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Abstract: In relation to the traditional financial markets, the cryptocurrency market is a recent
invention and the trading dynamics of all its components are readily recorded and stored. This fact
opens up a unique opportunity to follow the multidimensional trajectory of its development since
inception up to the present time. Several main characteristics commonly recognized as financial
stylized facts of mature markets were quantitatively studied here. In particular, it is shown that
the return distributions, volatility clustering effects, and even temporal multifractal correlations for
a few highest-capitalization cryptocurrencies largely follow those of the well-established financial
markets. The smaller cryptocurrencies are somewhat deficient in this regard, however. They are
also not as highly cross-correlated among themselves and with other financial markets as the large
cryptocurrencies. Quite generally, the volume V impact on price changes R appears to be much
stronger on the cryptocurrency market than in the mature stock markets, and scales as R(V) ∼ Vα

with α & 1.

Keywords: blockchain; cryptocurrencies; time series; fluctuations; correlations; multifractality;
market maturity; market impact

1. Introduction

Studying the world cryptocurrency market is welcome for many reasons. Up to now,
it constitutes the most spectacular and influential application of the distributed ledger
technology called the blockchain, which, in the underlying peer-to-peer network, allows for
the same access to information for all participants [1,2]. Research on blockchain technology
is also unique because all related data are publicly available in the form of the history of
every operation performed on the network. Furthermore, the tick-by-tick data for each
transaction made on the cryptocurrency exchange are freely available using the application
programming interfaces (APIs) of a given exchange.

As far as the financial, economic, and, in general terms, social aspects of cryptocur-
rencies are concerned, a basic related question that arises is whether such digital products
can be considered as a commonly accepted means of exchange [3–5]. This is a complex
issue involving many social, economical, and technological factors, such as trust, perceived
risk, peer opinions, transaction security, network size effect, supply elasticity, and so on.
However, also from a dynamical perspective, for this to apply, a certain level of maturity
expressed in terms of market efficiency, liquidity, stability, size, and other characteristics is
required [6,7]. Moreover, the developed markets show several statistical properties that
newly established emerging markets often lack. Among such properties, one can list the
so-called financial stylized facts: heavy tails of the probability distribution functions of
fixed-time returns, long-term memory of volatility, a hierarchical structure of the asset
cross-correlations, multifractality, and a stable (or meta-stable) price impact function [8–11].
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There is growing quantitative evidence that the cryptocurrency market continuously
advances on a route to maturity understood as sharing its statistical properties with the
traditional financial markets. For instance, the most popular and oldest cryptocurrency,
bitcoin (BTC), has passed through two stages of the shaping of its probability distribution
function (pdf). It started as an extremely volatile asset with pdf tails that used to decline
according to a power law, with the exponent reaching almost the Lévy-stable regime (the
Lévy parameter α ≈ 2) on short time scales over the years 2012–2013, but then, already in the
years 2014-2015, the tails of its pdf became thinner and reached the inverse cubic behavior
that is observed universally in the traditional financial markets [12]. From that moment
on, BTC has maintained this property over the subsequent years [6,13,14]. The difference
between BTC and traditional assets is that the inverse cubic behavior of the BTC pdf tails
was reported to be preserved up to much longer sampling intervals due to their less frequent
trading [12]. Similar effects were seen for other major crypto currencies, such as ETH [12,15].
Since BTC and the other cryptocurrencies are traded on many independent platforms that
differ in trading frequency, the pdf properties of the same cryptocurrency can be different
on different platforms [6]. This is quite a unique trait of the cryptocurrencies not observed,
for example, in the stock markets and Forex. Heavy pdf tails were also found in time series
of volume traded in time units [16,17], even in the case of cryptocurrencies [18,19]. These
two quantities—the log-returns and volume—are related to each other, because the size of a
trade can have a profound impact on price variation: large trades lead to large price jumps
on average (although this relation might be more subtle [20–22]). Some authors argue that
price impact assumes a functional form with a square-root dependence of the log-returns
on volume [23–25] but others are cautious [21,22,26].

The long-term memory of volatility fluctuations is responsible for the effect of volatility
clustering, i.e., periods of a volatile market with large-amplitude fluctuations are interwo-
ven with periods of relatively tranquil dynamics. In addition, the volatility autocorrelation
is of a power-law form [27]. This property has been seen in all financial markets and has
also been found in cryptocurrency dynamics [14]. The range of memory is comparable
in this case with the range for the stock and Forex markets [28,29]. The scale-free form of
the autocorrelation function is connected to fractality, which also requires long-term or
long-range correlations to be self-similar. The log-return fluctuations for all the traditional
financial markets studied so far show multiscaling together with some other quantities,
such as inter-transaction times [30–32]. Consistently, multifractal properties have been
observed in the cryptocurrency market returns and inter-transaction times for different
assets [6,18,33–39]. Apart from univariate multiscaling, its bivariate version has also been
reported between log-returns for different cryptocurrencies: BTC and ETH [40].

Apart from correlations in time, asset–asset cross-correlations play an important role in
the shaping of the financial market structure as they lead to the emergence of the hierarchical
organization of the markets as well as coupling between different markets [41–44]. While
the hierarchical cross-correlations among the assets traded on the same market are a clear
indicator of market maturity, the role of potential couplings between different markets must
be interpreted with care. This is because either the independent dynamics of a market or the
profound coupling of a market with the world’s leading markets, being the two opposite cases,
can potentially be interpreted in favor of market maturity. The former because independence
can be viewed as strength and as a possibility for using the assets traded on such a market as a
safe haven in hedging strategies [45,46], and the latter because it suggests that such a market is
a well-rooted part of global financial markets. However, intuitively, neither of these extremes
seems to represent the notion of maturity well enough. It is more justified to view market
maturity as the ability to switch its dynamics between independence and compliance because
such a behavior can better reflect the complexity that one may expect to be the property
characterizing a developed market. This is why neither the effect of the cryptocurrency
market decoupling from Forex reported in [29] nor the effects of the cryptocurrency market
independence [47–51] and strong coupling between the cryptocurrencies and traditional
financial markets reported in [52–55], respectively, can alone be a signature of maturity. It is
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rather the opposite: only such flexible dynamics swinging between idiosyncrasy and a strong
subjugation of the market to an actual global trend can be a manifestation of market maturity.

