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Abstract

Using Gebharter's (2014) representation, we consider aspects of the problem of discovering the 

structure of unmeasured sub-mechanisms when the variables in those sub-mechanisms have not 

been measured. Exploiting an early insight of Sober's (1998), we provide a correct algorithm for 

identifying latent, endogenous structure—sub-mechanisms—for a restricted class of structures. 

The algorithm can be merged with other methods for discovering causal relations among 

unmeasured variables, and feedback relations between measured variables and unobserved causes 

can sometimes be learned.

1. Mechanisms and sub-mechanisms

Although disciplines often have special depictions of causal systems, such as circuit 

diagrams in electronics, in many scientific applications causal mechanisms are now 

routinely represented by directed graphs whose vertices represent variable features of a 

system (where the possible variation may be as simple as the presence or absence of a 

feature) and whose directed edges represent (relative to the other represented variables) a 

direct causal connection between the variables. These representations are abstract in several 

ways. While the graph topology characterizes a set of conditional independence relations via 

the well-known Markov Condition, the graph itself does not fully specify a joint probability 

distribution on the variables represented as vertices and gives no indication of the strengths 

or even algebraic signs of influences; the variables represented need not be spatially 

localized; the topology of the graph does not necessarily correspond to a spatial layout. Thus 

a switch which is physically between an input and an output would not be represented 

graphically by input -> switch -> output, but rather by input -> output <- switch.1 Our 

concern here is with another aspect of abstraction: the graphs do not represent what is going 

on in the process or processes represented by a directed edge. “Inside” a directed edge there 

may be a sub-mechanism, and two or more submechanisms “inside” different directed edges 

may have causal connections with one another. Gebharter (2014) proposed simple rules for 

1The graph: input -> switch -> output, by the Markov Condition implies that input is independent of output conditional on any value 
of switch. But it is intended that when the switch is on the output depends on the input.
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obtaining the graphical depiction of the less detailed mechanism, or superstructure, by 

marginalizing out some variables and their relations from the more detailed structure.. His 

proposal is, as he notes (2014a), a special case of the widely used mixed ancestral graph 

representation introduced a dozen years ago by Richardson and Spirtes (2002). Williamson 

and Gabbay (2005) propose a quite different graphical representation. Gebharter's proves to 

be useful.

In Gebharter's representation unobserved causal chains and unobserved common causes are 

“marginalized out.” Thus when X, Y are recorded variables and Z is not, and the graph with 

unobserved variables is X - > Z -> W, the marginal representation becomes X -> Y. When 

there is a common unobserved cause X <- Z -> W, the marginal representation becomes X <-

> Y. If the full structure is as in figure 1a, then the marginal structure is figure 1b.

These marginalizations of graph structure preserve the conditional independence and 

dependence relations among the observed variables implied by the Markov Condition for the 

full, detailed structure. Representation is one thing; it is quite another to extract information 

about the unobserved mechanism from data about the observed variables if the truth is 

among the representations, and that is the concern of this paper.

Abstract representation—by graphical models or otherwise—is of scientific value only if the 

representations are somehow useful. One use is in calculating values of some variables from 

values of others when a representation is known or assumed as a hypothesis. Thus Ohm's 

law permits the calculation of voltage drops given a circuit, various updating algorithms 

permit the calculation of conditional probabilities in directed acyclic graphs with a 

probability distribution satisfying the Markov condition (Pearl, 1988), and still other 

algorithms permit the calculation of conditional probabilities upon exogenous interventions 

(Spirtes, et al., 2000; Pearl, 2000; Tian and Pearl, 2002). Zhang (2008) shows when and how 

mixed ancestral graphs, including those Gebharter proposes, can be used to compute the 

effects of interventions in a system without knowledge of its sub-mechanisms. The problem 

of predicting with graphical causal models that are superstructures over unknown sub-

mechanisms is essentially solved. The problem of discovering those sub-mechanisms from 

information about their superstructures is not.

Another use of appropriate abstract representations is in discovering mechanisms2. A 

computational procedure for discovery requires a mathematically precise object for which to 

search, whether it is a real number (as in statistical parameter estimation), a differential 

equation (as in system identification), or a directed graph. Efficient computational 

procedures are indispensable when the “space” of alternative hypotheses is large, as it is in 

statistical estimation of parameters, cellular biology, brain connectivity, and other areas. 

(Imagine trying to estimate by trial and error the maximum likelihood value of a statistical 

parameter as simple as the mean or variance.). “Thick” descriptions of a system are 

important in limiting the search space, in knowing what the measurements mean, how to 

conduct them, and how to intervene on the system, but for discovery from data, once a 

2As an interesting historical aside, Hempel denied (incorrectly) the possibility of using computers to algorithmically discover theories 
or models, since, he claimed, no algorithm could correctly discover novel or unmeasured properties (Hempel, 1985).

Murray-Watters and Glymour Page 2

Philos Sci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



search space is specified what matters is the mathematical features of representations for 

which efficient search is possible.

