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Abstract 

We explain the raison d’être and basic ideas of input/output logic, with pointers to other 
publications for detailed developments. The motivation comes from the logic of 
conditional norms, where we need an approach that does not presume that directives 
carry truth-values. To deal with the subtleties of contrary-to-duty situations, input/output 
operations may be subjected to consistency constraints, expressed via the notion of an 
outfamily. They also provide a convenient platform for distinguishing and analysing 
several different kinds of permission. 

 
 

1.  Motivation 

Input/output logic takes its origin in the study of conditional norms. These may express 
obligations under some legal, moral or practical code, goals, contingency plans, advice, 
and so on. They may be expressed in imperative form, In such-and-such a situation, do 
so-and-so, or in indicative form, in terms like: In such-and-such a situation, so-and-so 
should be the case, or …should be brought about, or …should be worked towards, or 
…should be followed – these locutions corresponding roughly to the kinds of norm 
mentioned.  

To be more specific, input/output logic has its source in a tension between the philosophy 
of norms and formal work of deontic logicians. 

Philosophically, it is widely accepted that a distinction may be drawn between norms on 
the one hand, and declarative statements on the other. Declarative statements may bear 
truth-values, in other words are capable of being true or false; but norms are items of 
another kind. They may be respected (or not), and may also be assessed from the 
standpoint of other norms, for example when a legal norm is judged from a moral point of 
view (or vice versa). But it makes no sense to describe norms as true or as false.  

However the formal work of deontic logicians often goes on as if such a distinction had 
never been heard of. The usual presentations of deontic logic, whether axiomatic or 
semantic, treat norms as if they could bear truth-values. In particular, the truth-functional 
connectives and, or and most spectacularly not are routinely applied to norms, forming 
compound norms out of elementary ones. Semantic constructions using possible worlds 
go further by offering rules to determine, in a model, the truth-value of a norm.  
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This anomaly was noticed more than half a century ago, by Dubislav (1937) and 
Jørgensen (1937-8), but little was done about it. Indeed, from the 1960s onwards, the 
semantic approach in terms of possible worlds deepened the gap. The first serious attempt 
by a logician to face the problem appears to be due to Stenius (1963), followed by 
Alchourrón and Bulygin (1981) for unconditional norms, then Alchourrón (1993) and 
Makinson (1999) for conditional ones. Input/output logic may be seen as an attempt to 
extract the essential mathematical structure behind these reconstructions of deontic logic. 

Like every approach to deontic logic, input/output logic must face the problem of 
accounting adequately for the behaviour of what are called ‘contrary-to-duty’ norms. The 
problem may be stated thus: given a set of norms to be applied, how should we determine 
which obligations are operative in a situation that already violates some among them? As 
we hope to show, input/output operations provide a convenient platform for dealing with 
this question by imposing consistency constraints on the generation of output. 

Accounts of obligation should also cast light on the dual concept of permission. We will 
show how input/output operations help bring the relationship between permission and 
obligation into a clearer light, facilitates a clear formulation of the distinction between 
negative and positive permission, and permits us to distinguish, for the first time, between     
two radically different kinds of positive permission. 

This paper begins by explaining the central notion of an input/output operation, the basic 
framework of the theory. We then sketch a strategy for constraining those operations so 
as to deal more sensitively with contrary-to-duty situations. Finally, we explain how the 
same operations may be deployed in the analysis of permission. 

The paper is merely a brief overview of the subject, which is still in a process of growth. 
For further details, the reader is invited to refer to Makinson and van der Torre (2000), 
(2001), (2002). 

 

2.  Unconstrained Input/Output Operations  

We avoid assuming that conditional norms bear truth-values. They are not embedded in 
compound formulae using truth-functional connectives. To keep clear of all confusion, 
they are not even treated as formulae, but simply as ordered pairs (a,x) of purely boolean 
(or eventually first-order) formulae.  