In this work, stress was put on the investigation of current statistical properties of
cryptocurrency log-returns and volume from the perspective of how these properties differ
from their counterparts in the traditional financial markets: the stock markets, Forex,
and commodity markets. One has to be aware, however, that the statistical approach
constitutes only a segment of the issues related to market maturity.

2. Methods and Results
2.1. Empirical Dataset

The data set studied contains 1 min quotations of 70 cryptocurrencies that were among
the most actively traded on the Binance exchange [56], which had the largest market share in
2022 [57], over the period from 1 January 2020 to 31 December 2022 (3 years). The quotes are
expressed in USD Tether (USDT), a stablecoin linked to the US dollar, and its value is close to
USD 1 by design [58]. Basic time series statistics corresponding to these 70 cryptocurrencies
are collected in Table 1. For a time series of price quotations Q(ti), i = 1, . . . , T, the equally
spaced logarithmic returns R∆t(ti) = log Q(ti) − log Q(ti−1), where ti − ti−1 = ∆t, are
derived. Figure 1 shows the evolution of the cumulative log-returns R̂∆t(ti) = ∑i

i=1 R∆t(ti)
during the whole period covered by the data. In accordance with the actual cryptocurrency
price quotes, in 2021, the whole market experienced a transition from the bull phase to the
bear phase.

Figure 1. Evolution of the cumulative log-returns R̂(t) of the 70 cryptocurrencies over the time period
from 1 January 2020 to 31 December 2022. The colors of two of the most liquid cryptocurrencies and
a few other distinguished ones are indicated explicitly. The bulk of the cryptocurrencies is shown in
the background (grey lines).
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Table 1. Basic statistics of the cryptocurrencies considered in this study: the average inter-transaction
time δt, the fraction of zero returns in time series %0, the average volume value traded per minute
W, and market capitalization C on 1 January 2023. For the cryptocurrency name list, see Table A1 in
Appendix A.

Ticker δt [s] %0 W [USDT]
C

[×106

USD]
Ticker δt [s] %0 W

[USDT]

C
[×106

USD]

BTC 0.04 0.003 1,683,710 320,025 LINK 0.41 0.095 84,423 2856

ADA 0.24 0.121 172,891 8621 LTC 0.41 0.142 80,441 5096

ALGO 0.78 0.117 24,320 1267 MATIC 0.32 0.166 100,100 6638

ANKR 1.84 0.195 10,762 151 MFT 5.01 0.425 2436 54

ARPA 2.75 0.165 6082 33 MTL 3.16 0.400 5122 46

ATOM 0.58 0.109 42,048 2710 NEO 1.45 0.194 18,893 451

BAND 2.13 0.175 8285 49 NKN 2.99 0.425 5807 56

BAT 1.53 0.162 10,543 251 NULS 4.44 0.442 2845 12

BCH 0.70 0.140 48,288 1869 OMG 0.83 0.178 24,235 146

BEAM 5.30 0.433 2089 14 ONE 0.97 0.227 21,983 133

BNB 0.17 0.095 276,261 39,052 ONG 5.53 0.482 2297 71

CELR 1.77 0.292 10,843 68 ONT 1.28 0.149 16,136 134

CHZ 0.59 0.232 51,827 672 PERL 5.00 0.431 2406 7

COS 2.63 0.455 3575 18 QTUM 1.58 0.179 14,178 196

CTXC 3.42 0.464 3942 33 REN 2.72 0.207 6232 62

DASH 1.44 0.206 14,543 468 RLC 2.80 0.293 6090 95

DENT 1.24 0.353 16,417 68 RVN 1.82 0.202 9699 232

DOCK 5.39 0.455 2135 12 STX 4.42 0.416 3847 288

DOGE 0.20 0.173 247,343 9317 TFUEL 2.09 0.353 10,411 189

DUSK 2.97 0.441 3994 34 THETA 0.64 0.173 35,023 733

ENJ 1.17 0.225 21,114 243 TOMO 3.84 0.316 3581 24

EOS 0.53 0.147 59,616 948 TROY 3.20 0.381 3347 23

ETC 0.58 0.099 63,736 2188 TRX 0.46 0.142 71,306 5041

ETH 0.10 0.010 853,284 146,967 VET 0.52 0.093 55,362 1163

FET 2.65 0.255 7,909 75 VITE 4.22 0.469 3078 18

FTM 0.50 0.174 63,723 556 WAN 7.24 0.303 1609 34

FUN 3.91 0.538 2911 66 WAVES 1.19 0.177 19,265 144

HBAR 1.57 0.268 11,765 957 WIN 1.01 0.283 26,244 72

HOT 0.96 0.237 22,543 250 XLM 0.78 0.165 33,309 1894

ICX 2.64 0.306 6951 135 XMR 1.62 0.184 14,164 2707

IOST 1.40 0.199 14,551 129 XRP 0.21 0.071 229,976 17,055

IOTA 1.53 0.168 12,077 478 XTZ 1.08 0.137 19,407 663

IOTX 1.52 0.266 11,894 203 ZEC 1.15 0.240 20,010 597

KAVA 1.57 0.155 12,888 198 ZIL 1.03 0.145 20,195 258

KEY 2.83 0.358 4310 15 ZRX 3.04 0.214 5674 128
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2.2. Cumulative Distribution Functions of Returns and Volume

The cumulative distribution function (cdf) P(X > r∆t) can be calculated from the
normalized returns r∆t(ti) = (R∆t(i)− µ)/σ, with µ and σ denoting sample mean and
standard deviation, respectively. A form of this distribution varies among the markets and
assets, but some interesting properties can be observed. There are generally three factors
that shape it: the first one is liquidity, the second one is trading speed, and the third one is
the overall market volatility [59]. If one focuses on a specific market, the most liquid assets
show a faster decline in P(X > r∆t) with r∆t than the less liquid ones for a given ∆t [60].
However, most of the assets traded on mature markets reveal a power-law dependence of
P(X > r∆t) for some range of ∆t [23,27,60–62]:

P(X > r∆t) ∼ |r∆t|−γ, (1)

with γ ≈ 3. It is observed for short sampling intervals and it is persistent for a range of
∆t due to the existence of strong inter-asset correlations. This inverse cubic power-law
dependence breaks for sufficiently long ∆t and the cdf tails converge to the expected normal
distribution. The speed of information processing on a given market also has influence on
the crossover ∆t. Since this speed increases with time as new technologies enter the service,
we observe a gradual decrease in the crossover ∆t across decades. The speed of market
trading allows for a larger transaction number in time units, so this factor accelerates the
market time even more [60]. The emerging markets, where investment strategies require
the accommodation of significant risk, are thus highly volatile. The cdfs of the asset returns
in this case often show heavy tails with the scaling exponent γ� 3, sometimes even in the
Lévy-stable regime. In such markets, the inverse cubic behavior of P(X > r∆t) may occur
for some assets only, whereas, for the other assets, it cannot be found at all. This is why
such extreme tails are often considered to be an indicator of market immaturity [14].

Based on the average inter-transaction time δt, we categorized the considered cryp-
tocurrencies into three groups: I, the most frequently traded cryptocurrencies (δt < 1s);
II, the cryptocurrencies with the average trading frequency (1s ≤ δt < 2s); and III, the
least frequently traded cryptocurrencies (δt ≥ 2s). Then, we calculated the average cdfs for
the cryptocurrencies belonging to each group. We show these cdfs in Figure 2 (left panel,
dotted lines) together with the cdfs for a few selected individual cryptocurrencies (solid
lines). Their form can be compared with the inverse cubic power-law model denoted by a
dashed line. It can be seen that the average distributions have their tail close to a power
law, with the exponent γ being close to 3. The most liquid cryptocurrencies—BTC and
ETH—develop tails that show a cross-over from the power-law regime to a CLT-like regime
for relatively small values of |r∆t| compared to both the average cdfs and to less frequently
traded individual cryptocurrencies such as FUN, PERL, and WAN. The case of Dogecoin,
which has the smallest slope in the middle of the distribution and, at the same time, does
not have the thickest tail, is special. On the one hand, it can be included among the main
cryptocurrencies due to the high frequency of transactions and capitalization, and, on the
other, it was the subject of possible price manipulation through Elon Musk’s tweets [63,64].
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Figure 2. Cumulative distribution functions of the absolute normalized log-returns r∆t (left) and the
normalized volume traded v∆t (right) for ∆t = 1 min in units of the respective standard deviations σ

for the selected cryptocurrencies with the highest liquidity (BTC and ETH) or the heaviest tails (DOGE,
FUN, PERL, and WAN). The average cumulative distribution functions for the cryptocurrencies with
the average inter-transaction time fulfilling the relations δt < 1s (Group I, dotted red), 1s ≤ δt < 2s
(Group II, dotted blue), and δt ≥ 2s (Group III, dotted green) are also shown. Power laws with the
scaling exponents γ and β assuming values typical for the financial markets—γ = 3 and β = 3/2—are
denoted by dashed lines. There is also a stretched exponential function fitted to the v∆t distributions
for BTC and ETH on the right (black dotted line).

Another quantity that is frequently observed to be power-law-distributed is normal-
ized volume traded in time unit v∆t(ti) = (V∆t(i)− µ)/σ [16,23]:

P(X > v∆t) ∼ v−β
∆t . (2)

In this case, the exponent is much lower than for the absolute returns and corresponds to
the Lévy-stable regime: β < 2. It was argued that there exists a simple relation between
both the exponents: β = γ/2 [23]. Figure 2 (right panel) shows the cumulative distribution
functions for v∆t for the same individual cryptocurrencies and their Groups I-III as in
Figure 2 (left panel). Now, the cdfs for BTC and ETH do not develop power-law tails.
A model that best fits them is the stretched exponential function P(X > v∆t) ∼ exp σ

−η
v

with η = 0.43. However, in the case of less frequently traded cryptocurrencies, which
belong to Group III, one can observe the power-law relation. What makes the results
obtained here different from their counterparts for, for instance, the stock markets, is that
one does not find any cryptocurrency with its cdf being a power law with the exponent
3/2; the cdf tails decrease considerably faster here.

2.3. Price Impact

At this point, it is worthwhile to consider a possible causal relation between the returns
and the volume despite the fact that no clear relation can be seen between their cdfs. It
revokes the empirically well-documented observation that volume can influence price
changes (both on the level of the order book and the level of the aggregated transaction
volume), which is known in the literature as the price impact [21,23,65–68]. In order to
investigate this issue, for each cryptocurrency, two parallel time series corresponding to
|R∆t(t)| and V∆t(t) were input into the q-dependent detrended cross-correlation coefficient
ρq measuring how correlated two detrended residual signals are across different scales [69].
The definition of the coefficient ρq, which allows one to quantify cross-correlations between
two nonstationary signals, is based on the multifractal detrended cross-correlation analysis
(MFCCA), whose algorithm can be sketched as follows [70].
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In this particular case, there are two time series of length T and sampling intervals
∆t: |R∆t(ti)| and V∆t(ti) with i = 1, . . . , T. One starts the procedure by dividing each time
series into Ms = 2bT/sc non-overlapping segments of length s (called scale) going from
both ends (b·c denotes the floor value). In each segment labelled by ν, both signals are
integrated and polynomial trends P(m)

·,s,ν of degree m are removed:

R̂∆t(tj, s, ν) =
j

∑
k=1
|R∆t(ts(ν−1)+k)| − P(m)

R,s,ν(tj), (3)

V̂∆t(tj, s, ν) =
j

∑
k=1

V∆t(ts(ν−1)+k)− P(m)
V,s,ν(tj), (4)

where j = 1, . . . , s and ν = 1, . . . , Ms. The detrended covariance is derived as

f 2
|R|V(s, ν) =

1
s

s

∑
j=1

[
R̂∆t(tj, s, ν)− 〈R̂∆t(tj, s, ν)〉j

][
V̂∆t(tj, s, ν)− 〈V̂∆t(tj, s, ν)〉j

]
, (5)

where 〈·〉j denotes the averaging over j. The detrended covariances calculated for all the
segments ν are then used to determine the bivariate fluctuation function [70]:

F|R|Vq (s) =
{ 1

Ms

Ms

∑
ν=1

sgn[ f 2
|R|V(s, ν)]| f 2

|R|V(s, ν)|q/2}1/q. (6)

Apart from the bivariate form given by the formula above, the univariate fluctuation
functions F|R||R|q (s) and FVV

q (s) can also be calculated but, in this case, the covariance
functions become variances and do not need to be factorized into the sign and modulus
parts as no negative value can occur.