Philosophical discussions of mechanisms and sub-mechanisms have illustrated 

representational issues with simple machines, e.g., a water cooler, but the identification of 

sub-mechanisms is serious science. The cellular pathways between transcription of genes 

and the production of proteins, for example, form an important aspect of the fundamental 

biology of cancer, where novel pathways are created or normal ones altered by novel genetic 

anomalies, and distinct tumor types vary in their pathways. Research has discovered novel 

entities and conditions, such as microRNA and protein complexes, that play roles in 

transcription, in the splicing of RNA, and in translation of RNA into proteins. Discovering 

the causal relations of these factors in the development of tumors is a prominent area of 

contemporary research, but in many data sets variables that are thought to be relevant 

intermediaries are unmeasured. Again, in psychological research, so-called MIMIC 

(Multiple Input Multiple IndiCator) models postulate unmeasured intermediate variables 

(and their causal connections) between input (“stimulus”) and output (“response”). MIMIC 

models have been used to estimate models of executive function (Hughes et al, 2009). In 

economics a number of researchers have used MIMIC models to estimate the size of the 

shadow economy (Giles, 1999; Tedds, 1998). In public policy, MIMIC models were used to 

estimate what factors led to the successful settlement of immigrants (Lester, 2008).

2. Existing Search Procedures: Accuracy and Complexity

A variety of computerized search procedures for causal relations have appeared in the last 

quarter century and have found increasing application in the sciences, especially in 

biomedicine and genomics. They vary in the conditions on causal structure (represented by 

directed graphs), probability distribution families, and sampling regimes for which sufficient 

conditions for their asymptotic (large sample limit) correctness are known. Necessary and 

sufficient conditions for correctness are not known for any available search procedure. 

Proposed methods face two requirements for applicability to “Big Data” or “High 

Dimensional” problems that arise in genomics, climate research and elsewhere: accuracy 

and computational tractability. Even without “latent”—unmeasured—common causes, all 

known methods that are correct under the Causal Markov and Faithfulness conditions (i.e., 

all conditional independence relations in a probability distribution satisfying the Markov 

Condition for a graph are those implied by the Markov Condition, Spirtes, et al., 2000) 

increase exponentially in complexity in the worst case (i.e., the true graph is complete—

every pair of variables is connected by a directed edge) as the number of variables increases; 

successful causal search is possible only for systems whose causal relations are relatively 

sparse. Simplicity is less a metaphysical assumption than an epistemological boundary: if 

the causal relations we are interested in are too many and too complex, we will not discover 

most of them.

The method most commonly used for MIMIC models is factor analysis. Factor analysis 

estimates common causes of output variables and it is assumed that the investigator knows 

which input variables influence which inferred unobserved (latent) causes of the output 

variables. Factor models are known to be underdetermined and have no asymptotic proof of 
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causal correctness even up to the class of underdetermined alternatives. In section 5 below 

we compare our procedure with factor analysis on a number of alternative models.

The procedures that come closest to solving the problem of unobserved intermediate 

structure as in MIMIC models and gene expression are the FCI (Fast Causal Inference) 

algorithm (Spirtes et al., 2000) and its speed-ups, notably the RFCI (Really Fast Causal 

Inference algorithm) (Columbo, et al., 2012) and a series of procedures for identifying latent 

causal structure (Silva, et al., 2006; Kummerfeld, unpublished). Despite its name, the FCI 

algorithm is not tractable for problems with very large numbers of variables; an alternative 

CI (Causal Inference) (Verma and Pearl, 1992) algorithm is much slower still. RFCI, which 

in most but not all cases returns the same information as FCI, will run on at least several 

hundred variables with sparse graphs. An analysis of runtime and memory demands of RFCI 

as a function of the complexity of the graph from which data are generated is not available. 

(The lowest complexity bound on any search method using, as is common, correlations, is a 

quadratic increase in the number of computational steps as a function of the number of 

variables, because even the computation of simple covariances of pairs of measured 

variables increases at that rate, and covariance is about the computationally easiest measure 

of association there is.)

FCI and RFCI are not suitable for our problem because while they return true information, it 

is not the information we seek. For example, suppose the true structure is Figure 2:3

With the background information that X1, X2, X3 and X4 are inputs (exogenous), FCI and 

RFCI will return the information that X1, X2 and X3 are causes of O1, and X2, X3 and X4 

are causes of O2, and O1 and O2 share a common unobserved cause. All of that is true, but 

it does not tell us how many latent intermediate variables there are, or how they are 

connected to the input variables (X), the output variables (O) or to each other.

A procedure that is closer to our aim has been provided by Kummerfeld, et al. 

(unpublished). The procedure, improving on Silva, et al. (2006), finds, if such exist, a 

collection of subsets of measured variables, each subset having at most two direct, 

unmeasured common causes, with no direct causal connections between measured variables 

within a subset or between measured variables in different subsets. The collection is not 

necessarily a partition of the set of measured variables—some observed variables may be 

discarded by the procedure. For input/output systems it is sufficient (but not necessary) for 

the correctness of the procedure (assuming as well the Markov and Faithfulness conditions 

and identically, independently distributed (i.i.d) variables) that output variables depend 

linearly on latent variables, and that every latent variable have at least three observed effects. 