Technically, a normative code is seen as a set G of conditional norms, i.e. a set of such 
ordered pairs (a,x). For each such pair, the body a is thought of as an input, representing 
some condition or situation, and the head x is thought of as an output, representing what 
the norm tells us to be desirable, obligatory or whatever in that situation. The task of 
logic is seen as a modest one. It is not to create or determine a distinguished set of norms, 
but rather to prepare information before it goes in as input to such a set G, to unpack 
output as it emerges and, if needed, coordinate the two in certain ways. A set G of 
conditional norms is thus seen as a transformation device, and the task of logic is to act as 
its ‘secretarial assistant’.  

The simplest kind of unconstrained input/output operation is depicted in Figure 1. A set A 
of propositions serves as explicit input, which is prepared by being expanded to its 
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classical closure Cn(A). This is then passed into the ‘black box’ or ‘transformer’ G, which 
delivers the corresponding immediate output G(Cn(A)) = {x: for some a ∈ Cn(A), (a,x) ∈ 
G}. Finally, this is expanded by classical closure again into the full output out1(G,A) = 
Cn(G(Cn(A))). We call this simple-minded output.  
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This is already an interesting operation. As desired, it does not satisfy the principle of 
identity, which in this context we call throughput, i.e. in general we do not have a ∈ 
out1(G,{a}) – which we write briefly, dropping the parentheses, as out1(G,a). It is 
characterized by three rules. Writing x ∈ out1(G,a) as (a,x) ∈ out1(G) and dropping the 
right hand side as G is held constant, these rules are: 

Strengthening Input (SI):  From (a,x) to (b,x) whenever a ∈ Cn(b) 
Conjoining Output (AND):  From (a,x), (a,y) to (a,x∧y)  
Weakening Output (WO): From (a,x) to (a,y) whenever y ∈ Cn(x). 

But simple-minded output lacks certain features that may be desirable in some contexts. 
In the first place, the preparation of inputs is not very sophisticated. Consider two inputs 
a and b. By classical logic, if x ∈ Cn(a) and x ∈ Cn(b) then x ∈ Cn(a∨b). But there is 
nothing to tell us that if x ∈ out1(G,a) = Cn(G(Cn(a))) and x ∈ out1(G,b) = Cn(G(Cn(b))) 
then x ∈ out1(G,a∨b) = Cn(G(Cn(a∨b))).  

In the second place, even when we do not want inputs to be automatically carried through 
as outputs, we may still want outputs to be reusable as inputs – which is quite a different 
matter. 

Operations satisfying each of these two features can be provided with explicit definitions, 
pictured by diagrams in the same spirit as that for simple-minded output, and 
characterized by straightforward rules. We thus have four very natural systems of 
input/output, which are labelled as follows: simple-minded alias out1 (as above), basic 
(simple-minded plus input disjunction: out2), reusable (simple-minded plus reusability: 
out3), and reusable basic (all together: out4).  

Figure 1: Simple-Minded Output 
out1(G,A) = Cn(G(Cn(A))) 

Cn(G(Cn(A))) 
 A

G(Cn(A)) Cn(A) 

G
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For example, reusable basic output may be given a diagram and definition as in Figure 2. 
In the definition, a complete set is one that is either maximally consistent or equal to the 
set of all formulae. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The three stronger systems may also be characterized by adding one or both of the 
following rules to those for simple-minded output: 

Disjoining input (OR):  From (a,x), (b,x) to (a∨b,x)  
Cumulative transitivity (CT):  From (a,x), (a∧x,y) to (a,y). 

These four operations have four counterparts that also allow throughput. Intuitively, this 
amounts to requiring A ⊆ G(A). In terms of the definitions, it is to require that G is 
expanded to contain the diagonal, i.e. all pairs (a,a). Diagrammatically it is to add arrows 
from G’s ear to mouth. Derivationally, it is to allow arbitrary pairs of the form (a,a) to 
appear as leaves of a derivation; this is called the zero-premise identity rule ID.   