The above elements of the formalism allow one to introduce the q-dependent de-
trended cross-correlation coefficient ρq(s) defined as [69]:

ρ
|R|V
q (s) =

F|R|Vq (s)√
F|R||R|q (s)FVV

q (s)
. (7)

By manipulating the value of the parameter q, one can focus on the correlations between
fluctuations in different size: the large fluctuations q > 2 or the small fluctuations q < 1.
For q = 2, all the fluctuations in time series are considered with the same weights. For pos-
itive q, values of ρq are restricted to the interval [−1, 1], with their interpretation being
similar to the interpretation of the classic Pearson coefficient C: ρq = 1 means a perfect
correlation, ρq = 0 means independence, and ρq = −1 means a perfect anticorrelation.
For negative q, the interpretation of the coefficient is more delicate and requires some
experience [69]. Figure 3 presents the coefficient ρq(s) calculated in a broad range of scales s
for the selected individual cryptocurrencies (BTC, ETH, DOGE, FUN, PERL, and WAN) and
the average ρq(s) for Groups I-III. While different data sets are characterized by different
strength of the detrended cross-correlations with Group I cross-correlated the strongest
and Group 3 the weakest, there is an explicit division of scales into the short-scale range
(s < 1000 min), where the correlations monotonously increase with increasing s, and the
long-scale range (s > 1000 min), where one observes a kind of saturation-like behavior.
In the latter, the correlations are characterized by 0.75 ≤ ρq(s) ≤ 0.95, which means that
the cryptocurrency market does not differ from other financial markets and its volatil-
ity |R∆t| and volume traded are strongly correlated. The two distinguished scale ranges
are related to the information-processing speed of the market: it requires some amount
of time for the investors to fully react to the incoming information and to build up the
cross-correlations. One might view this result as a counterpart of the Epps effect for the
detrended volatility–volume data [6,28,71–73]. The main difference between this market
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and the regular financial markets is the relatively long cross-over scale (s ≈ 1000 min),
which can be associated with its worse liquidity.

10 100 1000 10,000 100,000
scale s [1min]

0.5

0.6

0.7

0.8

0.9
ρ q

=
1
(s

) 
|R

(t
)|

 v
s 

V
(t

)

BTC
ETH
DOGE
FUN
PERL
WAN
δt<1s
1s≤δt<2s 
δt≥2s

Figure 3. The q-dependent detrended cross-correlation coefficient ρq(s) of order q = 1 calculated for
volatility |R∆t(t)| and volume V∆t(t) (with ∆t = 1 min) for the selected individual cryptocurrencies—
BTC, ETH, DOGE, FUN, PERL, and WAN—where the cryptocurrency Groups I-III are characterized
by a specific range of the average inter-transaction time: δt < 1s (Group I, dotted red), 1s ≤ δt < 2s
(Group II, dotted blue), δt ≥ 2s (Group III, dotted green). The coefficient ρq(s) has been averaged
over all the cryptocurrencies belonging to a given group.

The next question to be asked is if there exists any functional relationship between
|R∆t| and V∆t. In order to address this question, R∆t vs. V∆t scatter plots for six selected
cryptocurrencies were created; see Figure 4. In general, the cross-correlations identified
by means of ρq(s) can also be confirmed visually on these plots: the larger the volume,
the larger the volatility can be. However, no specific functional form of R∆t(V∆t) can be
inferred from this picture. Therefore, it is instructive to change the presentation to the
conditional probability plots of the form E[ f (|r∆t|)|v∆t], where the expectation value E[·]
can be approximated by the mean 〈·〉. From the perspective of a market with substan-
tially limited liquidity, small price changes correspond to small transaction volumes and
constitute market noise. Thus, one may expect that the most interesting relation between
volatility and volume can be seen for large returns: |r∆t(t)| � 1.
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Figure 4. Scatter plots of the returns R∆t(t) and volume traded V∆t(t) for a few selected cryptocur-
rencies (BTC, ETH, DOGE, FUN, PERL, and WAN). Each point corresponds to a specific 1 min
long interval in the whole 3-year-long period of interest. The vertical dashed lines in each panel
denote the 25th, 50th, and 75th quantile of the volume probability distribution function for a given
cryptocurrency. Note the logarithmic horizontal axis and the varying axis ranges among the panels.

The values of the normalized volume traded v∆t(t) were compartmentalized and, in
each cell vi, a fixed fraction p� 1 of the respective largest conditional volatility values was
preserved for further analysis. A power-law function with the exponent κ is assumed to
model a relation between the two quantities:

v∆t ∼ |r∆t|κ , |r∆t| ∼ vα
∆t. (8)

Figure 5 tests whether any of the relations of the form E[|r∆t|κ |v∆t] ∼ v∆t hold for BTC if the
following exponent values are selected: κ = 0.2, κ = 0.5, κ = 1, and κ = 2. The threshold
value was chosen to be p = 0.1 because, for larger values, the relation becomes blurred
and difficult to identify, whereas, for smaller values, too few data points can be considered,
which amplifies the uncertainty. Looking at the graphs, one can reject the hypothesis
that volatility and volume are related via v∆t ∼ |r∆t|2 (i.e., α = 0.5) for all the sampling
frequencies considered. In the case of the highest sampling frequency (∆t = 1 min), the
data are approximated the best for κ = 1 and, secondarily, for κ = 0.5 and κ = 0.2, over the
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broad volume range 1 < v∆t < 16. For ∆t ≥ 10 min, none of the values considered for κ
work well, whereas, for ∆t = 5 min, two cases cannot be excluded: κ = 0.5 and κ = 0.2.
This means that the likely functional form of the price impact cannot be inferred based on
the available data. Figure 6 presents the analogous results for ETH. The square-root form
of the price impact (corresponding to κ = 2) can also be rejected in this case. However, it
cannot be decided which of the remaining models (κ ≤ 1) is the most likely.
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reported for the regular markets was effectively linear, while here it remains undefined. It is
noteworthy in this context that the superlinear (α > 1) price impact for large ∆t in Equation (8)
could open the space for market manipulation [21], which on the cryptocurrency trading
platforms can take the form of wash trading [18,74]. According to that, one can view the
presented results as being in favour of the conclusion that the full maturity is still ahead of the
cryptocurrency market.