The procedure exploits rank constraints on the correlation matrix of the observed variables.

4. The practical computational limits of the procedure is well understood.

Suppose the true structure is as in figure 3:

3We owe the example to a question posed by an anonymous referee.
4The well-known “tetrad constraints,” ρij ρkl = ρikρjl, for example, are rank 2 constraints on the correlation matrix.
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The procedure will find no aspect of the true graph. If the true graph is like figure 3 but 

without the causal connections from L4 to the X variables (i.e., the X variables are jointly 

independent) the procedure will find the three clusters of output variables in figure 3, and 

that one (and only one) of the input variables to each latent is its cause. It will find there are 

causal connections among L1, L2 and L3, but will not be able to determine the directions of 

influence among those variables.

3. Strategies

We will describe and prove correct, assuming a restrictive condition on the causal structure, 

a fast algorithm for identifying the structure of input/output systems with endogenous latent 

variables. Then we will show that the restrictive condition is not a necessary connection, and 

note that certain feedback relations between measured and unmeasured variables represented 

by cyclic directed graphs can be discovered. First, however we describe three 

methodological ideas that drive our algorithms.

3.1. Sober's Criterion

Sober (1998) addressed an aspect of discovering sub-mechanisms. Sober pointed out that if 

in input variable X has separate, non-interacting mechanisms through which it influences 

two (or more) variables Y, Z, which are not otherwise causally connected, then Y, Z should 

be independent conditional on X, but if there are no such separate mechanisms but instead X 

influences Y and Z through an intermediate variable U which is a common cause of Y and 

Z, then Y and Z should not be independent conditional on X. The first claim is a simple 

application of the Causal Markov condition (Spirtes et al., 2000) to the graph Y <- X -> Z. 

The second claim is less obvious but is a consequence of the Faithfulness condition, which 

implies that values of endogenous variables are not uniquely determined by values of their 

represented direct causes. Granting the assumptions, Sober's criterion provides some 

information when there are more complex structures. Consider the following alternative 

MIMIC models in Figure 4, Figure 5, and Figure 6:

Assuming it is known which input variables in these figures influence (directly or indirectly) 

which output variables, Sober's criterion tells us different information for the three 

structures: for (4), for each pair of O variables, X1 has an unmeasured U intermediate and so 

does X2, and for O3 and O4, every X variable has an unmeasured intermediate; for (5) the 

implications are different but parallel, with obvious permutations of the variables; for (6), 

every X has an unmeasured U for every pair of variables. This suggests that Sober's 

criterion, with the assumptions and prior information noted, could be used to identify the 

unobserved structure. But Sober's criterion can only be applied if it is known which input 

variables influence which output variables, and it will not tell us in case (6) how many 

unobserved intermediate variables there are, and in cases (4) and (5) it will not tell us the 

direction of influence between the unobserved variables. Nonetheless, in each case the 

algorithm we will describe recovers this information from measurements of the X and O 

variables.
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Sober's criterion does not work if output variables caused by the unobserved intermediates 

also directly affect one another. Further, there can be measured outputs that are not directly 

influenced by unobserved intermediates, as in figure 7.

Sober's criterion implies that there is an unmeasured common cause of O3 and O2, and of 

O3 and O1, but would not reveal that the unobserved variable influences O3 only through 

O2.

The upshot is that to use Sober's criterion in an informative search procedure for complex 

systems, the space of hypotheses has to be carefully contoured, and Sober's criterion will 

need to be embedded in a more elaborate algorithm.

3. 2 The Inclusion Criterion

Consider the structure in figure 8:

X3 and X4 are associated with O3 and O4, while X1 and X2 are associated with all four 

output variables. The inclusion relations among the sets of output variables inform us about 

which input variables directly influence a latent common cause of a set of outputs, and about 

the directions of influence between the latents. Thus, assuming an input/output model with 

endogenous causes of the outputs, the inclusion relations for figure 8 tell us that X3 and X4 

are parents of a latent variable that is a cause of O3 and O4, but not of O1 and O2, and that 

X1 and X2 are causes of another latent that causes O1 and O2, and tells us the direction of 

influence between the latents. This works if there is at most a single causal path between any 

two variables, and in certain other cases we will later describe.

