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Abstract

A philosophy for defining what constitutes a virtual high-throughput

screen is discussed, and the choices which influence decisions at each

stage of the ’computational funnel’ are investigated, including an in-

depth discussion of the generation of molecular libraries. Additionally

advice on the storing, analysis and visualization of data is given, based

upon extensive experience in the group.
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1. Introduction

As a society we categorize our history by either the prevalent materials (e.g. Bronze Age,

Iron Age, etc) or by the groundbreaking processes (e.g. the Industrial Revolution) related

to their manufacture. It would not be unreasonable to say that we are now in the age of

Materials Science - an age best categorized by the cornucopia of available materials made

possible by a scientific method for discovery. The path to the present day, however, has

not been simple, or well defined. Many of the most significant materials discoveries have

been made not by rational design, but instead are a product of happenstance, where the

stars aligned and the right person was in the right place at the right time. Perkins’s mauve,

vulcanised rubber, and teflon are famous examples of this process. This should not be

surprising, since the size of chemical space - recently estimated at > 1060 molecules (1) -

makes any kind of rational global search challenging in the extreme.

Fortunately, global exploration is rarely required - since we often have a good idea of

the local area of chemical space in which we would like to explore. This reduces the size of

the exploration from the order of 1060 molecules to somewhere on the order of 106. Whilst

this is still far too many molecules for even the most advanced experimental screening

techniques to consider, the massively parallel nature of the materials screening problem

coupled with recent advances in computer architecture and distribution techniques have

born the concept of a virtual high throughput screen - in which large libraries of molecules

are analyzed using theoretical techniques, and reduced to a small set of promising leads for
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experimental chemists to follow up on. Indeed, some have postulated that because of this, we

are on the cusp of a Golden Age of Materials Discovery. (2) We discuss the philosophy that

defines a high throughput screen, focusing on key areas such as size of library, hierarchical

techniques, and analysis methods. It should be noted that these techniques solely focus on

the discovery of a new material, and not the commercialization process, which is typically

much longer.

Inorganic

Materials

Organic

Materials

Organic

Pharmaceuticals

Size of search space

Level of approximation

Number of descriptors

Large

Medium

Small

Automated techniques
Data-driven discovery
Computational funnel

Timescale is important

Shared Features

Figure 1

High throughput screening techniques from many different areas share a core philosophy, despite

their computational needs being of different magnitudes.

2. The Philosophy Behind High Throughput Virtual Screening

Whilst high-throughput virtual screening has existed (particularly in the pharmaceutical

sciences) for a while, its definition is somewhat intractably tied to the capability of the

state of the art hardware at the time of calculation. We therefore propose that this field is

better defined by the philosophy of the calculations undertaken rather than the number, or

intensity.

2.1. Context

Whilst the context of the calculations and chemical space differ between inorganic materials,

organic materials, and organic pharmaceutical chemistry, high throughput screens in all

of these areas share the same underlying philosophy. Together, these statements form a
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Four Philosophies of High Throughput Virtual Screening

1. Timescale is important; time critical techniques require high-throughput solutions

2. Automated techniques; high-throughput approaches require automation

3. Data-driven discovery; Trends in the data are often as important as the data itself

4. Computational Funnels; A funnel like approach, in which only promising molecules are

exposed to expensive calculation methods, allows efficient deployment of computation

definition of a high-throughput screen. We expand upon each of these, before reviewing

their application in the literature as well as from our own research experiences.

2.2. Time critical problems require high throughput solutions

Research moves at a variety of speeds. Whether it is due to pressure from competitors,

financial motives, or social pressures, it is often desirable to use a high throughput technique

to quickly focus on one particularly promising part of chemical space. Additionally some

problems are intrinsically time critical. Our supplies of fossil fuels are finite, and rapidly

dwindling; however our consumption continues to increase year on year. New technologies

must be both developed and implemented soon to allow us to continue to feed our energy

needs. Clearly the timescale of studies such as these is of sufficient importance that it

must influence the design of the investigation. It is in this area that high throughput

methodologies deliver greatest value.

The timescale, whether required or desired, is one of the factors which we

believe defines a high throughput screen.

2.3. High-throughput approaches require automation

By its very definition, it is at the least exceptionally challenging - and often simply impossi-

ble - to manually perform a high throughput screen. The generation, storing, and querying

of the large volume of data require some degree of automation to be efficient, and these

aspects will each be discussed in more detail in the upcoming sections. The increased use

of combinatorial techniques adapted from life sciences for the generation of libraries has

allowed the creation of initial libraries of millions of candidate molecules; leaving a manual

approach far beyond the ability of even the most fervent of investigators.

High throughput screens require automation, especially in the early stages

2.4. Computational Funnels allow efficient deployment of computation

Frequently, the calculation of the property of interest in a screen is intrinsically too expensive

for mass deployment over all potential molecules thus potentially placing it outside the

realms of a high throughput approach. One approach to avoiding this pitfall is to employ

a computational funnel. Each level of the funnel represents a calculation with well defined

error-bounds, and at each level structures are ruled out based upon selection criteria defined

by the error-bounds. Since each level is progressively more computationally intense, only the
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molecules most likely to be of interest are calculated with the most expensive methods, with

each new level affording additional information about the molecule. The final ‘test’ is an

experimental fabrication of a device as close as possible to the expected running conditions,

and since this is both slow and expensive, the fewer number of candidate molecules which

reach this stage, the better.

Following a computational funnel allows us to focus computational effort on

promising molecules

Molecules most likely

to be of interest

Computational 

cost

Figure 2

A computational funnel scheme. The increasingly strict filtering criteria eliminates many
molecules that are not of interest and identifies the top performing candidates in a virtual library.

3. Molecular Libraries

3.1. General considerations

Every project that aims at a high-throughput screening of a section of molecular space must

begin by selecting the candidate molecules to be investigated. This process is crucial, since

it puts boundaries to the possible outcomes from the start; the successful candidate can

only come from the initial library, or from its successive rounds of growth.