Figure 5. Conditional expectation E[|r∆t|κ |v∆t] for BTC if only a p-fraction of the largest normalized
returns r∆t is preserved for each value of the normalized volume v∆t. Each panel shows the results
for a specific value of κ together with a corresponding fitted power-law model. Four cases of the
sampling interval are presented: ∆t = 1 min, 5 min, 10 min, and 60 min. The error bars show the
conditional standard deviation σ[|r∆t|κ |v∆t].

The fact that κ 6= 2 (α 6= 0.5) and likely κ ≤ 1 (α ≥ 1) for short sampling intervals
is interesting because it makes the price impact function linear or superlinear (α ≥ 1): a
result that differs from some earlier claims made for the regular financial markets, where the
function was concave, at least for short and moderate sampling intervals [21,23]. There is also
a discrepancy for the long sampling intervals because, in this case, the behavior reported for
the regular markets was effectively linear, whereas here it remains undefined. It is noteworthy
in this context that the superlinear (α > 1) price impact for large ∆t in Equation (8) could open
the space for market manipulation [21], which, on the cryptocurrency trading platforms, can
take the form of wash trading [18,74]. According to that, one can view the presented results as
being in favor of the conclusion that full maturity is still ahead of the cryptocurrency market.
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Figure 6. The same quantities as in Figure 5 for ETH.

2.4. Volatility Clustering and Long Memory

It takes some time for a market to absorb completely pieces of information that arrive
there. This is a source of temporal market correlations that can be the easiest observed
in the price fluctuation amplitudes. Correlations are responsible for the phenomenon of
volatility clustering, i.e., the existence of prolonged periods of fluctuations with elevated
amplitude that are separated by quiet periods with more tamed fluctuations [75]. Volatility
clustering is observed on all markets and can quantified in terms of the autocorrelation
function:

C(τ) = 〈r∆t(t)r∆t(t− τ)〉t, (9)

where τ is the lag time. The autocorrelation functions calculated from the absolute log-
returns for several individual cryptocurrencies and the average autocorrelation functions
calculated for Groups I-III are presented in Figure 7 on double logarithmic scale. In each
case one can identify at least one range of lags over which C(τ) shows power-law decay.
For BTC, ETH, and FUN there is only one such a range corresponding to 10min ≤ τ ≤ 500
min with a relatively small upper end, the same refers to WAN, but in this case the upper
end exceeds τ ≈ 20, 000 min (ca. two weeks). On the other hand, DOGE, PERL, and the
average plots show two scaling regimes: the short-τ one up to τ ≈ 500− 1000 min (less
than a day) and the long-τ one for 1000 min < τ < 20, 000 min. In each case C(τ) falls
to 0 around τ ≈ 100, 000 min (more than 2 months). As compared to a more distant
past, the scaling regions for BTC and ETH are shorter now (e.g., in the years 2016-2018 it
reached τ = 1000 min [29]), which is consistent with the market time acceleration caused
by increased trading frequency). This overall picture for the cryptocurrency market does
not depart much from the one observed on other financial markets. A power-law decaying

Figure 6. The same quantities as in Figure 5 for ETH.

2.4. Volatility Clustering and Long Memory

It takes some time for a market to completely absorb pieces of information that arrive
there. This is a source of temporal market correlations that can be most easily observed
in the price fluctuation amplitudes. Correlations are responsible for the phenomenon of
volatility clustering, i.e., the existence of prolonged periods of fluctuations with elevated
amplitude that are separated by quiet periods with more tamed fluctuations [75]. Volatility
clustering is observed on all markets and can be quantified in terms of the autocorrelation
function:

C(τ) = 〈r∆t(t)r∆t(t− τ)〉t, (9)

where τ is the lag time. The autocorrelation functions calculated from the absolute log-
returns for several individual cryptocurrencies and the average autocorrelation func-
tions calculated for Groups I–III are presented in Figure 7 on a double-logarithmic scale.
In each case, one can identify at least one range of lags over which C(τ) shows power-
law decay. For BTC, ETH, and FUN, there is only one such range corresponding to
10 min ≤ τ ≤ 500 min with a relatively small upper end. The same refers to WAN but, in
this case, the upper end exceeds τ ≈ 20,000 min (ca. two weeks). On the other hand,
DOGE, PERL, and the average plots show two scaling regimes: the short-τ regime up to
τ ≈ 500–1000 min (less than a day) and the long-τ regime for 1000 min < τ < 20,000 min.
In each case, C(τ) falls to 0 around τ ≈ 100,000 min (more than 2 months). Compared
to a more distant past, the scaling regions for BTC and ETH are shorter now (e.g., in the
years 2016–2018, it reached τ = 1000 min [29]), which is consistent with the market time
acceleration caused by an increased trading frequency. This overall picture for the cryp-
tocurrency market does not depart much from the one observed in other financial markets.
A power-law decaying autocorrelation function expressing the long memory of volatil-
ity is a common property that is a manifestation of the way that the market processes
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information [27,76]. The time lag at which C(τ) reaches a statistically insignificant level
is equal to the average length of a volatility cluster [76]. Due to the alternating character
of market dynamics, where the high-volatility periods are interwoven with low-volatility
periods, for larger time lags, the autocorrelation function becomes negative. Note that, due
to the fact that volatility time series are unsigned, the long-range autocorrelations cannot
be exploited for the related investment strategies.
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)
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ETH
FUN
DOGE
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1s≤δt<2s 
δt≥2s

Figure 7. Autocorrelation function C|r∆t |(τ) of the absolute normalized log-returns |r∆t(t)| (volatility)
calculated for the selected individual cryptocurrencies—BTC, ETH, DOGE, FUN, PERL, and WAN—
as well as for the cryptocurrency Groups I-III characterized by specific range of the average inter-
transaction time: δt < 1s (Group I, dotted red), 1s ≤ δt < 2s (Group II, dotted blue), δt ≥ 2s
(Group III, dotted green). C|r∆t |(τ) has been averaged for each value of τ over all the cryptocurrencies
belonging to a given group. Note the double-logarithmic scale.