All eight systems are distinct, with one exception: basic throughput, which we write as 
out2

+, authorizes reusability, so that out2
+

 = out4
+. This may be shown directly in terms of 

the definitions, or using the following simple derivation of CT from the other rules.  

Figure 2: Reusable Basic Output: 
out4(G,A) = ∩∩∩∩{Cn(G(V)): A ⊆⊆⊆⊆ V ⊇⊇⊇⊇ G(V), V complete} 

 

A

V1 

V2 

G(V1)

G(V2)

G

Cn(G(V1)) 

Cn(G(V2))

out4(G,A)

⊆

⊆
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(a,x)   (a∧¬x, a∧¬x)    ID   (a∧x,y)  
   SI                       
(a∧¬x, x)                  
..................................................   AND          
  (a∧¬x, x∧(a∧¬x))               
    WO              

      (a∧¬x,y)               
      ........................................................................           OR 
   (a,y) 

 

The application of WO here is justified by the fact that y ∈ Cn(x∧(a∧¬x)) since the right 
hand formula is a contradiction. Note that all rules available in basic throughput 
(including, in particular, identity) are needed in the derivation, reflecting the fact that CT 
is not derivable in the weaker systems. 

This strong system indeed collapses into classical consequence, in the sense that 
out4

+(G,A) = Cn(m(G)∪A) where m(G) is the materialization of G, i.e. the set of all 
formulae a→x where (a,x)  ∈ G. 
In the paper (2000), with some complements in (2001, section 1), the authors investigate 
these systems in detail – semantically, in terms of their explicit definitions, derivationally, 
in terms of the rules determining them, both separately and in relation to each other. We 
do not attempt to summarize the results here, but hope that the reader is tempted to follow 
further. 

 

3.  Why constrain? 

As mentioned in section 1, all approaches to deontic logic must face the problem of 
dealing with contrary-to-duty norms. In general terms, we recall, the problem is: given a 
set of norms, how should we determine which obligations are operative in a situation that 
already violates some among them.  

The following simple example is adapted from Prakken and Sergot (1996) 1. Suppose we 
have the following two norms: The cottage should not have a fence or a dog; if it has a 
dog it must have both a fence and a warning sign.  

In the usual deontic notation, where t stands for a tautology: O(¬(f∨d)/t), O(f∧w/d); in the 
notation of input/output logic: (t,¬(f∨d)), (d,f∧w). Suppose further that we are in the 
situation that the cottage has a dog, thus violating the first norm. What are our current 
obligations?  

Unrestricted input/output logic gives f: the cottage has a fence and w: the cottage has a 
warning sign. Less convincingly, because unhelpful if the presence of a dog is regarded 
as unalterable, it also gives ¬d: the cottage does not have a dog. Even less convincingly, 
it gives ¬f: the cottage does not have a fence, which is the opposite of what we want.  
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These results hold even for simple-minded output, without reusability or disjunction of 
inputs. The only rules needed are SI and WO, as shown by the following derivation of ¬f. 
 

  (t,¬(f∨d)) 
                WO 
    (t,¬f)  
               SI     
    (d,¬f)   

 

A natural reaction to examples such as these is to ask: why not just drop the rule SI of 
strengthening the input? In semantic terms, why not cut back the definition of simple-
minded output from Cn(G(Cn(A))) to Cn(G(A)), and in similar (but more complex) 
fashion with the others?  

Indeed, this is a possible option, and the strategy that we will describe below does have 
the effect of disallowing certain applications of SI. But simply to drop the derivation rule 
SI, or remove the innermost Cn from the semantic definition is very heavy-handed. We 
need to know why SI is not always appropriate and, especially, when it remains justified.   

 

4.  A Strategy for Constraint: Maxfamilies and their Outfamilies 

Our strategy is to adapt a technique that is well known in the logic of belief change – cut 
back the set of norms to just below the threshold of making the current situation contrary-
to-duty. In effect, we carry out a contraction on the set G of given norms.  