The generation of libraries is particularly important in exploratory research, when it is

not known what type of molecule will solve a given problem, and somewhat less so when

one one is performing a thorough crib through some fixed finite subsection of space. That

is, generating novel lead backbones is a harder challenge than pursuing a complete set of

substitution patterns through side chain enumeration

In molecular space, it is particularly difficult to perform systematic explorations: we
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lack any predefined magnitudes to survey chemical space, so that we can move systemati-

cally along them and create a search grid or more sophisticated search pattern. Molecular

structure obeys a large and complex set of rules that so far defies systematic exploration.

Despite the obvious, and also subtle, dissimilarities with drug discovery in the pharma

industry, high throughput screening of organic materials has much to learn from its older

and larger sibling. In the field of drug discovery it is common to explore known chemical

space for novel applications rather than try to create libraries de novo. (3), or at least,

perform variations starting on a known drug, after the maxim: ’the most fruitful basis for

the discovery of a new drug is to start with an old drug’. (4) This is due to a combination of

reasons, such as the large capital costs of developing new drugs, the high cost of late-stage

failures or the fact that structure-biological activity relationships are usually much more

obscure than structure-property relationship in the less mature area of organic materials

screening.

Given the intrinsic impossibility of enumerating all the molecules in all but the smallest

sections of molecular space, much effort is being put into methods to avoid explicit enu-

meration in high throughput screening, with approaches such as optimizing potentials to

make a rugged region of chemical space flatter, (5) alchemical transformation on a given

backbone (6), generating aromatic rings that electronically equivalent to a reference; (7)

stochastic generation of derivatives; (8), recursive substructure searches (9) or morphing

of starting molecules of interest. (10)

However, more often than not, high-throughput-screening projects rely on explicitly

enumerated libraries. Led by the need for diverse drug-like molecules, many examples of

computer-generated molecular libraries have spawned in recent years, oriented mostly at

compounds with potential biological activity. The chemical universe generated databases

aim at exhaustiveness: GDB-11 with 14 million molecules containing up to 11 atoms of C,

N, O, and F; (11) GDB-13 with under one billion molecules containing up to 13 atoms of C,

N, O, S, and Cl; (12) GDB-17 with 166 billion molecules; (13). Many other more oriented

databases exist aiming at exploring smaller subsets of larger molecules, such as tetrapyr-

role macrocycles; (14), natural product-like virtual libraries through recursive atom-based

enumeration (15) or the recently reported ZINClick database of 16 million triazines (16)

3.2. Molecular diversity

Molecular diversity, is a vital concept in screening of molecular libraries which material

screening has also inherited from pharma. Research in virtual molecular libraries has

attracted much attention into trying to maximize molecular diversity within a given li-

brary. (17) The aim of diverse libraries is to do a homogeneous multidimensional crib of

molecular space, where little effort is spent exploring the neighborhood of areas already

represented in the library.

The key issue however is that we lack absolute axes along which to survey molecu-

lar space (18) and thus, we do not have universal metrics to assess similarity: a single

iso-electronic alchemical substitution can completely disrupt the electronic structure of a

molecule, whereas large variations in side chains can be relatively harmless to optical proper-

ties. Thus, what similarity metric to use, and ultimately how diverse a library is, is more an

ad hoc decision based on chemical intuition than an intrinsic property of a library. (19, 20)

6 Pyzer-Knapp, Suh, Aguilera-Iparraguirre, Gomez-Bombarelli and Aspuru-Guzik



3.3. Generation of custom-made libraries

As mentioned above, the connections between molecular structure, electronic structure

and device properties in organic electronic materials are more straightforward than the

structure-activity relationships in drug discovery, where even knowing the macromolecular

target hardly limits the choice of potential scaffolds. Since the cpu cost of computational

methods in organic materials is quite high (see below), it is important to have as high a

hit-ratio has possible, and thus it is often more rewarding to generate custom libraries to

trawl promising regions of molecular space, rather than using generic predefined ones. Many

different codes have been reported for the assembly of virtual molecular libraries, oriented

essentially towards lead discovery and optimization in pharma. (21, 22, 23, 24, 25, 26, 27,

28, 29, 30).

Library creation implies generating some or all the possible combinations of a given set

of fragments in a combinatorial way according to a set of rules. The fragments and the rules

may borrow from experimentally feasible combinatorial synthesis schemes, or they may just

be arbitrary schemes to explore chemical space with only indirect connection to chemical

synthesis.

In addition, it is necessary to set a limit when the growth of the molecule will come

to and end. This termination procedure will define the maximum size of a given molecule

and thus set a ceiling for computational cost, helping estimate the resources needed. In the

most trivial case, a one-off combinatorial linkage, the maximum size is easily estimated with

the maximum size of the two fragments to be joined. In more complex cases with variable

growth steps, stopping points can be fixed at given round of growth, maximum atom or

electron count or maximum molecular mass.

The challenge of selecting a slice of molecular space cannot be overstated and deep

chemical knowledge can be leveraged to generate libraries that explore novel regions and

exploit promising ones while keeping the number of false positives as low as possible.

In addition, the fundamental target is to produce a library of molecules that fulfill some

property requirement, that are also accessible, i.e. that are possible to synthesize, and

ultimately represent good value for investment - both time and economic. These factors

represent soft constraints, that change not only between projects but ultimately within a

project: a more challenging synthesis can be pursued for a higher payoff. (31) It is important

to address these contstraints at the earliest point - the construction of the molecular library.

Substitutions patterns in the fragments, and mode of growth are key items here: a molecule

is more likely to be synthesizable if the substitution pattern is the same in identical positions

within a moiety.

