
Statistical Science
2013, Vol. 28, No. 2, 257–268
DOI: 10.1214/13-STS415
© Institute of Mathematical Statistics, 2013

What Is Meant by “Missing at Random”?
Shaun Seaman, John Galati, Dan Jackson and John Carlin

Abstract. The concept of missing at random is central in the literature on
statistical analysis with missing data. In general, inference using incomplete
data should be based not only on observed data values but should also take
account of the pattern of missing values. However, it is often said that if
data are missing at random, valid inference using likelihood approaches (in-
cluding Bayesian) can be obtained ignoring the missingness mechanism. Un-
fortunately, the term “missing at random” has been used inconsistently and
not always clearly; there has also been a lack of clarity around the mean-
ing of “valid inference using likelihood”. These issues have created poten-
tial for confusion about the exact conditions under which the missingness
mechanism can be ignored, and perhaps fed confusion around the meaning
of “analysis ignoring the missingness mechanism”. Here we provide stan-
dardised precise definitions of “missing at random” and “missing completely
at random”, in order to promote unification of the theory. Using these defini-
tions we clarify the conditions that suffice for “valid inference” to be obtained
under a variety of inferential paradigms.

Key words and phrases: Ignorability, direct-likelihood inference, frequen-
tist inference, repeated sampling, missing completely at random.

1. INTRODUCTION

The literature on missing data is not entirely clear
with respect to the assumptions required for differ-
ent types of analysis to be valid. First, although the
term “missing at random” (MAR) has been widely re-
garded as central to the theory underlying missing data
methods since the seminal paper of Rubin (1976) [33],
it has not always been used in a consistent manner.
There has often been a lack of detail about whether
the MAR condition is a statement only about the re-
alised missingness pattern or about all possible patterns
and whether it is only about the realised values of the
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observed data or all possible observable data values.
Second, the distinction between direct-likelihood and
frequentist inference using the likelihood function is
not always made clear. Third, it is sometimes said that
“missing completely at random” (MCAR) is needed
for frequentist inference; at other times MAR is said
to be sufficient.

While it is clear that some researchers writing on the
theory of missing data have known what they intended,
the omission of details by many authors, together with
the seemingly different conditions assumed by differ-
ent authors, make it difficult for readers to know pre-
cisely what was meant, and also to compare the work of
different authors. This confusion has implications for
statistical practice, since data analysts are encouraged
to consider the plausibility of the MAR assumption be-
fore applying certain methods of analysis (e.g., [38]),
but if the conscientious analyst consults the theoretical
literature they will struggle to find a clear consensus on
definitions and on how they relate to the validity of pos-
sible analytic approaches. Further confusion surrounds
the concept of “ignorability”, which does not seem to
be well understood by practitioners and may be misin-
terpreted as providing a broad licence to ignore the fact
that not all the desired data have been observed.

257

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/13-STS415
http://www.imstat.org
mailto:shaun.seaman@mrc-bsu.cam.ac.uk


258 SEAMAN, GALATI, JACKSON AND CARLIN

In the present article, our objectives are to: (1) draw
attention to the various gaps and inconsistencies in
some definitions of MAR used in the literature; (2) pro-
vide unambiguous formulations of relevant MAR defi-
nitions; and (3) explain the relation between MAR and
ignorability under different frameworks of statistical
inference and, in so doing, identify the need for more
than one definition of MAR.

The structure of the paper is as follows. In Sec-
tion 2 we provide definitions of two distinct MAR con-
ditions, one stronger than the other, and likewise for
MCAR. The inconsistency in previous usage of the
terms “MAR” and “MCAR” is documented in Sec-
tion 3. The definitions of MAR and MCAR are cen-
tral to the concept of ignorability, the definition of
which varies according to the chosen framework of
statistical inference. In Section 4 we distinguish be-
tween direct-likelihood inference, Bayesian inference,
frequentist inference using the likelihood function and
the frequentist properties of Bayesian estimators. Sec-
tion 5 contains an explanation of which MAR/MCAR
conditions are needed for the missingness mechanism
to be ignorable for each of these types of inference.
Section 6 covers the use of conditional likelihood and
repeated sampling. We end with a discussion.