3.3 d-separation

The d-separation5 condition (Pearl, 1988) provides a graphical criterion for conditional 

independence relations implied by a directed, acyclic graph and any probability distribution 

on the variables satisfying the Markov Condition for that graph. It is exploited in a class of 

search algorithms, including the PC and FCI and RFCI algorithms, which use a series of 

conditional independence tests, the Bayesian Greedy Equivalence Search (GES), which 

updates prior probabilities sensitive to conditional independence relations, and many other 

algorithms. For input/output systems in which the inputs are independent of one another but 

unknown, and there are at least two inputs to each latent and each observed variable is the 

effect of a latent variable, these search procedures can quickly distinguish inputs from 

outputs via the collider principle: if X1 -> L, L2 -> L, and L -> O, then X1 and X2 are 

dependent conditional on O. The collider principle lies behind the famous Monte Hall 

problem (Rosenhouse, 2009). For systems in which the inputs are previously distinguished 

from the outputs, d-separation allows application of the inclusion criterion by conditioning, 

for each input, and all of the other input variables. For systems in which some observed 

variables, say O3 are causes of other observed variables, say O5, that are not directly caused 

5Two variables (X and Y) are said to be d-separated conditional on a set Z of other variables if for every undirected path between X 
and Y: either there is a vertex V on the path such that two edges on the path are directed into V and there is no directed path from V to 
any member of Z, or there is a vertex Q in Z such that Q is on the path and one path edge is directed out of Q.
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by latent variables or inputs, search procedures such as GES and PC allow identification of 

the O3 -> O5 connection.

4. Simple Search

Suppose we are given data on a collection of variables and we know that some of them, the 

inputs, X, are potential causes of others, the outputs O, but we have no prior knowledge of 

which inputs cause which outputs. We assume the otherwise unknown causal structure is 

that of a MIMIC model. Here is a summary of a search procedure, which we call 

detect.mimic, or DM for short:

Start with a completely disconnected graph having X vertices and O vertices. Identify the 

inputs (X). With routine statistical tests we can find which X and O variables are dependent 

on one another. Let OUT(X) be the set of O variables dependent on variable X, and let 

IN(O) be the set of X variables dependent on variable O. Partition the X variables by Xi ∼ 

Xj if and only if OUT(Xi) = OUT(Xj). For each such equivalence class, Xi, insert a latent 

variable, Ui, and add edges from each X in Xi to Ui. Partially order the OUT(Xi) by 

inclusion. For each leaf (terminal element) in that ordering, OUT(Xk), of the partial order, 

add a directed edge from Uk to each member of OUT(Xk). Remove OUT(Xk) from the set 

of observed variables and repeat. If OUT(Xk) ⊂ OUT(Xj) add a directed edge from Uk to Uj 

unless there exist distinct Or ∈; OUT(Xj)\ OUT(Xk), and Os ∈ OUT(Xk) that are 

independent conditional on some subset of Xk ∪Xj. Use the PC (Spirtes and Glymour, 1991) 

or other search algorithm to find any O variables that are influenced by X variables only via 

other O variables, and to find the causal relations among them. Remove edges from latent 

variables to those O variables.

In steps:

1. Start with a completely disconnected graph having X vertices and O vertices. 

Identify the inputs (X) by means of a procedure such as PC, discarding 

variables whose direction cannot be estimated by that procedure (i.e., true 

output variables that are caused by only one input variable, and true input 

variables that cause a single output variable.) (This step is unnecessary if 

inputs are previously distinguished from outputs, which is often the case.)

2. With routine statistical tests find which X and O variables are dependent on 

one another.

3. Let OUT(X) be the set of O variables dependent on variable X , and let IN(O) 

be the set of X variables dependent on variable O. Partition the X variables by 

Xi ∼ Xj if and only if OUT(Xi) = OUT(Xj).

4. For each such equivalence class, Xi, insert a latent variable, Ui, and add edges 

from each X in Xi to Ui.

5. Partially order the OUT(Xi) by inclusion. For each leaf, OUT(Xk), of the 

partial order, add a directed edge from Uk to each member of OUT(Xk).

6. Remove OUT(Xk) from the set of observed variables and repeat step 5.
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7. If OUT(Xk) ⊂ OUT(Xj) add a directed edge from Uk to Uj

8. If there exist Or ∈ OUT(Xj)\ OUT(Xk), and Os ∈ OUT(Xk) that are 

independent conditional on some subset of Xk ∪Xj., remove the edge between 

the latent causes of Or and Os

9. Use the PC or other search algorithm to find any O variables that are 

influenced by X variables only via other O variables, and to find the causal 

relations among them. Remove edges from latent variables to those O 

variables, and add any adjacencies to their fellow O variables using the pattern 

outputted by PC or some other search algorithm.

Pseudo-code for the procedure is given in the Appendix.

Sufficient conditions for this procedure to find the true structure are very restrictive:

1. Every causal path from an input to an output is through an unobserved 

variable;

2. Every output variable has an unobserved cause that that is an effect of an input 

variable;

3. There are no closed directed paths (i.e., no cycles);

4. Each unobserved variable has at least one observed effect and at least one 

observed cause; (when there is no prior classification of variables into input 

and output, each latent variable must have at least two observed causes).

5. The true structure is simply connected (i.e., there is at most one directed path 

between any two variables;

6. The input variables are jointly independent;

7. The Causal Markov Condition holds;

8. The sample cases are independently and identically distributed (i.i.d.).

9. Non-determinism: values of endogenous variables are not determined uniquely 

by values of variables that are their direct causes.