The next challenge of molecular library generation is to encode these soft synthesis con-

straints into algorithmic molecular growth rules, so that as little time as possible is wasted

synthetically inaccesible regions of molecular space. Chemical intuition can be leveraged in

the generation of libraries to maximize the chances of discovering molecules that are both

synthetically accessible and useful for a given application. For instance, using constrains

based on synthetic accessibility, O’Boyle et al. reduced a set from potentially 800 million

combinations to a mere 60 thousand in a search for organic photovoltaic materials. (32, 33)

There is, however, a tradeoff to encoding these soft constraints into hard algorithmic

rules: since only what is in the library gets to be screened, one risks leaving out of the

process molecules that are harder to make but perhaps have game-changing properties: the

high-risk high-reward scenario. It would be desirable then, to assess synthetic availability

just like any other property along its own scale, and molecules can be judged globally.
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Despite large efforts to automatically assess synthetic availability, (34, 35, 36, 37, 38) we

have yet to reach the point where these synthetic constraints can be extracted away from

the library generation process and passed on to another score.

The computational efficiency can also be improved by hard coding some constraints into

the library generation software, by prohibiting and filtering out molecules carrying certain

functional groups that may arise during the molecular generation procedure and that are

either fundamentally unstable for the foreseen application or detrimental to the property

of interest.

In the following paragraphs three specific examples, currently being pursued by our

own research group, of custom-generated libraries are reported, in the areas on organic

photovoltaics, small molecule organic based flow batteries and organic light emitting diodes.

3.4. Organic photovoltaics

Given humanity’s ever-increasing appetite for energy and the obvious drawbacks of conven-

tional non-renewable energy sources, developing materials to harvest solar energy has been

one of the targets of high-throughput virtual screening. The Clean Energy Project (CEP) is

an effort for the the discovery of the next generation of plastic solar cell materials (39). So

far, over 3 million molecules have been generated and a total of 300 million DFT calculations

have been performed to identify low-cost, high-efficiency organic photovoltaics.

All the molecules in the CEP library were grown from an initial selection of 26 frag-

ments. (40) The main source for this initial library is chemical intuition from experimental

collaborators. This expertise was leveraged not only in the fragment selection, but also in

the definition of the positions through which the fragments can be joined.

The strategy followed in this case included two possible fragment combinations. The

first one, “linking” created a single covalent bond between the two fragments undergoing

the reaction. The second one, “fusion” was used when both fragments include rings. This

reaction made a final molecule where a fused ring is created with the two original fragments

sharing a covalent bond, as can be seen in Figure 3. It is important to note that this

second process requires the loss of two carbon atoms, so it is not related in any way to a

chemical process, being a purely computational construction. The cutoff for growth was

number of generations, with molecules all the way to tetramers (combination of four original

fragments), and a total number of molecules to be screened of over 3 million.

3.5. Organic-based flow batteries

Renewable energy sources such as sunlight or wind have a more unpredictable output than

traditional non-renewable ones, and thus a shift towards greener energy sources will require

developments in energy storage to compensate the highs and lows in energy production.

Flow batteries are a promising response, and Aziz et al. have proposed the use of an-

thraquinone derivatives as electrolytes in flow batteries for massive storing of electrical

energy. (41) The use of organic redox species opens the doors to sustainable sourcing the

electrolytes. The choice of anthraquinone redox molecule was helped by a combinatorial

screening involving R-group enumeration in multiple quinone backbones.

The goal of molecular generation in this project was to pursue of a complete set of

substituion patterns through R-group enumeration. The molecular frameworks were set

from the start (benzo-, naptho- and anthraquinone), and the full combinatorial space of

substitution with one or multiple instances of each functional group were explored. These

8 Pyzer-Knapp, Suh, Aguilera-Iparraguirre, Gomez-Bombarelli and Aspuru-Guzik



patterns were applied to several R-groups including sulphonate, hydroxy and phosphonate.

The nature of the side groups, mostly their electron-withdrawing or electron-donating and

their polarity, tune the two key chemical properties for these materials: redox potential and

solubility.

The “linking” procedure described before is used to generate all the possible combina-

tions of core and R-group. Libraries that explore full R-group enumeration can be very

sizeable, since they grow factorially with the number of positions: in this case, all the pos-

sible 1,2; 2,3 and 1,4 quinones are possible for a given ring backbone, and in each of this,

every remaining carbon atom in the quinone ring can bear a functional group. See Figure 3.

A key issue to take into account is how many different R-groups to be combined in a given

molecule. For a quinone with 8 available C-H positions and a single R-group, the number

of posible molecules (excluding symmetry) is 8!. With the inclusion of a second R-group,

8! · 7!, and with a third, 8! · 7! · 6!. The number becomes astronomical even for a small

number of different R-groups. A very early cutoff has to be chosen regarding the maximum

amount of different groups in a given molecule. In this particular case, that number was

limited to 2.

There is no need to select a termination strategy since the maximum size is determined

by the size of the core plus that of the substituents. In a first library, (41) the substitution

pattern explored was that of singly oxidized quinones either singly or fully substituted

with one R group within a list of 14. This was widened after to benzo-, naphto- and

anthraquinones bearing two C=O groups and any substitution pattern with any instances

of a single R-group (with a total of 3037 unique substitution patterns).

3.6. Blue organic light emitting material

Recent developments in thermally-assisted, delayed fluorescence (TADF) have opened the

door to novel clases of organic light-emitting diodes (OLED). (42, 43) These novel molecules

exhibit low enough splitting between their lowest singlet and triplet states that efficient

thermal re-population of the emissive singlet from the dark triplet is possible. Low-splitting

excitations correspond to charge transfer states, and thus the basic TADF OLED must

include electron donor and electron acceptor moieties, with some linker breaking the π

conjugation.

TADF molecules molecules have to satisfy a very specific Donor-(Bridge)-Acceptor

structure. As described above, it is advisable to encode as much chemical knowledge as

possible into the library generation process, to avoid spending valuable screening time in

areas of chemical space that will be barren by necessity. One can picture the inefficiency

of a scenario where fragments are combined without restrictions and only an analysis a

posteriori would lead to the desired configuration.

Three successive strategies have been applied in the fragment selection. Initially, frag-

ments were selected that have been present in the OLED literature. In a second effort,

a new set of fragments not related with the OLED literature were selected, underwent a

screen to trim undesirable candidates (in this case, according to the HOMO and LUMO

positions and optical properties) and in a further step, to facilitate the synthesis of the final

molecule synthetic availability of each fragment was confirmed in the literature.