2. TWO DEFINITIONS OF MAR AND MCAR

We use Y to denote the vector of potentially observ-
able data values (on all sample units), which for mod-
elling purposes we treat as a random variable. Let M
denote a vector of missingness indicators of the same
length as Y. The j th element of M equals one if the
j th element of Y is observed and zero if it is missing.
Let o(Y,M), a function of Y and M, denote the sub-
vector of Y consisting of elements whose correspond-
ing elements of M equal one. So, o(Y,M) contains the
observed elements of Y. Let K denote the length of
o(Y,M). So, K is a random variable and is equal to
the sum of the elements of M. When no elements of
Y are observed, o(Y,M) is the empty set and K = 0.
The reader may be familiar with the notation Yobs and
Ymis. We choose not to use this notation because it is
ambiguous, as we explain in Section 3. However, our
notation o(Y,M) is equivalent to Yobs as usually inter-
preted. When we consider a specific sample, it is con-
venient to have notation for the realised values of the
random variables M and Y; we denote these realised
values as m̃ and ỹ, respectively. “Realised” and “ob-
served” values should not be confused. The observed
value, o(Y,M), of Y is a random variable and has a re-
alised value, o(ỹ, m̃). The values of m̃ and o(ỹ, m̃) are

known, but that of ỹ is only known if all elements of m̃
equal one.

In the special case where the data are modelled as a
set of J random variables measured on each of n units,
as is often the case, Y is a vector of length nJ . Al-
though in this special case one might alternatively de-
fine Y as a matrix with n rows and J columns, for the
sake of generality we do not do this. For example, sup-
pose that Y consists of two random variables, X and Z,
measured on each of two units, that the realised value
of (X,Z) is (10,3) for the first unit and (4,2) for the
second, and that X is observed for both units but Z is
only observed for the second. Then ỹ = (10,3,4,2)T ,
m̃ = (1,0,1,1)T and o(ỹ, m̃) = (10,4,2)T . Note that
o(y,m) cannot be interpreted without the accompany-
ing value of m̃.

Consider a hypothesised “missingness model”, that
is, a model for the conditional distribution of M
given Y. Let gφ(m | y) denote the probability that
M = m given that Y = y according to this model,
where φ is an unknown parameter. We now present
two definitions of MAR.

DEFINITION 1. The data are realised MAR if ∀φ,

gφ(m̃ | y) = gφ(m̃ | ỹ)

∀y such that o(y, m̃) = o(ỹ, m̃)

(where y represents a value of Y). This means that the
hypothesised missingness model always (i.e., for all
values of φ) assumes that the conditional probability
that the missingness pattern M is its realised value m̃,
given the realised values of the elements of the data
Y that are observed when M = m̃ and the values of
the remaining, missing, elements, does not depend on
these missing elements. Rubin [33] expressed this as
follows: “The missing data are missing at random if
for each possible value of the parameter φ, the con-
ditional probability of the observed pattern of missing
data, given the missing data and the value of the ob-
served data, is the same for all possible values of the
missing data”. There are several things to note about
this definition. First, it is a statement only about the re-
alised missingness pattern and realised observed data,
not about missingness patterns or observed data that
could have been realised but were not. Second, it is
a statement about a hypothesised missingness model,
rather than necessarily the true missingness process.

DEFINITION 2. The data are everywhere MAR
if ∀φ,

gφ(m | y) = gφ

(
m | y∗)

∀m,y,y∗ such that o(y,m) = o
(
y∗,m

)
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(where y and y∗ represent a pair of values of Y). This
means that the hypothesised missingness model always
assumes that, for any value of the data, the probability
of any possible missingness pattern, given the values
of the corresponding observed elements and missing
elements of the data, does not depend on the values of
the missing elements. In order to make more obvious
the difference between realised and everywhere MAR,
note that Definition 1 can be rewritten as follows. The
data are realised MAR if ∀φ, gφ(m̃ | y) = gφ(m̃ | y∗)
∀y,y∗ such that o(y, m̃) = o(y∗, m̃) = o(ỹ, m̃). Unlike
realised MAR, everywhere MAR is a statement about
all possible missingness patterns and values of the ob-
served data. Note that everywhere MAR implies re-
alised MAR.