Under these conditions, the procedure returns the true structure given true facts about 

conditional independence and dependence of observed variables. A proof is given in the 

Appendix. We will show later that not all of these conditions are necessary. We emphasize 

that the procedure is “non-parametric”—it is not restricted to any functional form (e.g., 

linearity) for the relations between variables or to any family of probability distributions for 

the variables.

An Illustration

We assume probability relations are generated in accord with the Markov Condition for the 

graph shown in figure 9, and we show how the algorithm we have described recovers the 

structure.
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Step 1We begin by applying the PC algorithm to the dataset (generated from the graph in 

figure 9). The PC algorithm starts with a complete graph and uses conditional 

independence facts to remove edges and direct remaining edges. Here, we need 

only use unconditional independence facts. Using the pattern6 returned by PC 

(figure 10), we check each node's indegree. If a node has an indegree (i.e., the 

number of arrows “into” it) of 0, then we classify it as an input. Otherwise, we 

classify the node as an output. In figure 10, we can see that nodes X1-X4 are 

inputs, while nodes X5-X9 are outputs.

Step 1 can be skipped if, as is often the case, it is already known which variables 

are inputs and which are outputs.

Step 2The identification of correlated inputs and outputs is a result of step 1.

Step 3In figure 10, there are edges between every output variable and nodes X1 and X2, 

but nodes X3 and X4 only have edges to outputs X8 and X9. If we think of this in 

terms of sets, we have an IN(<X1,X2>), or input set, connected to the output set 

OUT(<X5,X6,X7>). We also have another set, IN(<X1,X2,X3,X4>) connected to 

OUT(<X8,X9>).7

Step 3aThe equivalence classes of input variables are IN(<X1, X2>) and IN(<X3, X4>)

Step 4Insert a latent variable for each equivalence class.

Step 5Now that the number of latents is known, we cluster outputs around their respective 

latents. In the case of the example, IN(<X1,X2>) is a proper subset of 

IN(<X1,X2,X3,X4>) and is a leaf in the ordering . We add edges to L1 for X1 and 

X2.

Step 6We remove X1, X2 from IN(<X1,X2,X3,X4>) and add edges from X3, X4 to L2.

Step 7We use the information from steps 5 and 6 to introduce and orient a latent-to-latent 

edge from IN(<X1,X2>)'s latent to IN(<X1,X2,X3,X4>)'s latent. Doing all of this 

gives us the graph in figure 11.

Note that there are two mismatches between the true graph and the graph in figure 

11. There should not be a latent-to-latent edge connecting L1 to L2. Instead, X1 and 

X2 should have edges connecting them to L2. Additionally, X6 should not be 

directly connected L1. These mismatches are corrected in the next several steps.

Step 8X9 is independent of X5 when X1 and X2 are conditioned on. We can therefore 

conclude that X9 and X5 are only connected via a path through the inputs X1 and 

X2, rather than via a L1 to L2 edge (else by Sober's criterion, conditioning would 

not have blocked the path from X9 to X5). Therefore, we remove the latent-to-latent 

edge. This gives us the graph in figure 12.

All that remains is to remove the incorrect edge directly connecting L1 to X6.

6That is, a graph which may include undirected edges indicating that the direction cannot be determined by the search procedure.
7Note the change in notation from the summary description of the procedure.
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Step 9Run the PC algorithm on the dataset again, with no bound on how many variables 

are conditioned on. This gives us the graph in figure 13:

We now check the pattern in figure 13 for any output variables that have no directed 

edges from input variables. If an output lacks such edges, we know that it cannot be 

directly connected to a latent, but must instead only be connected via its fellow 

output variables. In figure 13, the output variable X6 has no edges from input 

variables, but remains connected to outputs X5 and X7. We therefore remove the 

edge from L1 to X6, in figure 13 and add edges connecting X6 to X5 and X7. For 

the new output-to-output edges, we use the direction reported in figure 13. In some 

cases, this means that the added edges will not have directions as the pattern 

returned by PC may fail to orient some edges.

Step 7The algorithm ends, and we return the discovered graph (depicted in figure 14).

4. An Empirical Application

Currently, researchers are interested in unobserved protein pathways connecting genes to 

measurable concentrations of RNA. One possible use of such information is the study of 

cancer. Using Normal distribution tests, we applied our algorithm to a dataset of patients 

with ovarian cancer8, which returned the results displayed in Figure 15. While the true graph 

is likely both cyclical and multiply connected, violating two of our algorithm's assumptions, 

some information can still be obtained.

In Figure 15 there are a number of distinct subgraphs in the overall graph, as well as 3 

subgraphs where many genes appear to be regulating a single gene expression. It is not 

implausible that somatic mutations (the inputs) are independent, but the appearance of 

multiple gene regulators for a single gene expression could also result from reducing the 

number of variables in the very large dataset of highly correlated gene expression 

measurements, all but one may be removed in the variable reduction procedure, which can in 

some cases undermine the correctness of the algorithm because the partial ordering requires 

at least one direct measured effect for each latent variable.