The third and final strategy, included a random generation of fragments; creating one-,

two- and three-ring heterocylces with various amounts of nitrogen, oxygen and sulfur and a

pre-screen for electronic properties. This a big-risk big-reward scenario, where completely
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new fragments not explored or synthesized before are studied.

As is the case with the organic flow battery project, only the “linking” described before

was used. To fulfill a Donor-Acceptor strategy, the Donor and Acceptor space was first ex-

panded with combinations of each of them with Bridge fragments in a symmetrical fashion.

This symmetry constrain, i.e. that analogous positions in a molecule grow in a identical

way, is paramount for increasing the synthetic availability of molecules, while restraining

the combinatorial nature of the growth and reducing the computational cost of screening by

orders of magnitude. In a final step the Donor and Acceptor parts are combined with each

other. For a small example, see Figure 3. A maximum molecular weight is determined to

limit the size of the final molecules generated.

3.7. Other considerations

We have very broadly explained three different strategies to achieve the generation of a set

of molecules to be used for screening. There are a few ideas to be considered to further

improve this process. We have seen the use of the concept of symmetry to guide synthesis.

There are other ways to improve this process. We can forbid the creation of certain covalent

bonds that may be very difficult or impossible to make. Similarly, if there are factors known

about the physical processing of the final product (e.g. evaporation) it may be desirable

to exclude molecules with certain limiting physical properties (e.g. the molecular weight)

from the molecular library.

The most crucial point, at least conceptually, is the fact that once the fragments and the

way they combine is selected, we have limited ourselves to a very small area of the molecular

space. No molecule outside that area will be screened. The decision made is a compromise

between including a big part of the molecular space and keeping the computational expenses

tractable. We should be able to establish a feedback loop to rethink the generated set with

new fragments or combinatorial strategies when new information about the chemical space

is available.

Figure 3

Reactions and combinations in virtual library enumeration. ’A’ shows the linking procedure, used
in the blue OLED project, and ’B’ the fusion procedure additionally utilized in the Clean Energy
Project. ’C’ shows the enumeration of the different substitution positions considered in the
organic-based flow battery project, and ’D’ shows how a donor, bridge, and acceptor molecule
combine to give a potential blue OLED material.
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4. On the Theoretical Calculation of Materials Properties

The selection of simulation tools for high-throughput materials screening must be guided by

clearly defined objectives in terms of the physical and chemical properties that are desired

or necessary for the target technology. In other words, what are the optimization param-

eters and what are the constraints? In order to answer this, it is often necessary to ask

further questions about the desired physical properties of the material. For instance, under

what conditions will the material be required to remain stable, will processing conditions

place limits on molecular weight or solubility, and what properties will be associated with a

cheap and safe material? Is the target property thermodynamically or kinetically limited?

Partnerships with industry may be useful in identifying the right constraints since synthe-

sis or processing considerations may differ significantly between academic and industrial

laboratory settings. The answers to these questions may guide the selection of the list of

properties to screen for. For instance, a screen for battery electrolyte solvents might focus

on a desired electrochemical stability window, melting and boiling point temperatures, vis-

cosity, dielectric constant, Li-ion conductivity, and electronic conductivity ranges. Of these

properties, only those that can be estimated with suitably cheap computational models

can be chosen as initial screening criteria. In the realm of organic materials, this typically

means that only single molecule properties may be calculated, and solvent or solid-state

effects, must be estimated through an empirical model. In the example of electrolytes,

the electrochemical stability window is an easy target property for quantum chemical sim-

ulations. Studies on a small family of related compounds will often guide the choices of

what methodology is approriate at different levels of a staged screen. We cannot emphasize

enough that domain-specific knowledge must guide the selection of both search space and

computational tools since judicious choices will vastly improve both the efficiency of the

expended computer time and the viability of top performing candidates.

Computational methods for screening material properties might broadly be broken into

the following simulation categories: quantum mechanical methods (semi-empirical, density

functional theory, or wave function theory), classical force-field based methods, and data-

driven paradigms (encompassing quantitative structure property relationships, genetic algo-

rithms and machine learning approaches). By virtue of targeting high-throughput compu-

tation, computational cost sharply limits the available computational techniques. However,

in screening we are only interested in the ranking of candidates, and therefore systematic

shifts between computational and experimental results need not be concerning, as long as

the faster method does not introduce so much error that we are unable to correctly identify

the top hundred or so candidates. (44)

We demonstrate how the choice of property, and the wider context of the screen, can

influence the methods used by looking in detail at three areas:

1. Inorganic Li-ion batteries (e.g. The Materials Project)

2. Organic Photovoltaics (e.g. The Clean Energy Project)

3. Organic-Based Flow Batteries

4.1. The Materials Project

The Materials Project is a high-throughput effort focused upon traversal of the inorganic

materials space in search of novel battery materials run by Professor Gerbrand Ceder (MIT)

and Dr. Kristin Persson (Lawrence Berkeley National Laboratory). To date they have

computed relevant properties of over 80,000 materials and screened 25,000 of these for use as
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potential Li-ion batteries. This has so far used over 15 million CPU-hours of computational

time at the National Energy Research Scientific Computing Center (NERSC).

Whilst the Materials Project mainly utilizes ’traditional’ compute sources (large super

computer clusters) the results are distributed through a web portal, (45) and can be searched

and analyzed using a custom python module PyMatGen. (46)

Since the Materials Project is interested in electronic properties, a method based upon

quantum mechanical principles is required. The high-throughput DFT computations were

performed using the Vienna software package (VASP) (47), using the PAW pseudopoten-

tials (48) and the Generalized Gradient Approximation (GGA) (49). GGA was chosen

since it represents a good compromise between speed and accuracy. To compensate for

the known errors in the model due to electron self-interaction energy, calculations were

performed within the DFT+U framework. (50) Ceder et al. note that the use of hybrid

functional - which reduce the effects of the self interaction energy term - could increase

the accuracy of the calculation and remove the need for operating within the DFT + U

framework. These were, however, considered too expensive for use in a high throughput

screen. (51)

It is sometimes the case that one particular method of calculation will have systematic

failings for particular classes of molecule. The Materials Project aims to avoid any such

biases within its data set by classifying materials into different classes, each with their own

specific battery of associated calculations. The results from these calculations are then

unified over the global population using a set of reference reactions to connect results from

different methods. (52)

4.2. The Harvard Clean Energy Project

The Harvard Clean Energy Project is a search for molecules with the potential to be

employed in organic photovoltaic devices. (39, 53) It is unique amongst materials high-

throughput screening projects for the scale at which it utilizes distributed computing

through the World Community Grid. (54) It has been estimated that the computing power

that this affords the project is in the order of a fully utilized 6-7,000 core cluster, and the

amount of harvested CPU time can be seen in Figure 4.