To illustrate and clarify the notation that we have
used here, consider the example given above, that is,
ỹ = (10,3,4,2)T , m̃ = (1,0,1,1)T and o(ỹ, m̃) =
(10,4,2)T . The data are realised MAR if ∀φ, gφ((1,0,

1,1)T | y) = gφ((1,0,1,1)T | y∗) ∀y,y∗ such that
the first, second and fourth elements of both y and
y∗ equal, respectively, 10, 4 and 2. That is, the data
are realised MAR if, for any φ, gφ((1,0,1,1)T |
(10, a,4,2)T ) = gφ((1,0,1,1)T | (10, b,4,2)T ) for
all a, b in the sample space of the second element of Y.

Now consider the special case of independent iden-
tically distributed (i.i.d.) data, that is, Y = (YT

1 , . . . ,

YT
n )T and M = (MT

1 , . . . ,MT
n )T , where (Yi ,Mi) (i =

1, . . . , n) are i.i.d. Let o1(Yi ,Mi) denote the subvec-
tor of Yi consisting of elements of Yi whose corre-
sponding elements of Mi equal one. [Note that the
function o1 is analogous to the previously defined o(·),
but whereas o(·) is a function of all the data, o1 is a
function of only the data for a single unit.] So, Yi , Mi

and o1(Yi ,Mi) denote the data, the missingness pat-
tern and the observed data, respectively, for the ith of
n units. Consider a hypothesised model for the condi-
tional distribution of Mi given Yi , and let gφ,1(mi | yi )

denote the probability that Mi = mi given that Yi = yi

according to the model. In this case, Definitions 2 and 3
are equivalent.

DEFINITION 3. The data are everywhere MAR if
∀i,φ,

gφ,1(mi | yi ) = gφ,1
(
mi | y∗

i

)
∀yi ,y∗

i such that o1(yi ,mi ) = o1
(
y∗
i ,mi

)
.

Definition 3 may only be applied when (Y1,M1),

. . . , (Yn,Mn) are i.i.d. If, for example, Y1, . . . ,Yn

were i.i.d. and M1, . . . ,Mn were identically distributed

but with Mi depending on Mj and/or Yj for j �= i,
then (Y1,M1), . . . , (Yn,Mn) would not be i.i.d. and so
Definition 3 could not apply. The data might neverthe-
less still be everywhere MAR by Definition 2.

Finally, we present two definitions of MCAR.

DEFINITION 4. The data are realised MCAR if ∀φ,

gφ(m̃ | y) = gφ

(
m̃ | y∗) ∀y,y∗.

DEFINITION 5. The data are everywhere MCAR
if ∀φ,

gφ(m | y) = gφ

(
m | y∗) ∀m,y,y∗.

Realised MCAR means that the probability of the
realised missingness pattern given the data does not
depend on the data. Realised MCAR implies realised
MAR but not everywhere MAR. Everywhere MCAR
means that the probability of any missingness pattern
given the data does not depend on the data, that is, M is
independent of Y. Everywhere MCAR implies realised
MCAR, realised MAR and everywhere MAR.

3. MAR AND MCAR IN THE LITERATURE:
A REVIEW

Historically, the first definition of MAR was that of
Rubin (1976) [33]. This is Definition 1, that is, the
definition for realised MAR (apart from minor differ-
ences in notation and the fact that Rubin’s definition
begins “The missing data are MAR” rather than “The
data are MAR”). Rubin (1987) [36] largely avoided
the term “MAR”, preferring instead the terms “ignor-
able sampling” and “ignorable response”. However, he
did (page 53) briefly discuss the relation between these
three terms. It is evident from that discussion that he
was using the Rubin (1976) [33] definition. Heitjan and
colleagues, in a series of papers (e.g., [10–15]), consis-
tently used “MAR” to mean realised MAR. Harel and
Schafer [9] also defined realised MAR. Most other au-
thors have used “MAR” to mean everywhere MAR.

Several authors (Schafer [37]; Kenward and Molen-
berghs [20]; Lu and Copas [25]; Jaeger [17]) provided
definitions of everywhere MAR but accompanied this
definition with a citation of Rubin (1976) [33] (which
defines realised, rather than everywhere, MAR). In
fact, most of these authors said explicitly that their def-
inition was an expression of Rubin’s (1976) [33] defi-
nition.