Assuming the graph of figure 16 is correct, the conditions we prove sufficient for correctness 

of the algorithm are not met, but the structure is nonetheless uniquely identifiable by our 

algorithm because the inputs and outputs are segregated before running the search 

procedure.

The example is a demonstration of feasibility rather than of empirical correctness for the 

case. We are currently working on identifying independently known cellular pathways on 

which to test the procedure and the generalizations discussed below. The example required 

43 minutes to run on a single core laptop, and on serious computers much larger systems 

could be analyzed. Except for the last step of the algorithm where PC is run with an 

8The data were gathered using massively parallel sequencing and microarray analyses. There are 562 observations (patients), 17,610 
gene variables (recording whether or not a gene was mutated), and 12,042 gene expression variables (originally continuous measures 
of mRNA levels, which were then converted into ordinal categorical variables). Details on how data was gathered are available in 
Network (2011). The data itself is available from: http://cancergenome.nih.gov/
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“infinite” depth, the time complexity of the procedure increases quadratically with the 

number of variables.

5. Comparison with Factor Analysis

Factor analysis combined with guesswork or knowledge about which input variables 

influence which output variables is the most common method in practice for finding sub-

mechanisms with endogenous unmeasured variables, i.e., MIMIC models. So we compare 

accuracies of factor analysis—merely for finding the number of latent variables.

Datasets were generated 500 times from each of the graphs in Figure 17. Every variable was 

created by adding the values generated for its parents plus an additional error term which 

followed a standard Normal distribution. Factor analysis and DM were then run on each 

dataset, and the number of times each algorithm reported an incorrect number of latent 

variables was recorded. The factor analysis program (in R) uses four different non-graphical 

versions of a scree plot10 to determine the number of latents. Each method was given a vote 

for the number of latent variables, and the number with the most votes was chosen. In the 

event of a tied vote, the smallest number in the tie was selected.

Figure 18 illustrates that factor analysis is an unreliable tool for correctly identifying the 

number latent variables. While in some cases it performs reasonably well (as in the case of 

graphs 2 and 3), for other structures factor analysis is almost always mistaken (graph 4). In 

one case (graph 1), it performed worse as sample size increased! In practice, when the true 

underlying structure is unknown, one cannot have any reasonable confidence that the factor 

analysis output is correct.

6. Generalizations

As written, the DM algorithm will identify sub-structures of some structures that are not 

simply connected. For example, for the elaboration figure 8 shown in figure 19 will find the 

structure in figure 8, leaving out the X1 -> O1 edge:

The same is true if to figure 19 edges are added from X1 or X2 or both to L2. The procedure 

will not find a correct singly connected sub-structure, however, if to figure 8 or figure 19 a 

directed edge is added from X3 or X4 or both to L1. In that case, X3 or X4 or both will be 

clustered with X1 and X2.

In cases such as that shown in figure 3, the problem can be solved by modifying step 2 of the 

DM algorithm so that in finding the output variables influenced by any input, X, the other 

input variables are conditioned on. This step is not without risks, however, because if X and 

some other measured variable Xm both influence a third variable, say Xn, then conditioning 

on Xn will create an association between X and the output variables influenced by Xn—

another example of the “collider problem” illustrated by the “Monty Hall Problem.” 

Automated search is an aid, not a full replacement for investigators' prior knowledge.

10A scree plot depicts the amount of variance “explained” by a given latent, with each latent on the X-axis and variance on the Y-axis. 
Usually, at some variance values such plots have a marked change in first difference, which is taken to indicate the number of latent 
variables.
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7. Merging

Silva et al, (2006) and Kummerfeld et al. (unpublished) have developed other methods for 

finding substructure. Their procedures have both advantages and disadvantages. To 

advantage, they are not limited to singly connected systems. Instead, they find subsets of 

measured variables that are singly connected to one or two latent variables, if such exist. The 

graphical causal relations among the latent variables do not have to be singly connected. The 

disadvantages are linearity restrictions on the connections between output variables and 

latent variables (although not among the latent variables themselves), that the procedures 

cannot identify all of the input causes of a latent variable, and that the causal order of latent 

variables may be underdetermined. The advantages help with the DM algorithm, since their 

procedures provide a guarantee that the measured variables in each selected subset have a 

common cause and are otherwise unconfounded by direct effects from other measured 

variables or extra common causes, and the latent to latent causal relations need not be singly 

connected. The methods we have described can help as well, because they can aid in 

identifying which input variables influence which latent variables directly, and can 

sometimes direct edges between latent variables left undirected by the Silva and 

Kummerfeld algorithms.

Figure 20 shows the output of the Silva or Kummerfeld algorithms for an example in which 

X1, X2 and X3 are causes of L1, L2 and L3, respectively.

These procedures can, however, be combined with steps in our algorithm. Step 2 can be 

applied to estimate which measured variables influence which latent variables and step 3 can 

be applied to determine the directions of edges between the latent variables. The result is 

shown in figure 21.