With such a large amount of computing power available, a slightly different approach

was taken to the Materials Project. In place of one fast functional (GGA), the Clean

Energy Project calculates properties of molecules with a range of different functional both

to reduce systematic errors that occur in particular functionals, and also to investigate how

the choice of functional affects the values computed. The basic work-flow consists of two

types of job; an optimization of the molecular geometry, and a single point calculation on

that optimized geometry. Even with the vast resources available, optimizations using all

the different functionals was not considered a good deployment of computational power,

and so the geometry as optimized using the BP86 functional was used for all single point

calculations.

For solar cell performance, the electronic structure itself is not the property of interest;

rather it is how the electronic structure interacts with photons of sunlight that provides

the true ranking metric. For this, the Scharber model of the power conversion efficiency

(PCE) (55) was used to rank molecules. The Scharber model is a specialized version of

the Shockley–Queisser model (56) for OPVs and is based upon the energies of the highest

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
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- which are both easily calculable properties.

Due to its large size (over 3 million molecules, and over 300 million quantum-chemical

calculations), the Clean Energy Project Database (57) provides an ideal test-bed for data-

driven approaches such as cheminfomatics and machine learning. These methods repre-

sent the potential for quickly and rigourously developing Qualitative Structure Property

Relationship (QSPR)-type models from existing data, which can then be used to focus cal-

culation effort upon promising areas of chemical space. Olivares-Amaya et al. have used

cheminformatics descriptors to this effect, calculating the current–voltage properties of over

2.5 million molecules using linear regression descriptor models. (40)
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Figure 4

The amount of CPU harvested over the course of the Clean Energy Project calculated as 1-CPU

runtime equivalent.

4.3. Organic-Based Flow Batteries

The search for a metal free flow battery by Aziz et al. (41) represents a good example of

how a high throughput virtual screen can complement an experimental study, improving

the efficiency of optimizing the molecule within a chemical space.

An essential component of this new generation of aqueous redox flow battery is a unique

quinone molecule, the 9,10-anthraquinone-2,7-disulphonic acid (AQDS). The small, elec-

troactive, and water-soluble AQDS molecule that is used at the negative side of a flow

battery was identified using quantum chemical calculations on a pool of approximately

10,000 candidate molecules. Computational studies were focused on to investigate how

changing the substitution patterns of AQDS would affect two key properties:

1. The redox potential, E0, of the quinone-hydroquinone couples

2. The solvation free energy, G0

solv, of quinones in water

For a high-throughput search such as this, where the generation of three-dimensional

structures (conformers) are an important component of calculation workflow. As with

any calculation, there exists a trade-off between computational cost of a calculation and
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accuracy. Since the generation of many conformers represents a more complete exploration

of the energy landscape of a molecule, an additional criteria is introduced: the completeness

of the search.

With a high-throughput screening, the number of molecules to be processed dictates

the amount of time that the argorithm can spend on each molecule. Conformer generation

algorithms can be generally split into two categories:

1. Physically motivated generators (e.g. a low-mode generator (58))

2. Rule based generators (e.g. Corina (59))

The most reliable way to have an acceptably complete search (ignoring the trivial case

of simply varying all torsion angles and calculating the energy - which is simply too costly to

use in anything other than the simplest of cases) is to use a physically motivated generator,

such as the low-mode conformer generator implemented in MacroModel. (60) These tech-

niques have shown good results in the many different circumstances, but are also slow to

run. In general, the rule based conformer generators are much faster than their physically

based counterparts. The price that comes with that speed increase is that, due to their very

nature, they are only applicable to molecules which are similar to those which were used to

develop the rules on which they are based. Since the molecules within Aziz et al.’s search

were all similar; it was determined that a rule based search was acceptable, and starting

geometries were improved by minimization using the Dreiding force field, (61) from which a

low energy selection were then re-minimized using density functional theory (GGA/PBE) -

which, as discussed in the previous example, represents a good compromise between speed

and accuracy.

This project continued to use the concept of the computational funnel with its approach

to calculating E
0 and G

0

solv - the properties that are of primary interest for the development

of flow batteries utilizing water-soluble, electroactive molecules.

5. Considerations for High Throughput Virtual Screening

5.1. Deployment of a High Throughput Virtual Screen

Having decided that high throughput virtual screening is the correct solution to a particu-

lar scientific problem, focus now shifts onto the deployment of the calculations which will

produce the data of interest. The university, or company, computing cluster is the tradi-

tional locale for these computations. The compute capability across these types of machine

is typically very isotropic and reliable, with a file-system that will allow the running of a

large number of intense calculations at the same time. The one major downside to using

these resources is that they are typically shared amongst many users, limiting the time

any one user can get for their own projects. One other alternative option that has gained

traction recently is the use of distributed computing. This uses idle time on the computers

of volunteers to achieve a facsimile of the compute cluster by borrowing compute time from

these transient ’nodes’. Popularized by the ’Folding at Home’ (62) and ’SETI at Home’ (63)

projects, this approach has yielded good results for a wide variety of projects, especially

through IBM’s World Community Grid initiative. As demonstrated in Figure 4, this can

result in significant amounts of CPU resource - invaluable to a high-throughput virtual

screen. Of course there are downsides to this approach, which mainly result from the fact

that calculations are being performed upon computers whose main purpose is not simply

compute, but so long as the project requirements are not too strenuous this remains a valid
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approach - indeed we are starting to see universities utilise it for their own research. (64)

5.2. Dealing with Data from High Throughput Screens

Data produced as a product of a high-throughput screen produces a series of challenges,

which may be unfamiliar to scientists. Whilst the next section will be dedicated to the

analysis and visualization of large data sets, it is also important to consider how this data

is stored and accessed.