2.5. Multiscaling of Returns

If the bivariate or univariate fluctuation functions can be approximated by a power-law
relation

FAB
q (s) ∼ sh(q), (10)

where h(q) is a non-increasing function of q called the generalized Hurst exponent [77]
and A and B stand for either R or V, the time series under study reveal a fractal structure.
If h(q) = const = H, it means that this structure is monofractal, with H equal to the Hurst
exponent, which is a measure of persistence; otherwise, it is multifractal [77]. Multifractal
signals are governed by processes with long-range autocorrelations, which is why both
properties are often observed together [78–81]. It is the case, for example, in financial data.
If the relation (10) exists, it can be seen in double-logarithmic plots of FAB

q (s). Figure 8
displays FRR

q (s) for six cryptocurrencies, with −4 ≤ q ≤ 4 and 10 ≤ s ≤ 25,000. Out
of these, four cryptocurrencies show unquestionable power-law functions—BTC, ETH,
DOGE, and FUN—for all used values of q and for at least a decade-long range of scales,
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whereas PERL and WAN do not. The same result can be expressed in a different way by
calculating the singularity spectra f (α) from h(q) according to the following relations:

α = h(q) + q
dh(q)

dq
, f (α = q(α− h(q)) + 1. (11)

The Hölder exponents α quantify the singularity strength and f (α0) expresses the
fractal dimension of a subset of singularities with strength α = α0. While many theoretical
singularity spectra are symmetric, in a practical situation, one observes spectra that are
asymmetric [14,28,31,82–85]. The insets in Figure 8 show f (α) calculated from FRR

q (s) in the
scaling regions of s. All the presented spectra are left-side asymmetric (their left shoulder,
corresponding to positive qs, is longer). The origin of such a behavior can be twofold: the
signals can develop heavy tails of the probability distribution functions that are unstable
in the sense of Lévy yet their convergence to the normal distribution is slow [76], and the
signals can be mixtures of processes that have different fractal properties: large fluctuations
can be associated with a multifractal process (e.g., a multiplicative cascade), whereas small
fluctuations can be monofractal. It often happens that the small fluctuations in financial time
series are noise whereas the medium and large fluctuations carry meaningful information.
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Figure 8. (Main plots) Univariate fluctuation functions FRR
q (s) calculated from the log-returns R∆t(t)

with ∆t = 1 min for BTC, ETH, DOGE, FUN, PERL, and WAN. The breakdown of scaling for small
scales and negative values of q in some plots is an artifact related to long sequences of zero returns in
time series. (Insets) Singularity spectra f (α) calculated from the corresponding fluctuation functions
in the range denoted by dashed red lines (if possible).

It was reported in the literature that cryptocurrencies can also show such asymmetric
f (α) spectra [6,14]. From the perspective of this study, it is interesting to note that the
spectra for BTC calculated for different historical periods show an elongation of the right
shoulder of f (α) that corresponds to small fluctuations. It can be interpreted as a gradual
building of a multifractal structure in BTC price fluctuations that started from large returns
only in the early stages of BTC trading and were imposed on the smaller returns as the
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cryptocurrency market goes toward maturity. If one looks at Figure 8, BTC, ETH, and, to a
lesser degree, DOGE—that is, the cryptocurrencies that are among the most capitalized
ones—have noticeable right wings of f (α), whereas the more exotic cryptocurrencies, such
as FUN, PERL, and WAN, do not develop the right wing at all. In agreement with what has
been said before, despite various cryptoassets being traded on the same platforms, different
ones can be found at different stages of the maturing process due to the different trading
frequencies. This difference can also be observed in the possible scaling range of the
fluctuation functions in Figure 8. In the case of the two most liquid cryptocurrencies, BTC
and ETH, the FRR

q (s) scaling can be observed almost from the beginning of the scale range,
whereas, in the case of less liquid cryptocurrencies, the range of satisfactory scaling is
significantly shorter and FRR

q (s) even becomes singular on short scales due to the number
of consecutive 1 min bins with zero returns. This is typical behavior in the case of less
liquid financial instruments [14].

2.6. Cross-Correlations among Cryptocurrencies

Information that flows into the market may have the same impact on certain assets that,
for example, share similar characteristics, such as the market sector, the main shareholders,
or, in the case of cryptocurrency, the type or consensus mechanism [86]. This can lead
to the emergence of cross-correlation between such assets and to a certain hierarchy of
cross-correlations (e.g., sector, subsector, and bilateral ones) [87]. The correlation structure
is a dynamical property that can change suddenly and substantially over time as the market
reacts to perturbations [88]. In quiet times, it is well-shaped, elastic, and hierarchical,
whereas, during periods of turmoil, it becomes centralized and rigid. This dual behavior is
characteristic for the developed markets, while a lack of cross-correlations or a persistent
centralization may be attributed to immaturity.