Specifically, we look at the maximal subsets G′ ⊆ G such that out(G′,A) is consistent with 
input A. In Makinson and van der Torre (2001), the family of such G′ is called the 
maxfamily of (G,A), and the family of outputs out(G′,A) for G′ in the maxfamily, is called 
the outfamily of (G,A). 2 

To illustrate this, consider the cottage example where G = {(t,¬(f∨d)), (d,f∧w)}, with the 
contrary-to-duty input d. Using simple-minded output, maxfamily(G,d) has just one 
element {(d,f∧w)}, and so outfamily(G,d) has one element, namely Cn(f∧w). 
Although the outfamily strategy is designed to deal with contrary-to-duty norms, its 
application turns out to be closely related to belief revision and nonmonotonic reasoning 
when the underlying input/output operation authorizes throughput.  

When all elements of G are of the form (t,x), then for the degenerate input/output 
operation out2

+(G,a) = out4
+(G,a) = Cn(m(G)∪{a}), the elements of outfamily(G,a) are 

just the maxichoice revisions of m(G) by a, in the sense of Alchourrón, Gärdenfors and 
Makinson (1985). These coincide, in turn, with the extensions of the default system 
(m(G),a,∅) of Poole (1988).   
More surprisingly, there are close connections with the default logic of Reiter, falling a 
little short of identity. Read elements (a,x) of G as normal default rules a;x/x in the sense 
of Reiter (1980), and write extfamily(G,A) for the set of Reiter extensions of (G,A). Then, 
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for reusable simple-minded throughput out3
+, it can be shown that extfamily(G,A) ⊆ 

outfamily(G,A) and indeed that extfamily(G,A) consists of precisely the maximal elements 
(under set inclusion) of outfamily(G,A).  
These results and related ones are proven in Makinson and van der Torre (2001). But in 
accord with the motivation from the logic of norms, the main focus in that paper is on 
input/output logics without throughput. Two kinds of question are investigated in detail 
there.  

The search for truth-functional reductions of the consistency constraint  
From the point of view of computation, it is convenient to make consistency checks as 
simple as possible, and executable using no more than already existing programs. For this 
reason, it is of interest to ask: under what conditions is the consistency of A with out(G,A) 
reducible to the consistency of A with the materialization m(G) of G, i.e. with the set of 
all formulae a→x where (a,x)  ∈ G?  

It is easy to check that the latter consistency implies the former for all seven of our 
input/output operations. It turns out that we have equivalence for just two of them 
(reusable basic with and without identity). 

On the level of derivations, the question can take a rather different form, with different 
answers. Given a derivation of (a,x) with leaves L, under what conditions is the 
consistency of a with out(L,a) equivalent to its consistency with m(L)? Curiously, this 
holds for a wider selection of our input/output operations – in fact, for all of them except 
basic output. Even more surprisingly, for some of the operations (those without OR), the 
same reduction also holds with respect to the set h(L) of heads x, and the set f(L) of 
fulfilments a∧x, of elements (a,x) of L. 
From this result on derivations, we can go back and sharpen the semantic one. When G is 
a minimal set with x ∈ out(G,a) then, for each of our input/output operations other than 
basic output, a is consistent with out(G,a) iff it is consistent with m(G) – and for the 
operations without OR, with h(G), f(G). 

More severe applications of the consistency check  

From a practical point of view, whenever we constrain an operation to avoid excess 
production, the question arises: how cautious (timid) or brave (foolhardy) do we want to 
be? For input/output operations, this issue arises in different ways on the semantic and 
derivational levels. On the semantic level, once we have formed an outfamily we may 
ask: should we intersect, join, or choose from its elements to obtain a unique restrained 
output? On the level of derivations, it is natural to ask: do we want to apply the 
consistency check only at the root of a derivation, or at every step within it?  