Databases offer an attractive solution to both the storage of and the structured querying

of data but it should be noted that there are many flavours of database architecture, and

choosing the right one for your needs is crucial.

In general, databases are split into two camps: the relational databases based upon the

Structured Query Language (SQL), and the non-relational databases (NoSQL). Each offers

distinct pros and cons which should be weighed up when deciding on how to proceed. SQL

databases offer complete transactional integrity, but lack flexibility. On the other hand,

NoSQL databases offer a much more flexible structure, but do not guarantee transactional

integrity. Additionally, its object orientated nature makes NoSQL databases more intuitive

for storing different types of data which is all linked to one parent. A basic schema that

shows how the flexible NoSQL format allows the storage of different types of data is shown

in Figure 5. Due to its flexible framework and data types, the same underlying model has

been successfully applied to projects of varying size and with varying needs and so, within

our group, we favour the use of a NoSQL database (MongoDB) for the storage of the vast

majority of our information.

The main characteristics of SQL and NoSQL databases are summarized in Figure 6,

but it should be noted that a well implemented NoSQL database will outperform a poorly

implemented SQL database, and vice versa.

Figure 5

A basic schematic showing how different types of data (molecular descriptors, geometries,
properties, calculation meta-data) can co-exist easily within a NoSQL format. Arrows represent
bi-directional links between documents, and are embedded within the parent and child document.
Additional meta-data is embedded within documents, which improves performance by reducing
the number of steps required in a query.

One major benefit of interacting with data in a database format, whatever the flavor, is
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that it affords the scientist access to a wide range of tools specifically designed for analyzing

large amounts of data. All of the database architectures have their own shell for querying,

and also allow access through a variety of popular scripting languages; large scale data

analysis has never been easier.
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Stable

Semi-structured
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Emerging
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Figure 6

A comparison between SQL and NoSQL architectures; whilst SQL does allow transactional
integrity, we believe that the enhanced flexibility of NoSQL databases make them the ideal choice
for high throughput virtual screening since they can be easily modified to adapt to changing data
and requirements.

Another advantage of NoSQL databases is the fact that their performance scales both

horizontally and vertically. Whilst SQL databases need, on the whole, to be stored on

one machine; NoSQL databases were designed to be split over many machines - a process

known as sharding. The process of sharding spreads data across shards (servers), and

since NoSQL architectures implement this natively, most will support balancing and query

loading - resulting in good database performance with minimal maintenance costs. Since

performance can be gained by simply adding more machines to the system, it represents

a much cheaper option than having to purchase increasingly powerful machines as your

database grows.

6. On the Analysis of Large Amounts of Chemical Data

It is highly desirable to analyze chemical data generated from high-throughput screening in

a high throughput manner. The primary targets using high throughput data analysis is for

(a) the suggestion, prioritization, and identification of top candidates for targeted synthesis

and (b) uncovering sophisticated knowledge described as quantitative structure-property

(activity) relationships (QSAR/QSPR) toward rationalization of selected candidates (3)

and (65). More importantly, using high throughput data analysis creates unprecedented

insight for future experiments. Both the generation of large-scale data and fast, yet accurate,

data analysis in an unbiased manner are equally important in high throughput screening

(66, 67).

It is recognized that due to the sheer size of the data produced in a high-throughput

screen, using traditional data analysis techniques will impose a significant bottleneck upon
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A diagramatic representation of vertical and horizontal scaling in database architectures. Since

there is a non-linear scaling between computer power and cost, a vertical solution will be more
expensive than its horizontal counterpart.

the screening procedure. This will in turn impose restrictions on the agility of the screen-

ing cycle to adapt to emerging trends and results. (68). We face exponentially growing

requirements around organizing, summarizing, and interpreting such large amounts of high

throughput data with respect to the vast chemical space to explore. In particular, there are

three challenges in high throughput data analysis. First, the data we collect is increasingly

voluminous, high-dimensional, complex, noisy, and diverse. Second, the chemical space

to explore is essentially infinite and even a well-designed chemical library cannot cover all

possible chemistry (69).

Currently, chemical data being generated through high throughput screening over-

whelms traditional data analysis, undermining our ability to perform interactive and ex-

ploratory analysis and visualization of these data in post-processing. This situation will be

exacerbated since it will grow by orders of magnitude in the near future due to the ever in-

creasing hardware capability of computational resources. While high throughput screening

still needs on some level to provide the role of traditional data analysis, which scrutinizes

each individual data point, a further complication is the removal of bottlenecks to sug-

gesting candidates and extracting useful information such as QSAR/QSPR by treating the

data as a whole. To solve the issues addressed here, there are four main components to

consider and perform in high throughput screening data analysis: processing, mapping and

visualization, interpretation, and modeling.

Data processing: high throughput data analysis starts with ensuring the quality

of data we collected for further discovery procedures. Multiple tasks such as cleaning,

organization, normalization, and outlier detection need to be performed before a full data
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exploration. When summarizing data, statistics including analyses of systematic error,

correlation, or associations must be combined with simple visualizations such as heat maps

(70). Before performing additional data analysis it is important to consider molecular

descriptors that are encoded representation of molecules and useful for construction of

QSAR/QSPR models (67) and (71). Unlike high throughput data analysis for inorganic

materials, analysis of chemical data has distinct features in the development of descriptors.

With the aid of graph theory, for instance, fingerprints and fragments have become the

preferred descriptors for effective exploration of chemical space (3) and (53).