8. Open Problems

One problem with our algorithm, or its combination with the Silva or Kummerfeld 

algorithms, is that these procedures cannot identify direct influences from input to output 

variables, which was part of the aim of Sober's procedure. A second issue is the restriction to 

singly connected networks, which, as figure 21 illustrates, is relieved in part by combining 

our procedure with Silva's or Kummerfeld's.

A third, fascinating problem, is discovering feedback structure involving latent endogenous 

variables. In genomic processes, for example, mRNA is transcribed from gene sequences of 

DNA by a process regulated by, among other things, proteins. The mRNA, after a lot of 

subsequent processing, is translated into proteins. Some of these proteins may regulate 

transcription of the gene from which they descend. The process may therefore involve a 

feedback relation between measured effects and unmeasured causes.

Using rank constraints, we have been able to show that in linear systems some cyclic 

feedback relations between measured and latent variables can be identified, as in figure 22, 

when it is known that there are no direct causal connections between output variables. We 

leave the details to another place, but clearly the topic begs for further research.
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7. Conclusion

While most of the metaphysical and conceptual analysis of mechanisms is of little if any 

potential aid to science, two aspects are: prediction and discovery. The “thin” representation 

provided by graphical causal models, supplemented where possible by estimates of the 

strengths of effects, can be useful, even essential, for prediction and discovery provided the 

representations also imply statistical constraints that can be exploited to identify causal 

relations. With these representations, problems of prediction with and without interventions 

have largely been solved, but many problems about discovery remain open. Using 

Gebharter's representation for such structures and exploiting an insight of Sober's, d-

separation, and an inclusion principle, we have addressed one class of such problems for 

structures with intermediate or endogenous unmeasured structure. Scientifically important 

problems of search and discovery for related structures remain to be solved.
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Appendix A: Algorithm Pseudocode (Murray-Watters, 2014)

Algorithm: DM(Data)

Step 1.

PC:= A function returning the pattern produced by the PC algorithm.

inputs:=NULL {The set of inputs.}

outputs:=NULL {The set of outputs.}

X:= Data

pc.pattern := PC(X, depth=0)

N := Nodes(pcpattern)

For each n in N

     If adjacency(n) ∼ == 0

          then if adjacency(n) = outdegree(n)

               add n to 
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inputs

          else

               add n to 

outputs

Input.Parents(n) := PAR(n, pc.pattern) ∩ inputs

Step 2.

Latents:= NULL

Latents (L) := <IN(L), OUT(L), LC(L)>

For all L, Latents(L) : = <NULL, NULL, NULL>

Input.Parents: The set of cluster assignments. Each member of Latents (i.e., a specific 

latent) contains < IN = set of inputs for the latent, OUT = set of outputs, and LC = set of 

latent children (i.e., a latent descendant). >

For all x in outputs

     If there exists a y in 

latents

 such that 

Input.Parents

(x) == 

IN

(y)
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OUT

(y) := 

OUT

(y) U {x}.

     else

          Create a new member, z, of 

Latents

, with 

Latents

(z) :=

               <

IN

(z):= 

Input.Parents

(x),

               

OUT

(x) U {x},

               NULL>

Step 3.

For each x, y in Latents
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     If 

IN

(x) is a proper subset of 

IN

(y), and 

IN

(x) is the largest such subset, then

          

LC

(x) := 

LC

(x) U {y};

          for all z in 

Latents

,

               

IN

(z) := 

IN

(z) \ 

IN
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(x)

Step 4.

For each x, y in Latents,

     If 

LC

(x) == y and 

OUT

(x)_‖_ 

OUT

(y) | (

IN

(x) and 

IN

(y))

          

LC

(x):= NULL

          Let z be the smallest subset of 

IN

(x)U 

IN
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(y)such that 

OUT

(x)_‖_ 

OUT

(y) | (z)

          

IN

(x):= 

IN

(x) U {z}

          

IN

(y):= 

IN

(y) U {z}

Step 5. pc.pattern.infinite := PC( X, depth=infinite)

Step 6. Examine the graphs produced in steps 4 and 5 (name these G4 and G5, respectively).

For each output variable Oi in G4 such that there is no direct edge between Oi and any input 

variables in G5, remove the edge between Oi and its latent. Add any adjacencies (from G5) 

between Oi and the outputs connected to Oi 's former latent.

Step 7. Return the graph from the end of step 6.
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Appendix B: Proof of Algorithm Sufficiency (Murray-Watters, 2014)

Assumptions

A1 Markov Assumption: Every variable is independent of its non-descendants given 

the variable's parents.

A2 Faithfulness: A graph and a probability distribution are faithful to one another if all 

the (un)conditional independence relations in the probability distribution are 

entailed by the graph and the Markov assumption.

A3 The true graph is acyclic.

A4 The true graph is singly connected.

A5 Every latent has at least two inputs and one output.

A6 No input has a path to an output except through a latent.

A7 Inputs are probabilistically independent of one another.

Note: Generalizations of the algorithm are possible without this assumption (A7), 

but the information recovered may be reduced.

A8 Every measured variable is an input, an output, or a descendant of (an) output(s).