The potential of the variety of definitions of MAR to
cause confusion was illustrated by an exchange of let-
ters between Heitjan [13] and Diggle [5]. Note that ac-
cording to Rubin’s (1976) [33] definition (i.e., realised
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MAR), if all the data are observed, they cannot fail to
be MAR (although one might alternatively say that his
definition is a statement about the missing data and in
this situation there are no missing data, so there are no
missing data to be MAR). Heitjan gave an example in
which a single variable X is measured on n individu-
als and could potentially be missing on some of these
individuals. However, he supposed that in the data set
actually observed, X is observed on all n individuals,
so there are no missing data. He stated that the data
are MAR. Diggle responded by saying that the data are
not MAR, since the probability that X is observed de-
pends on X, which could be missing. The reason for
this disagreement is that Heitjan was using the defini-
tion of realised MAR whereas Diggle was using that of
everywhere MAR.

In addition to the problems caused by this dual use of
the term “MAR”, definitions of MAR found in some of
the key literature on missing data, including textbooks,
contain certain ambiguities.

Many authors (Little and Rubin [23, 24]; Schafer
[37]; Kenward and Molenberghs [20]; Harel and Scha-
fer [9]; Fitzmaurice et al. [8]) used the problematic no-
tation Yobs and Ymis mentioned in Section 2. Little and
Rubin [23, 24], for example, said that Yobs denotes the
observed components or entries of Y, that Ymis de-
notes the missing components, and that the missing
data mechanism is called MAR if

f (M | Y,φ) = f (M | Yobs,φ) ∀Ymis,φ(1)

[where f (· | ·) denotes a conditional distribution]. The
notation f (M | Yobs,φ) is somewhat confusing, be-
cause Yobs is itself a function of M. Interpreted liter-
ally, Yobs = o(Y,M). Hence, if Yobs is known, then K

is also known, and so f (M | Yobs,φ) should equal zero
unless the number of nonzero elements of M equals K .
Nevertheless, we presume that equation (1) was in-
tended to mean Definition 2 (i.e., everywhere MAR).
Fitzmaurice et al. [8] gave a definition similar to equa-
tion (1), but added that this means M is conditionally
independent of Ymis given Yobs. This is rather difficult
to interpret, given that Ymis is a function of M.

Another source of ambiguity concerns the parame-
ter φ. Definitions 1–3 require a particular equality to
hold for all values of φ. Several authors (Robins and
Gill [31]; Kenward and Molenberghs [20]; Tsiatis [39];
Fitzmaurice et al. [8]) omitted the parameter φ when
defining MAR, with the result that it is not obvious
whether equality is required to hold for all φ or just
for its “true” value. Schafer [37] did include φ, but
was also unclear about whether equality must hold for

all φ. Judging from the use that these authors made of
their MAR assumptions, most of them seem implicitly
to have meant that the equality should hold for all φ.
However, Fitzmaurice et al. [8] seem to require equa-
tion (1) to hold only for the true value of φ: they appear
to be referring to the “true” missingness mechanism,
rather than to a model for the missingness. We shall
return to this point in Section 7.

Just as there can be ambiguity about φ, it is some-
times not entirely clear whether a definition of MAR
requires an equality to hold for all Y or just for Y com-
patible with o(ỹ,M). See, in particular, equation (1).

We have concentrated on MAR, but there is also am-
biguity about the definition of MCAR. In his original
1976 paper [33], Rubin did not mention MCAR. He
instead introduced the concept of the observed data be-
ing “observed at random”. The realised MCAR defini-
tion (Definition 4) is equivalent to the combination of
the missing data being realised MAR and the observed
data being observed at random [11] (see also Lit-
tle [21]). Heitjan and colleagues have used “MCAR” to
mean realised MCAR. Many other authors (e.g., Little
and Rubin [23, 24] and [37]) have used “MCAR” to
mean everywhere MCAR. In the situation of repeated-
measures outcome data with fully observed covari-
ates, Molenberghs and Kenward [26] used “MCAR”
to mean that missingness in the outcomes cannot de-
pend on the outcomes but can depend on the covariates.
Elsewhere this has been called “covariate-dependent
MCAR” [22, 41].

4. DIRECT-LIKELIHOOD, BAYESIAN AND
FREQUENTIST INFERENCE

In Section 5 we shall discuss ignorability. The defini-
tion of ignorability depends on the framework of infer-
ence adopted. Here we review the distinctions between
four types of inference: Bayesian inference, direct-
likelihood inference (also known as pure-likelihood in-
ference), general frequentist inference and frequentist
likelihood inference. For simplicity of exposition, we
describe inference when the data Y are fully observed.
In Section 5 we describe the generalisation to incom-
plete data.