Data mapping and visualization: Mapping and visualization is one of the crucial

components in high throughput data analysis because it is a direct way to depict chemical

data and/or mined results with respect to chemical space to get insight into QSAR/QSPRs

(72) and (73). However, simultaneous mapping of information is not always simple due to

the nature of multi-dimensionality stemming from enumerated molecules, rules for bonds,

functional groups, their chemical properties, and so forth. According to the similar property

principle (74) and (75), similar chemical structures should have similar physicochemical

properties. In that sense, it is crucial to choose proper measure of distance in a high-

dimensional space to logically place molecules in property spaces defined by proper coordi-

nates in high-dimensional visualization for visual mining (73), (76), (77), and (78). There

are two broad categories of visualization for chemical information: direct visualization with-

out data treatment and with data mined results. Among the former are plot matrix, parallel

coordinates, heat maps, and other approaches (72). The typical approach for the latter

includes dimensionality reduction to lower high-dimensions to manageable levels. This can

be achieved by linear and non-linear dimensionality reduction, using, for example principal

component analysis and diffusion map embedding. (79).

Data interpretation: Given the large quantity of data generated within a vast chem-

ical space during high throughput screening, it is a natural choice to use data mining for

identifying hot spots (e.g. interesting regions) where we are likely to find more candidates

with desired functionalities from a vast chemical space (3) and (67). Data mining provides

a flexible computational path for meeting the need to explore large amounts of chemical

information. We often use various methods including classification, clustering, and predic-

tion.

Data modeling for calibration: It has been previously mentioned that despite our

best methods, experimental values are often not reproduced by computational techniques

due to the inclusion of some systematic error. One way to correct for this is to calibrate

the calculated results to experimental values. This results in data which is more intuitively

analyzed by experimental collaborators.

The challenge in conducting high throughput screening is ensuring the pace of explo-

ration of search space while keeping high levels of accuracy of calibration models (80).

Given the two critical factors of speed and accuracy, high throughput screening mainly

utilizes two types of approaches in advanced calibration modeling: hard modeling and soft

modeling. To understand material’s behaviors in a unified way, hard modeling captures

different length scales of materials behaviors with chemistry- and physics-based theories

and integrates such information (81). Although it provides highly accurate results, the

modeling generally requires high computational cost. Exemplary approaches of it include

ab-initio calculations and thermodynamic modeling.

In organic chemistry community, soft modeling has been a powerful approach not only

for enhancing the accuracy of hard modeling (82) and (83) but also for making fast
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and accurate property predictions (84). Soft modeling is based on statistical learning

methods to seek heuristic relationships between data (81) and it often uses developed

descriptors as well as knowledge extracted through the previous tasks to construct a cheap

yet robust model enabling the establishment and deeper understanding of QSAR/QSPR

(65). It includes regressions, artificial neural networks, multivariate analysis, and other

machine learning algorithms (85). Unlike hard modeling, the predictive soft modeling is

particularly valuable when physical/chemical models are not available. The models from

soft modeling are relatively cheaper to construct than those fully-generated from expensive

quantum chemical calculations, allowing accelerated screening procedures by replacing huge

number of such theoretical investigations with heuristically developed QSAR/QSPRs.

A good example of predictive calibration approach is the application of Gibbs energy re-

lationships to correlate electrode potentials of quinone/hydroquinone couples (41). Inspired

by Dewar and Trinjajstic’s early work (86), Huskinson et al. computed the differences in

gas phase energy between oxidized and reduced states of quinone couples and successfully

correlated those with measured redox potential values (41).

Note that robust calibration models should be developed from unskewed subspaces and

be generalized to appropriately cover other possible chemistries. In other words, to ensure

a higher prediction power for a wide-range of interesting candidates, the calibrated data

needs to be distributed in a proper range to cover a larger chemical space of molecules

to explore. It also should be noted that the quality of the training set determines the

accuracy of calibration model when screening large number of new hypothetical molecules

with limited or no experimental data in particular.

High throughput analysis of chemical data is a critical field of study in chemistry. It

has emerged to address the issues associated with larger, more complex data sets. With

increased understand of relationships between structure and property through high through-

put data analysis, the most concrete outcome from data-driven models is to direct future

experiments for high performance (e.g. output of desired properties) materials. More ab-

stractly, application of such data-driven models will greatly enhance our understanding of

basic physical and chemical principles (87). To those ends, data fusion and informatics

platforms are importance pieces that take greater advantage of knowledge. Data fusion is

an indispensable procedure in cutting-edge high throughput data analysis to link structures

and properties (88). It can be more effectively completed when performing high throughput

data analysis within the proper informatics platforms (68).

7. Future Directions

With the constant onslaught of new and improved computational hardware, and the in-

creased uptake of deployment techniques such as distributed computing, we strongly be-

lieve that high throughput virtual screening has an important role to play in the future of

materials science.

A key factor in this will be the resurgence of cheap, approximate techniques such as

semi-empirical quantum methods, and QSPR approaches. Whilst the lower accuracy of

these methods has resulted in a downturn in their usage in isolation, they gain a new value

when included in a computational funnel, since only relative values are important, and

known errors can be tolerated.

We predict that there will also be a sharp increase in the use of machine-learning

techniques to act as a fast approximation for materials properties. Their ability to exploit
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complex relationships between seemingly unconnected descriptors, and the fact that they

can be easily trained against a small subset of chemical space that is directly relevant to

the specific problem at hand makes them ideal for attacking these problems. Additionally,

Bayesian methods have a knowledge not only of the result of the model, but a confidence

in that answer. This can in turn be exploited to train the model on the fly, significantly

increasing its value.

For these models to work, it is essential that there are good quality experimental results

to calibrate against. It is therefore essential that experiments are performed in both an

exploitative and an exploratory manner. That is to say, experiments which increase the

knowledge of the local chemical space are as important as those which are focused on

optimizing properties. This can only happen with continued implementation of the ideas of

the Materials Genome Initiative, which aims to enable experimental and theoretical teams

to work together to reap the benefits from the increased efficiency derived from working

with a high throughput virtual screen.