Proof of correctness for step 1

Due to assumptions A1, A2, and A3, the PC algorithm will produce a pattern consistent with 

the unconditional independence relations true of the measured variables in the true graph. 

Using this pattern, every input variable from the generating graph will only have adjacencies 

connecting it to output variables in the generating graph (As assumption A7 forbids 

adjacencies between input variables).

For every pair of variables that are inputs in the true graph, there will be no adjacency 

between the two variables in the PC pattern (By A7).

For every variable that is an input in the true graph and every output that is a descendant of 

that input, there will be an adjacency in the pattern returned by PC (By A6).

All of these adjacencies in the pc.pattern will ultimately be a directed edge from an input to 

an output variable, as the only paths from inputs to outputs in the PC graph output will be 

through unshielded colliders (Due to assumptions A5 and A6). Therefore, every input will 

have a total degree of no more than 0. Finally, due to assumption A8, every output variable 

must have an indegree greater than 0. So step 1 correctly classifies the input and output 

variables.

Proof of correctness for step 2

As every edge connecting an input to an output in pc.pattern must be the result of a path 

through a latent in the true graph (due to A6), and every output variable is a descendant of a 

latent (A8), there must be at least one latent (assuming the PC graph is not empty).
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If there are sets of outputs whose members only have edges (in the pc.pattern) to some 

subset of the inputs, then there must be more than one latent (due to A6), and each of these 

sets of outputs must have its own latent as the only path from an input to an output is 

through a latent (A6). Thus giving the correct number of latents.

Proof of correctness for step 3

If the input set of a latent (a) is a subset of the input set of another latent (b), and a is the 

largest such subset, then it must be the case that a is a latent cause of b (or latents a and b 

share some inputs). Otherwise, the inputs of a would have to have a path to the outputs of b 

via a non-latent (forbidden by A6), or via some latent between a and b (which is forbidden 

by the “largest subset” condition).

Proof of correctness for step 4

If step 3 reports an edge between two latents, then either that edge exists in the true graph, or 

the latents share some input variables (A4 forbids both being true simultaneously). 

Therefore, if there isn't an edge connecting the two latents in the true graph, then 

OUT(x)_‖_ OUT(y) | (IN(x) and IN(y)), as there would be no open path connecting 

OUT(L1) and OUT(L2). If there is an edge between L1 and L2 in the true graph, then 

OUT(x)_\‖\_ OUT(y) | (IN(x) and IN(y)).

Proof of correctness for step 5

PC can be used due to A1, A2, and A3.

Proof of correctness for step 6

If an output variable has no paths to an input variable (in the pc.infinite pattern), then that 

output variable must be a child of only other output variables, else conditioning on observed 

variables would be insufficient to block all paths between the output variable and the input 

variables.
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Figure 1. 

Murray-Watters and Glymour Page 22

Philos Sci. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. The true graph
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Figure 10. The pattern after running the PC algorithm to find unconditional independence 
relations
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Figure 11. The graph following step 7, prior to running Sober's step
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Figure 12. The graph after applying Sober's step. Note the absence of the L1 to L2 edge
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Figure 13. The pattern returned by PC. Note the absence of an edge from any input variable to 
X6
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Figure 14. The final graph, returned by the algorithm
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Figure 15. 

The network reported after running the DM algorithm on a 4,369 variable subset (of an 

almost 30,000 variable set) of a genomic dataset.9 The black nodes represent latents, red 

nodes inputs (genes), and green nodes outputs (gene expressions). Note that some edges can 

overlap others in the picture.

9The dimension reduction was performed using cross-validated lasso regression (Hastie 2009) to select related variables. Lasso 
regression fits models where there are many more variables than observations by assigning less “useful” variables an effect size of 0, 
thus saving degrees of freedom for more useful variables. Gene mutations were predicted using gene expressions (17,610 regressions). 
Similarly, gene expressions were predicted using gene mutations (12,042 regressions). Only predictor variables belonging to an 
unusually large group of predictors (greater than the 99th quantile) were kept in the reduced dataset.
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Figure 16. 

An enlarged subgraph, where a latent-to-latent edge was found. The black numbers are 

latents while the red labels are genes and the green labels are gene expressions.
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Figure 17a

Figure 17b

Figure 17. 

The various causal structures from which data was simulated. Note that L1, L2, and L3 are 

all latents.
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Figure 18. 

The proportion of cases (out of 500) where an algorithm returned a model with the incorrect 

number of latent variables. The DM algorithm is depicted in red (on the left), while factor 

analysis is depicted in green (on the right). The graphs from which data were generated are 

those in figure 17.
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Figure 19. 
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Figure 20. 

A graph produced by the Silva procedure which fails to cluster input variables and does not 

find the directions for latent-to-latent edges.
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Figure 21. 

The true causal structure, discovered after using step 2 of the DM algorithm to cluster the 

inputs, and step 3 to orient the latent-to-latent edges.
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Figure 22. 

A causal system for which the cyclic structure is identifiable assuming linearity and the 

absence of output-output connections.
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