In Bayesian and direct-likelihood inference a proba-
bility distribution function is specified for the data Y.
This function involves a finite set of unknown param-
eters, θ . Some of these are of interest and the aim is
to make inference about their values; others may be
nuisance parameters. The likelihood is defined as any
multiple of this probability distribution function where
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the multiplier does not depend on any of the param-
eters. Whereas the probability distribution function is
regarded as a function of the data with the values of the
parameters considered fixed, the likelihood is regarded
as a function of the parameters with the data considered
fixed.

In direct-likelihood inference [2, 28, 30], the value of
the parameters at which the likelihood is a maximum
(the maximum likelihood estimate) is used as a point
estimate and the ratio of the value of the likelihood
at different parameter values is used to judge which
parameter values are plausible. The normalised likeli-
hood is defined as the likelihood divided by the value
of the likelihood at the maximum likelihood estimate
(so that the normalised likelihood takes value one at
the maximum likelihood estimate). When there is only
one parameter, a likelihood interval is defined as the
set of parameter values within which the values of the
normalised likelihood are greater than some threshold.
Different thresholds have been proposed, for example,
Fisher [7] suggested 1/15 and Royall [32] suggested
1/32.

When there is more than one parameter, a likelihood
interval for any one of them can be obtained by first
eliminating the others. Two commonly used ways to
eliminate parameters are the profile likelihood method
and the conditional likelihood method. Suppose, with-
out loss of generality, that θ = (θ1, θ2), where θ2 are
the parameters to be eliminated. The profile likelihood
for θ1 is defined as the function obtained, for each pos-
sible value of θ1, by fixing θ1 at that value and then
maximising the likelihood for θ over the space of θ2.
In the profile likelihood method, a likelihood inter-
val for θ1 is calculated using the profile likelihood for
θ1 in place of the likelihood for θ . In the conditional
likelihood method, a conditional probability distribu-
tion function is specified for Y given a (possibly vec-
tor) function of Y. The resulting conditional likelihood
contains fewer parameters than the unconditional like-
lihood, that is, that based on the unconditional prob-
ability distribution function for Y. If the conditional
likelihood contains only θ1, it can be used to construct
a likelihood interval for θ1. If it contains additional
parameters, these can be eliminated using the profile
likelihood method. There is no clear theoretical basis
for choosing between the profile likelihood and condi-
tional likelihood approaches, and each appear to have
their merits for different situations.

In Bayesian inference, uncertainty about parameters
is represented directly by probability models, requiring
a prior distribution to be specified. The posterior distri-
bution of the parameters is obtained by Bayes’ theo-

rem. For any of the parameters in the model, the mean
of its posterior distribution is typically used as a point
estimate and (αl, αu) used as an interval of uncertainty
(a credible interval), where αl and αu are the lth and
uth centiles (e.g., 2.5th and 97.5th) of that parameter’s
marginal posterior distribution. This interval is inter-
pretable as meaning that the posterior probability that
the parameter lies within (αl, αu) is (u − l)/100. The
use of the marginal posterior distribution means that all
other parameters are eliminated by integrating them out
of the joint posterior distribution of all the parameters.

In direct-likelihood inference and Bayesian infer-
ence as described above, only the realised value of Y
is of interest; there is no consideration of other val-
ues of Y that could have been realised but which were
not. Frequentist inference, on the other hand, is con-
cerned with the (hypothetical) repeated sampling of Y
and with the properties of inferential summaries such
as point and interval estimates under this repeated sam-
pling. It is only when repeated sampling is considered
that the concepts of bias, standard error, efficiency,
power and confidence interval become meaningful.
The bias of an estimator of a parameter, for example, is
defined as the difference between the mean of the sam-
pling distribution of the estimator and the true value
of the parameter; the standard error is the standard de-
viation of the sampling distribution of the estimator;
a confidence interval is an interval obtained using a rule
that has a stated probability of producing an interval
containing the true value of the parameter in a repeated
sample. One important example of a rule for con-
structing confidence intervals is the rule used in direct-
likelihood inference to construct likelihood intervals,
that is, a likelihood interval becomes, in the framework
of frequentist inference, a confidence interval.