With regards to experimental data, automated methods to collect the data, classify

it with respect to experimental conditions and measurement type are required for further

progress. Automated statistical methods to aid the assesment of reported vs. actual exper-

imental error bars will allow for better calibration of theory to experiment.

Finally, the development of software tools aimed at the collaboration between theoret-

ican and experimentalists while poring over the large datasets of hight-throughput virtual

screens, and iteration of synthesis and computation will aid to bring screening methods to

many more communities than the current group of scientists that practice it.

SUMMARY POINTS

1. A high throughput virtual screen is best defined by the philosophy employed in

approaching the problem

2. Library generation is a compromise between including a big part of the molecular

space and keeping the computational expenses tractable; a feedback loop between

theory and experiment is recommended to keep the search in productive areas of

chemical space

3. It is important to consider both the cost and the accuracy of calculations in a high

throughput virtual screen; cheap methods have significant value in minimizing the

number of molecules which are calculated using high-level methods

4. Identifying trends in the data is as important as identifying specific results

5. Calibrating results to experimental data can overcome deficiencies in specific meth-

ods

6. Exploratory, as well as exploitative, experimental results are crucial in the long

term success of high throughput virtual screening

DISCLOSURE STATEMENT

The authors are not aware of any biases that might be viewed as affecting the objectivity

of this review

20 Pyzer-Knapp, Suh, Aguilera-Iparraguirre, Gomez-Bombarelli and Aspuru-Guzik



ACKNOWLEDGMENTS

The authors wish to thank Martin Blood-Forsythe and Suleyman Er for helpful discussions.

The PI also wishes to acknowledge Samsung Electronics Co., Ltd. (SAIT); Dept. of En-

ergy - through Grant DE-SC0008733; and Advanced Research Projects Agency (ARPA-E)

through Grant Energy DE-AR0000348.

LITERATURE CITED

1. Reymond JL, van Deursen R, Blum LC, Ruddigkeit L. 2010. Chemical space as a source for

new drugs. MedChemComm 1:30

2. Cedar G, Persson K. 2013. How Supercomputers Will Yield a Golden Age of Materials Science.

Scientific American 309

3. Lipinski C, Hopkins A. 2004. Navigating chemical space for biology and medicine. Nature

432:855–861

4. Wermuth C. 2006. Selective optimization of side activities: the SOSA approach. Drug Discov

Today 11:160–4

5. Wang M, Hu X, Beratan DN, Yang W. 2006. Designing Molecules by Optimizing Potentials. J.

Am. Chem. Soc. 128:3228–3232

6. Balawender R, Welearegay MA, Lesiuk M, Proft FD, Geerlings P. 2013. Exploring Chemical

Space with the Alchemical Derivatives. J. Chem. Theory Comput. 9:5327–5340

7. Tu M, Rai BK, Mathiowetz AM, Didiuk M, Pfefferkorn JA, et al. 2012. Exploring Aromatic

Chemical Space with NEAT: Novel and Electronically Equivalent Aromatic Template. Journal

of Chemical Information and Modeling 52:1114–1123
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31. Osedach TP, Andrew TL, Bulović V. 2013. Effect of synthetic accessibility on the commercial

viability of organic photovoltaics. Energy Environ. Sci. 6:711

32. O’Boyle NM, Campbell CM, Hutchison GR. 2011. Computational Design and Selection of

Optimal Organic Photovoltaic Materials. J. Phys. Chem. C 115:16200–16210

33. Kanal IY, Owens SG, Bechtel JS, Hutchison GR. 2013. Efficient Computational Screening of

Organic Polymer Photovoltaics. J. Phys. Chem. Lett. 4:1613–1623

34. Bertz SH. 1981. The first general index of molecular complexity. J. Am. Chem. Soc. 103:3599–

3601

35. Boda K, Johnson A. 2006. Molecular complexity analysis of de novo designed ligands. J Med

Chem 49:5869–79

36. Bonnet P. 2012. Is chemical synthetic accessibility computationally predictable for drug and

lead-like molecules? A comparative assessment between medicinal and computational chemists.

European Journal of Medicinal Chemistry 54:679–689

37. Podolyan Y, Walters MA, Karypis G. 2010. Assessing Synthetic Accessibility of Chemical Com-

pounds Using Machine Learning Methods. Journal of Chemical Information and Modeling

50:979–991

38. Warr WA. 2014. A Short Review of Chemical Reaction Database Systems Computer-Aided

Synthesis Design, Reaction Prediction and Synthetic Feasibility. Mol. Inf. 33:469–476

39. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS,

et al. 2011. The Harvard Clean Energy Project: Large-Scale Computational Screening and

Design of Organic Photovoltaics on the World Community Grid. J. Phys. Chem. Lett. 2:2241–

2251

40. Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS,

et al. 2011. Accelerated computational discovery of high-performance materials for organic

photovoltaics by means of cheminformatics. Energy Environ. Sci. 4:4849

22 Pyzer-Knapp, Suh, Aguilera-Iparraguirre, Gomez-Bombarelli and Aspuru-Guzik



41. Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, et al. 2014. A metal-free or-

ganic–inorganic aqueous flow battery. Nature 505:195–198

42. Goushi K, Yoshida K, Sato K, Adachi C. 2012. Organic light-emitting diodes employing efficient

reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics 6:253–258

43. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. 2014. Efficient blue organic light-

emitting diodes employing thermally activated delayed fluorescence. Nature Photonics 8:326–

332

44. Korth M. 2014. Large-scale virtual high-throughput screening for the identification of new

battery electrolyte solvents: evaluation of electronic structure theory methods. Phys. Chem.

Chem. Phys. 16:7919

45. https://www.materialsproject.org/ - The Materials Project. accessed 2014-09-10

46. Ong SP, Richards WD, Jain A, Hautier G, Kocher M, et al. 2013. Python Materials Genomics

(pymatgen): A robust open-source python library for materials analysis. Computational Mate-

rials Science 68:314–319

47. Kresse G, Furthmüller J. 1996. Efficiency of ab-initio total energy calculations for metals and

semiconductors using a plane-wave basis set. Computational Materials Science 6:15–50
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