategy minimizes the required pre-
sample size.

Step 3: A Prehistoric Mean Approximation. As K ® ` , the number of
errors originating before period 1 2 K and expiring in period t converges to
a Poisson variate with mean pK 1 t.10 That Poisson variate can be simulated
using two types of random draws. The � rst step is determining the number
of expiring errors by comparing a uniform random variable with the
Poisson probabilities. 11 The second step is drawing that number of realized
expiring errors from the error distribution.

The accuracy of the Poisson approximation depends on K. The number
of prehistoric errors is in� nite for any K, so the relevant consideration is
that the probabilities of expiring in period t are small. The sum of all the
probabilities from the in� nite past is pK 1 t. This total is obviously less than
one, and K can easily be chosen to make pK 1 t small. K should also be large
enough to avoid the related difficulty that the numbers of errors expiring in
two different periods are not absolutely independent. A slight dependence
arises because, if e s expires in period t, then the same error cannot expire in
period t 1 1. Setting K equal to T has the intuitive appeal that any
approximation error involving errors that have already survived T periods
is not likely to be detectable in a sample of size T. Practical experience
suggests that setting K equal to the sample size T is conservative in the
sense that a smaller K produces nearly identical sample statistics.

This algorithm also ignores errors that originate in period 1 2 K or
before and do not expire during the sample period. This has little effect
because such errors are empirically undetectable. They merely add a
constant to the observed data throughout the entire sample and thus affect
only the sample mean.

10 The Poisson approximation is appropriate even though the probabili-
ties of expiring in period t are not equal. Haight (1967, pp. 16, 118–119)
gives an interesting historical account of the debate on this issue.

11 If the probabilities of i or more expiring errors is qi and u is a U(0, 1)
random draw, then the Poisson draw is j such that qj1 1 , u , qj.
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