In frequentist inference, a function s(Y) of Y is cho-
sen and its realised value, s(ỹ), is compared with the
sampling distribution of s(Y), that is, the distribution
of s(Y) in repeated samples. This sampling distribution
may be conditional on the realised value of a (possi-
bly vector) function of Y. We distinguish between gen-
eral frequentist inference, where s(Y) can be any func-
tion of Y, and frequentist likelihood inference, where
s(Y) depends on Y only through the likelihood of Y.
Frequentist likelihood inference includes using the ob-
served or expected information to estimate the standard
error of the maximum likelihood estimator (MLE), us-
ing this MLE and standard error to construct a confi-
dence interval, using likelihood intervals as confidence
intervals, and using likelihood-ratio, Wald and score
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tests. Frequentist likelihood inference is like direct-
likelihood inference, in that it also uses the MLE and
likelihood intervals, but goes beyond it, in that it in-
volves claims about the behaviour of the MLE and like-
lihood intervals in repeated samples. Frequentist like-
lihood inference is often referred to simply as “likeli-
hood inference”.

Often even statisticians using Bayesian methods are
interested in frequentist properties of their estimators,
for example, the bias of the posterior mean or the cov-
erage of a credible interval [19, 35].

The distinction between direct-likelihood inference
and frequentist likelihood inference has not always
been made clear in the literature. For example, Heit-
jan and Rubin [15] and Harel and Schafer [9] referred
to direct-likelihood inference simply as “likelihood in-
ference”. Molenberghs et al. [27] appear to use the
term “direct-likelihood analysis” when writing about
repeated sample properties of the likelihood. Also, the
potential interest in frequentist properties of Bayesian
estimators has rarely been mentioned in the literature
on missing data, except in the context of multiple im-
putation.

5. IGNORABILITY OF THE MISSINGNESS
MECHANISM

In this section we clarify which missingness assump-
tion suffices for the missingness mechanism to be ig-
norable for each of the types of inferences described
in Section 4. Intuitively, “ignorable” means that infer-
ences obtained from a parametric model for the data
alone are the same as inferences obtained from a joint
model for the data and missingness mechanism. To
serve as a workable definition, one needs to say what is
meant by “the same”, and in the literature authors have
not always been explicit on this point. We endeavour
to be clear, but defer specification of our definitions to
the relevant subsections below.

Consider a joint parametric model for the complete
data Y and missingness pattern M. Let fθ (y)gφ(m | y)

denote the joint distribution of Y and M according to
this model, and let �θ,φ denote the joint parameter
space for (θ ,φ). Let ỹ and m̃ be a given realisation
of Y and M. Let �θ = π1(�θ,φ) and �φ = π2(�θ,φ)

be the parameter spaces for θ and φ, respectively, cor-
responding to the joint parameter space �θ,φ . Follow-
ing Heitjan and Basu [14], we avoid measure-theoretic
difficulties by assuming that Y is discrete. Because in
reality all data are measured to finite precision, this
assumption is not restrictive. Reference to continuous

distributions should be interpreted as meaning discrete
distributions on a fine grid, and integrals can be inter-
preted as sums.

The joint likelihood for (θ ,φ) is the function with
domain �θ,φ given by

L1(θ ,φ) =
∫

fθ (y)gφ(m̃ | y)r(y, ỹ, m̃) dy,(2)

where r(y, ỹ, m̃) equals one if o(y, m̃) = o(ỹ, m̃) and
zero otherwise. Note that the integral here integrates
out the missing data. The likelihood for θ ignoring the
missing-data mechanism is the function with domain
�θ given by

L2(θ) =
∫

fθ (y)r(y, ỹ, m̃) dy.(3)

For any fixed φ ∈ �φ , the fixed-φ likelihood for θ is
the function with domain �θ given by

L3,φ(θ) = δ
{
(θ,φ),�θ,φ

}
(4)

·
∫

fθ(y)gφ(m̃ | y)r(y, ỹ, m̃) dy,

where δ{(θ ,φ),�θ,φ} equals one if (θ,φ) ∈ �θ,φ and
zero otherwise. The profile likelihood for θ is the func-
tion with domain �θ given by

L4(θ) = max
φ∈�φ

[
δ
{
(θ ,φ),�θ,φ

}
(5)

·
∫

fθ (y)gφ(m̃ | y)r(y, ỹ, m̃) dy
]
.