The policy of checking only at the root corresponds to the option, on the semantic level, 
of forming the join of the outfamily; while the stricter policy of checking at every step is 
an essentially derivational requirement. But whichever of the two we choose, it is of 
interest to know under what conditions they coincide. In other words, given a derivation 
of (a,x) with leaves L such that a is consistent with out(L,a), under what conditions does 
it follow that for every node (b,y) in the derivation, b is consistent with out(L,b)? It turns 
out that for certain of the seven input/output operations (again, those without the OR rule) 
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this result holds. For operations with OR but without the rule CT, a rather subtler result 
may be obtained.  

One lesson of these rather intricate investigations is that the behaviour of the consistency 
constraint depends very much on the choice of input/output operation; in particular, the 
presence of the rule OR destroys some properties. Another lesson is that questions can 
take different forms, with different answers, on the semantic and derivational levels. 
Thirdly, a detour through derivations can sometimes sharpen semantic results. 

 

5. Doubts about Constrained Output 

The investigation of constrained output is a much more complex matter than that of 
unconstrained output. It is also more open to doubts and queries. We put the main ones 
frankly on the table. 

Dependence on the formulation of G  

The outfamily construction, at least in its present form, depends heavily on the 
formulation of the generating set G. To illustrate this, we go back to the cottage example 
of Prakken and Sergot (1996) considered in sections 3 and 4. Here G = {(t,¬(f∨d)), 
(d,f∧w)}, and we consider the contrary-to-duty input d. As we have seen, using simple-
minded output, maxfamily(G,d) has unique element {(d,f∧w)} and outfamily(G,d) has 
unique element Cn(f∧w). But if we split the first element of G into (t,¬f), (t,¬d) then we 
get a different result. The maxfamily has two elements {(t,¬f)}, {(d,f∧w)} and the 
outfamily has two elements Cn(¬f ) and Cn(f∧w). Is this dependence on formulation of G 
a virtue, or a vice? 

Are we cutting too deeply?  

This problem is related to the first one. In some cases, the outfamily construction cuts 
deeply, perhaps too much. Consider again the cottage example, but this time with just one 
rule (t,¬(f∨d)) in G. Consider the same contrary-to-duty input d. Then the maxfamily has 
the empty set as its unique element, and so the outfamily has Cn(∅) as its unique 
element. Is this cutting too deeply? Shouldn’t Cn(¬f ) be retained?  
Should we pre-process G?  

If we wish to cut less deeply, then a possible procedure might be to ‘pre-process’ G. In 
the last example, when we decompose the sole element (t,¬(f∨d)) of G into (t,¬f), (t,¬d) 
then Cn(¬f) becomes the unique element of outfamily in the contrary-to-duty situation d. 
In general, for each element (a,x) of G, we could rewrite the head x in conjunctive normal 
form x1∧…∧xn, and then split (a,x) into (a,x1), …,(a,xn). This manoeuvre certainly meets 
the particular example. But is it appropriate for other examples of the same form with 
different content? And does it suffice for more complex examples? It looks suspiciously 
like hacking. 

Avoid inconsistency with what?  
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On our definition, maxfamily(G,A) is the family of maximal subsets G′ ⊆ G such that 
out(G′,A) is consistent with input A. It may be suggested that this is too radical – so long 
as out(G,A) is itself consistent we should apply it without constraint.  

To illustrate this, take another variation on the cottage example. Put G = {(t,¬(f∨d)), 
(d,w)}. The second norm no longer requires a fence when there is a dog, only a warning 
sign. Consider again the contrary-to-duty input d. Now out(G,d) = Cn({(¬f,¬d,w)}) 
which is inconsistent with the input d, but itself perfectly consistent. Should we cut it at 
all? Perhaps ‘yes’ if the input d is considered as unalterably true, but ‘no’ if it is presented 
as true but changeable. 