The market cross-correlation structure can be concisely characterized by the matrix
approach. For a set of N time series of log-returns representing different cryptocurren-
cies N(N − 1)/2, the q-dependent detrended cross-correlation coefficients ρ

ij
q (s) can be

calculated, where i, j = 1, . . . , N and ρ
ij
q = ρ

ji
q , which form a q-dependent detrended

cross-correlation matrix Cq(s). Due to the fact that the cross-correlation strength increases

typically with scale for all the asset pairs, the differences in ρ
ij
q (s) are, on average, minimal

for the shortest studied scale of s = 10 min. However, even in this case, it is easy to observe
that different cryptocurrency pairs reveal strong differences. Figure 9 presents the complete
matrix Cq(s) with the cryptocurrencies ordered according to the average inter-transaction
time 〈δt〉t. The ordering allows one to find even by eye a significant cross-correlation
between 〈δt〉t and ρ

ij
q : the shorter this time is, the stronger the cross-correlations are. In full

analogy to other markets, information needs time to propagate over the whole cryptocur-
rency market and the propagation speed is crucially dependent on the cryptocurrency
liquidity, which can roughly be approximated by the transaction number per time unit.
Based on the exact values of ρ

ij
q (s), one can notice that even the least frequently traded

cryptocurrencies from the considered basket develop statistically significant dependencies
among themselves. This, however, might not be true for even less capitalized tokens, which
can have idiosyncratic dynamics.
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Figure 9. The q-dependent detrended cross-correlation matrix entries ρ
ij
q (s) calculated from time

series of log-returns representing 70 cryptocurrencies with q = 1 and s = 10 min. Cryptocurrencies
have been sorted according to the average inter-transaction time δt in increasing order (top to bottom).
The color-coding scheme is shown on the right.

The correlation matrix Cq(s) can be transformed into a distance matrix Dq(s) with the
entries

dij
q (s) =

√
2(1− ρ

ij
q (s)), (12)

which differs from the former in that its entries d(ij)q are metric. Dq(s) can be used for
constructing a weighted graph with nodes representing cryptocurrencies and edges rep-
resenting distances d(ij)q (s). Next, by using the Prim algorithm [89], one can construct
the corresponding q-dependent detrended minimal spanning tree (MST), which can be
considered as a connected minimum-weight subset of the graph containing all N nodes
and N − 1 edges. The MST topology depends strongly on the cross-correlation structure of
a market. A centralized market corresponds to a star-like MST, whereas a market contain-
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ing idiosyncratic assets shows an MST with elongated branches and no dominant hubs.
Figure 10 exhibits two MSTs created from all 70 cryptocurrencies for q = 1 (left) and q = 4
(right). The former involves cross-correlations between the fluctuations in all magnitudes,
whereas the latter involves only the large fluctuations. For q = 1, the structure is dual-star
with BTC and ETH as its central hubs. This is not surprising as both cryptocurrencies are
distinguished by their fame and large capitalization, which makes them a kind of reference
for the remaining cryptocurrencies. On the other hand, for q = 4, the structure is more
distributed, with a primary hub, BTC, and a few secondary ones: LTC, XMR, and ONT. This
means that the relatively large fluctuations are not collectively correlated, unlike the major-
ity of fluctuations, and more subtle dependencies are present. This is in parallel with the
conclusions based on the multifractal analysis, which were large fluctuations that carried
clearly multifractal characteristics and long-term correlations, whereas the small fluctua-
tions were much more noisy. It is worth mentioning that a similar behavior can be observed
in the stock market, where the cross-correlation structure carried by the large fluctuations
is much richer than that carried by the medium and small fluctuations [90]. However,
in the stock market, the heterogeneous cross-correlation structure is more pronounced
even in the latter case [86,90]. Since there is no clear division into market sectors [91],
the cryptocurrency market appears to be less developed from this particular perspective.

Figure 10. Minimal spanning trees calculated from a distance matrix Dq(s) based on ρq(s) for s = 10
and for q = 1 (left) and q = 4 (right). Within each tree, the size of the vertex is proportional to the
average value of the volume W∆t for ∆t = 1 min, while the width of the edge is proportional to
1− dij

q (s). The vertex sizes cannot be directly compared across the trees, however. Colors represent
Groups I-III in terms of the trading frequency: δt < 1s (Group I, red), 1s ≤ δt < 2s (Group II, blue),
and δt ≥ 2s (Group III, green).

2.7. Cross-Correlations between Cryptocurrencies and Other Markets

Recently, BTC and ETH have been found to be significantly coupled to the traditional
financial markets during the period covering the COVID-19 pandemic and the bear market
of 2022 [55]. This result has essential practical implications in risk management as cryptocur-
rencies cannot serve as hedging assets [92]. It differs from earlier findings that, before 2020,
the cryptocurrency market was detached from the traditional markets [47,52,93,94], but, at
the same time, it remains in agreement with the observations that COVID-19 changed
the safe-haven paradigm and contributed to the correlation of major cryptocurrencies
with traditional risk assets [53,95–98]. So far, only the most capitalized cryptocurrencies
have been studied [55], and this is why cryptocurrencies with smaller capitalization were
also studied here.

The time series of log-returns of 70 cryptocurrencies and 22 traditional financial
instruments were collected from Dukascopy platform [99]. Among the latter, there are
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contracts for difference (CFDs) representing the returns of 12 fiat currencies (AUD, CAD,
CHF, CNH, EUR, GBP, JPY, MXN, NOK, NZD, PLN, and ZAR), 4 commodities (WTI crude
oil (CL), high-grade copper (HG), silver (XAG), and gold (XAU)), 4 US stock market indices
(Nasdaq 100 (NQ100), S&P500, Down Jones Industrial Average (DJI), and Russell 2000
(RUSSEL)), the main German stock index DAX 40 (DAX), and the Japanese Nikkei 225
(NIKKEI). All these instruments except for the non-US stock indices were expressed in USD.
Their quotes cover a period from 1 January 2020 to 30 December 2022. The quotes were
recorded over the trading hours, i.e., from Sunday 22:00 to Friday 20:15 UTC, with a break
between 20:15 and 22:00 UTC each trading day. In order to assess the cross-correlations,
the cryptocurrency time series were synchronized with those from Dukascopy. Cross-
correlations were quantified by ρRR

q (s).
Figure 11 shows the q-dependent detrended cross-correlation matrix Cq(s) entries

for the inter-market pairs consisting of a cryptocurrency and a traditional asset. The first
observation is that the maximum available values of the matrix entries do not exceed
ρRR

q (s) = 0.25, which makes them much smaller than in the case of the inner cross-
correlation among the cryptocurrencies. This is an expected effect because markets are
typically more tightly coupled inside than outside. Among the strongest cross-correlations,
one can point out the coupling of BTC and ETH with the American stock market in-
dices (ρRR