In Section 6 we shall consider the use of conditional
likelihoods.

5.1 Direct-Likelihood Inference

The main work on ignorability for direct-likelihood
inference can be summed up in the following theorem.
After giving a proof, we shall discuss why this theo-
rem has been considered to justify the use of L2, the
likelihood for θ ignoring the missing-data mechanism,
when the data are realised MAR and the parameters are
distinct.

THEOREM 1. If realised MAR holds and �θ,φ =
�θ × �φ , then: (i) L1(θ ,φ) factorises into two com-
ponents, such that each parameter appears in only
one component; (ii) for any φ ∈ �φ satisfying gφ(m̃ |
ỹ) > 0, L3,φ(θ) is proportional to L2(θ); and (iii) if
∃φ ∈ �φ such that gφ(m̃ | ỹ) > 0, then L4(θ) is a spe-
cial case of L3,φ(θ) and, hence, L4(θ) is proportional
to L2(θ).
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PROOF. As �θ,φ = �θ ×�φ , it follows that when-
ever φ ∈ �φ and θ ∈ �θ , then (θ ,φ) ∈ �θ,φ , and so
δ{(θ ,φ),�θ,φ} = 1. So, for φ ∈ �φ and θ ∈ �θ ,

L1(θ , φ) =
∫

fθ (y)gφ(m̃ | y)r(y, ỹ, m̃) dy(6)

= gφ(m̃ | ỹ)

∫
fθ(y)r(y, ỹ, m̃) dy(7)

= L5(φ)L2(θ),(8)

where

L5(φ) = gφ(m̃ | ỹ)

is a function of φ only. Hence, (i) is true. Note that line
(7) follows because of realised MAR.

If realised MAR holds and �θ,φ = �θ × �φ , line
(7) is equal to L3,φ(θ). Since gφ(m̃ | ỹ) is not a func-
tion of θ , it then follows that L3,φ(θ) is proportional to
L2(θ) for any φ ∈ �φ such that gφ(m̃ | ỹ) > 0. So, (ii)
is true.

Likewise, when the data are realised MAR and
�θ,φ = �θ × �φ ,

L4(θ) =
∫

fθ (y)r(y, ỹ, m̃) dy × max
φ∈�φ

gφ(m̃ | ỹ).

The function maxφ∈�φ
gφ(m̃ | ỹ) does not depend

on θ . Moreover, it is nonzero when ∃φ ∈ �φ such that
gφ(m̃ | ỹ) > 0. So, L4(θ) = L3,φ̂

(θ), where φ̂ is the
value of φ that maximises gφ(m̃ | ỹ). Hence, (iii) is
true. �

In the literature, this factorisation of the joint likeli-
hood and this proportionality of likelihoods have been
used as a basis for defining when the missingness
mechanism can be ignored when performing direct-
likelihood inference. Rubin [33], for example, used the
proportionality of likelihoods to write: “When mak-
ing direct-likelihood or Bayesian inferences about θ ,
it is appropriate to ignore the process that causes miss-
ing data if the missing data are missing at random and
the parameter of the missing data process is “distinct”
from θ”. Anscombe [1] wrote that when the joint like-
lihood for a parameter of interest θ and a nuisance pa-
rameter φ factorises into two components, such that
each parameter appears in only one component, infor-
mation on each factor can be considered separately.
The same was written by Hinde and Aitkin [16]. Royall
[32] called the component involving θ the “likelihood
for θ” and said that the relative support for any two
values of θ is given by the ratio of the values of this
likelihood evaluated at those two θ values. Edwards
[6] supported the use of the profile likelihood when the

joint likelihood factorises. He wrote: “since the value
of φ is irrelevant to our inference on θ , replacing φ
in [the joint likelihood] by its maximum likelihood es-
timate will not invalidate the likelihood”. Kalbfleisch
and Sprott [18] agreed with Edwards. When compar-
ing inference for θ using L1 and L2 in situations where
the two may give different answers, Heitjan [10, 15],
pages 1103 and 2249, interpreted inference for θ using
L1 as meaning inference using the profile likelihood.
Tsou and Royall [40] considered the strength of evi-
dence in the presence of a nuisance parameter as being
the strength of evidence that would be in the data if the
value of the nuisance parameter were known. That is,
they considered the strength of evidence to be the par-
ticular fixed-φ likelihood for θ corresponding to the
true value of φ.