 

6. Conditional Permission from an Input/output Perspective 

In philosophical discussion of norms it is common to distinguish between two kinds of 
permission, negative and positive. Negative permission is easy to describe: something is 
permitted by a code iff it is not prohibited by that code, i.e. iff nihil obstat. In other 
words, taking prohibition in the usual way, something is negatively permitted by a code 
iff there is no obligation to the contrary.  

Positive permission is more elusive. As a first approximation, one may say that 
something is positively permitted by a code iff the code explicitly presents it as such. But 
this leaves the central logical question unanswered. As well as the items that a code 
explicitly pronounces to be permitted, there are presumably others that in some sense 
follow from the explicit ones. The problem is to make it clear what kind of ‘following’ 
this is.  

From the point of view of input/output logic, negative permission is straightforward to 
define: we simply put (a,x) ∈ negperm(G) iff (a,¬x) ∉ out(G), where out is any one of 
the four input/output operations that we have already discussed. 

Because of its negative character, negperm fails the rule SI (strengthening the input). In 
other words, we don’t have: (a,x) ∈ negperm(G)  &  a ∈ Cn(b) ⇒  (b,x) ∈ negperm(G). 

Indeed, it satisfies the opposite rule WI (weakening the input): (a,x) ∈ negperm(G)  &  b 
∈ Cn(a) ⇒  (b,x) ∈ negperm(G). For if (a,¬x) ∉ out(G) and b ∈ Cn(a) then by SI for the 
underlying output operation, (b,¬x) ∉ out(G) so (b,x) ∈ negperm(G). This is a particular 
instance of a quite general pattern: whenever out satisfies a Horn rule (HR) then the 
corresponding negperm operation satisfies an ‘inverse’ Horn rule  (HR)-1.  

How should we define positive permission for conditional norms? Let G,P be sets of 
ordered pairs of propositions, where G represents the explicitly given conditional 
obligations of a code and P its explicitly given conditional permissions. The operation of 
forward positive permission is defined by putting: 

 (a,x) ∈ forperm(P,G) iff (a,x) ∈ out(G∪Q) for some singleton or empty Q ⊆ P 

i.e. in the principal case that P is not itself empty, 

(a,x) ∈ forperm(P,G) iff (a,x) ∈ out(G∪{(c,z)}) for some pair (c,z) ∈ P. 
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This tells us that (a,x) is permitted whenever there is some explicitly given permission 
(c,z) such that when we treat it as if it were an obligation, joining it with G and applying 
the output operation to the union, then we get (a,x). Permissions are thus treated like 
weak obligations, the only difference being that while the latter may be used jointly, the 
former may only be applied one by one.  

On the other hand, the operation of backward positive permission is defined by setting: 

(a,x) ∈ backperm(P,G) iff (c,¬z) ∈ out(G∪{(a,¬x)}) for some pair (c,z) ∈ 
forperm(P,G) with c consistent. 

This tells us that (a,x) is permitted whenever, given the obligations already present in G, 
we can’t forbid x under the condition a without thereby committing ourselves to forbid, 
under a condition c that could possibly be fulfilled, something z that is implicit in what 
has been expressly permitted. With this in mind, one could also speak of the operation as 
one of prohibition immunity.    

What do these two notions mean in ordinary life? Forward permission answers to the 
needs of the citizen, who needs to know whether an action that he is entertaining is 
permitted in the current situation. It also corresponds to the needs of authorities assessing 
the action once it is performed. If there is some explicit permission that ‘covers’ the 
action in question, then it is itself implicitly permitted. 

On the other hand, backward permission fits the needs of the legislator, who needs to 
anticipate the effect of adding a prohibition to an existing corpus of norms. If prohibiting 
x in condition a would commit us to forbid something that is implicit in what has been 
expressly permitted, then adding the prohibition is inadmissible under pain of 
incoherence, and the pair (a,x) is to that extent protected from prohibition.  