q (s) > 0.2 and with NIKKEI and DAX (0.15 < ρRR
q (s) < 0.2). Considerably

weaker yet still prominent are the cross-correlations between several other cryptocurren-
cies, such as XRP, ADA, LTC, LINK, VET, ETC, EOS, ATOM, and BCH on one side and the
American indices (0.15 < ρRR

q (s) < 0.2). The relations between cryptocurrencies and fiat
currencies remain moderate, with the AUD, CAD, and NZD being the relatively strongest
(0.1 < ρRR

q (s) < 0.15). Contrary to this, the cryptocurrencies are the most decoupled from
JPY, CHF, gold (XAU), and crude oil (CL). A general observation is that the less liquid
a cryptocurrency is, the weaker its cross-correlation with traditional instruments. Here
again, DOGE is somewhat of an exception and has a weaker cross-correlation than its
trading frequency and capitalization would imply. However, it should be noted that the
values collected in Figure 11 correspond to the shortest available scale of s = 10 min. How
these values refer to the maximum cross-correlations for longer scales is documented in
Figure 12. Here, the cross-correlation between the selected cryptocurrencies and their sets
grouped according to the average inter-transaction time (Groups I–III) and NASDAQ 100
is presented. This particular choice of the traditional index was motivated by the fact that
the cryptocurrency market is strongly cross-correlated with it [55]. Indeed, for much longer
s, the values of ρRR

q (s) grow significantly and even reach some saturation level resembling
the Epps effect for s > 500 min, with the average values of ρRR

q (s) in Groups I-III oscillat-
ing around 0.4 (for a given scale, ρRR

q (s) decreases systematically with an increasing δt).
The cryptocurrencies that are the most cross-correlated with NASDAQ 100, i.e., BTC and
ETH, have maximum values of ρRR

q (s) > 0.5.
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Figure 11. The q-dependent detrended cross-correlation matrix entries ρ
ij
q (s) calculated from time

series of log-returns representing selected cryptocurrencies and selected traditional financial instru-
ments with q = 1 and s = 10 min. Cryptocurrencies have been sorted according to the average
inter-transaction time δt in increasing order (top to bottom). The color coding scheme, which differs
from the one in Figure 9, is shown on the right.
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Figure 12. The q-dependent detrended cross-correlation coefficient ρRR
q (s) calculated for the pairs of

log-return time series consisting of NASDAQ 100 and a cryptocurrency (BTC, ETH, DOGE, FUN,
PERL, or WAN) or a group of cryptocurrencies characterized by average inter-transaction time from
a specific range: δt < 1s (Group I, red), 1s ≤ δt < 2s (Group II, blue), and δt ≥ 2s (Group III, green).
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3. Conclusions

The statistical properties of price log-returns and the volume of the cryptocurrencies
were the central points of the present study. The existence of the so-called financial stylized
facts in the cryptocurrency market during the last 3 years was investigated and compared
with the stylized facts observed in the traditional financial markets. Several characteristics
were of particular interest: a tail behavior of the probability distribution functions for the
log-returns and volume traded, the functional form of price impact, volatility autocorrela-
tions, multiscaling, cross-correlations among the cryptocurrencies, and cross-correlations
between the principal cryptocurrencies and selected traditional market assets. Almost all
the analyzed characteristics of the cryptocurrency market were found to be in qualitative
agreement with their counterparts from the traditional markets. It allows one to conclude
that, from this particular perspective, the cryptocurrency market does not differ from the
mature markets.

Despite such a positive conclusion, one still has to be cautious. First, the level of the
maturity of the cryptocurrencies depends on their trading frequency. The most liquid ones,
such as BTC and ETH, to a greater extent, have characteristics corresponding to mature
financial markets, and the least liquid ones do not. Second, the price impact function, while
also of a power-law form, results in being substantially different from its counterparts
reported in the traditional markets (linear or convex here vs. concave there [21]). Third,
while the statistical properties are important from a practical point of view as they can be
exploited in various investment strategies, there are nevertheless many other important
indicators of market maturity that were not investigated here. For example, the number
of cryptocurrencies traded on the largest platforms, such as Binance, is so large that it
already matches the world’s largest markets, such as the New York Stock Exchange and
NASDAQ. On the other hand, even the most recognized cryptocurrencies, such as BTC
and ETH, show extreme volatility, which means that the market is still rather illiquid,
and this property can question its maturity. There is another problem associated with the
fact that the cryptocurrencies are often viewed as speculation toys rather than full-scale
investment instruments. There are also numerous issues related to the limited reliability of
the cryptocurrencies, their weak supply elasticity, etc. These problems, while important,
were beyond the scope of this analysis, which one has to keep in mind when thinking about
the given conclusions. Repeating this kind of analysis in future in order to follow how
the cryptocurrency market changes seems to be a straightforward direction of potential
future studies.
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Appendix A

Table A1. List of cryptocurrencies from Binance.

Ticker Name Ticker Name Ticker Name

ADA cardano FET fetch QTUM qtum

ALGO algorand FTM fantom REN ren

ANKR ankr FUN funtoken RLC iexec

ARPA arpa chain HBAR hedera RVN ravencoin

ATOM cosmos HOT holo STX stacks

BAND band protocol ICX icon TFUEL theta fuel

BAT basic atention token IOST iost THETA theta

BCH bitcoin cash IOTA miota TOMO tomochain

BEAM beam IOTX iotex TROY troy

BNB binance coin KAVA kava TRX tron

BTC bitcoin KEY key VET vechain

CELR celer network LINK chainlink VITE vite

CHZ chiliz LTC litecoin WAN wanchain

COS contentos MATIC polygon WAVES waves

CTXC cortex MFT hifi finance WIN winklink

DASH dash MTL metal XLM stellar

DENT dent NEO neo XMR monero

DOCK dock NKN nkn XRP ripple

DOGE dogecoin NULS nuls XTZ tezos

DUSK dusk network OMG omg network ZEC zcash

ENJ enj coin ONE harmony ZIL zilliqa

EOS eos ONG ontology gas ZRX 0x

ETC ethereum classic ONT ontology

ETH ethereum PERL perl
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