Forperm and backperm are very different operations. Whereas forperm satisfies SI, 
backperm satisfies WI. Like negative permission, backperm satisfies the ‘inverse’ rule  
(HR)-1 of any Horn rule (HR) satisfied by out; but forperm satisfies instead a ‘subverse’ 
rule  (HR)↓.   

Backperm may be characterized in a rather different way, using an idea of Makinson, 
(1999). Let us say that G is cross-coherent with P iff there is no (c,z) ∈ P with c 
consistent, such that (c,¬z) ∈ out(G). Then it is easy to check that (a,x) ∈ backperm(P,G) 
iff (a,x) ∈ negperm(H) for every H ⊇ G that is cross-coherent with P. From this it 
follows, in particular, that when G is cross-coherent with P then backperm(P,G) ⊆ 
negperm(G). In this sense, we can say that under ‘normal conditions’ backward 
permission is a strengthened negative permission.  

Further details of the behaviour of these operations may be found in Makinson and van 
der Torre (2002). 

 
7. Conclusions 

Drawing together the threads of this paper, the main points are as follows. 
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• Input/output logic seeks to extract the essential mathematical structure behind 
recent attempts to reconstruct deontic logic that avoid treating norms as if they 
had truth-values.  

• Unconstrained input/output provides us with a simple and elegant construction, 
with straightforward behaviour, but whose application to norms totally ignores the 
subtleties of contrary-to-duty obligations.  

• On the other hand, output constrained using the outfamily strategy provides a way 
of dealing with contrary-to-duty obligations. Its behaviour is quite subtle, and 
depends considerably on the choice of background input/output operation, in 
particular on whether or not it authorizes the rule of disjunction of inputs. 
However, it also has certain features of debateable desirability.  

• Input/output operations also enable us to give a clear formal articulation of the 
well-known distinction between negative and positive permission. They also 
enable us, for the first time, to distinguish two very different kinds of positive 
permission, with quite different uses in practical life. 

As a next step, the authors plan to investigate structured assemblies of input/output 
operations. Such structures, called logical input/output nets, or lions for short, are graphs, 
with the nodes labelled by pairs (G,out) where G is a normative code and out is an 
input/output operations (or recursively, by other lions). The relation of the graph indicates 
which nodes have access to others, providing passage for the transmission of local 
outputs as local inputs. The graph is further equipped with an entry point and an exit 
point, for global input and output. The study of such lions is still in its initial stages.  

Notes 

1. There are many examples in the literature. Most of them involve ingredients that, while 
perfectly natural in ordinary discourse, are extraneous to the essential problem and thus 
invite false analyses. These ingredients include defeasibility, causality, the passage of 
time, and the use of questionable rules such as CT and OR in deriving output. We have 
chosen a very simple example that avoids all those elements. There is one respect in 
which it could perhaps be further purified: under input d, the output is not only 
inconsistent with the input, but also itself inconsistent. This matter is discussed at the end 
of section 5. 

2. So defined, the outfamily is not in general the same as the family of all maximal values 
of out(G′,A) consistent with A, for G′ ranging over subsets of G. Every maximal value of 
out(G′,A) is in the outfamily, but not always conversely. For certain of our output 
operations, the two families do coincide, but not for others.  

This can be shown by simple examples, such as the Möbius strip of Makinson (1994), 
(1999). Put G = {(a,x), (x,y), (y,¬a)}. Then, for out = out3 or out = out4, maxfamily(G,a) 
has three elements, namely the three two-element subsets of G. As a result, 
outfamily(G,a) also has three elements – Cn(∅), Cn(x), and Cn({x,y}). Of these, only the 
last is a maximal value of out(G′,A) consistent with A for G′ ranging over subsets of G.  
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We add that in this example, not even Cn({x,y}) is a maximal subset of out(G,a) that is 
consistent with a, for clearly Cn({x,y}) ⊂ Cn({x,y,¬a∨z}) ⊂ out(G,a). Care is thus 
needed to avoid confusing maxfamilies with related maximal sets. 
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