All these authors, therefore, provide justification
for interpreting Theorem 1 as meaning that direct-
likelihood inference about θ can be performed using
L2 when the data are realised MAR and θ and φ are
distinct parameters.

To picture the effect of realised MAR and distinct-
ness of parameters on the joint likelihood L1(θ ,φ), it
is helpful to consider a joint model where θ and φ are
both scalar parameters. The graph of L1 is then a sur-
face in three dimensions lying above a (θ,φ) plane.
The realised MAR condition imposes geometric struc-
ture on this surface [evident from equations (7) and (8)]
such that curves obtained from the surface by fixing
φ at various values are all proportional, simply being
copies of L2 scaled by the conditional probability of
realising the observed missingness pattern under the
given φ value. The function L1 is, however, only de-
fined for values of (θ ,φ) in �θ,φ . Hence, the curve
formed from the L1 by fixing φ may be undefined for
some values of θ where the L2 curve is defined. So, one
can think of each curve formed from L1 by fixing φ as
being a proportional copy of L2 with, potentially, one
or more sections omitted. The assumption of distinct
parameters ensures that such “omitted” sections do not
exist, and therefore that the curves are proportional at
all θ values in �θ .

So far, we have considered the elimination of φ as a
nuisance parameter. As discussed in Section 4, when a
likelihood interval is required for a single element, θ1,
of a vector parameter, θ , the other parameters, θ2, are
also nuisance parameters and must be eliminated. If
θ2 is eliminated from L2(θ) and L4(θ) using the pro-
file likelihood method, the proportionality of L4(θ)

and L2(θ) also ensures the proportionality of the pro-
file likelihoods for θ1 derived from L2(θ) and L4(θ).
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Hence, the likelihood intervals for θ1 obtained from L2

and L4 will be the same. We discuss the use of condi-
tional likelihood in Section 6.

5.2 Bayesian Inference

Consider Bayesian inference accounting for the
missingness mechanism. Let pθ,φ(θ ,φ) denote the
joint prior distribution of (θ ,φ) and let pθ(θ) denote
the corresponding marginal prior distribution of θ . The
missingness mechanism is said to be ignorable for
Bayesian inference if the marginal posterior distribu-
tion of θ obtained from modelling both the complete
data, Y, and the missingness pattern, M, is equal to
the posterior for θ obtained by modelling Y alone. The
main work in this area can be summed up by the fol-
lowing theorem.

THEOREM 2. Suppose that (1) the data are re-
alised MAR and (2) θ and φ are a priori independent.
The posterior distribution of θ that results from using
the likelihood L2(θ) and the prior p(θ) is the same as
the posterior distribution that results from using likeli-
hood L1(θ,φ) and prior pθ,φ(θ ,φ).

PROOF. When L1(θ ,φ) and pθ,φ(θ ,φ) are used,
the posterior distribution of (θ ,φ) is proportional to
pθ,φ(θ ,φ)L1(θ ,φ). If θ and φ are a priori inde-
pendent, pθ,φ(θ ,φ) factorises as pθ(θ)pφ(φ), where
pφ(φ) is the marginal prior for φ. If, furthermore,
the data are realised MAR, it follows from equation
(8) that the posterior distribution of (θ ,φ) is propor-
tional to pφ(φ)L5(φ)pθ (θ)L2(θ). Since pφ(φ)L5(φ)

is a function of φ only, the marginal posterior distri-
bution of θ is proportional to pθ(θ)L2(θ). This is the
same posterior distribution that is obtained if L2(θ)

and pθ(θ) are used. �

5.3 General Frequentist Inference

From the joint model, for any φ ∈ �φ for which ∃y
such that fθ (y)gφ(m̃ | y) > 0, the conditional distribu-
tion of o(Y,M) given M = m̃ is

∫
fθ (u)gφ(m̃ | u)r(u,y, m̃) du

(9) /∫
fθ (u)gφ(m̃ | u) du.

In general, this distribution may depend on φ. Let
t{o(Y,M),M} be a function of o(Y,M) and M. Ru-
bin [33] called the distribution of t{o(Y,M),M} given
M = m̃ implied by the distribution of o(Y,M) given

M = m̃ in expression (9) the “correct conditional sam-
pling distribution” of t{o(Y,M),M}. In general, the
distribution given by (9) is not equal to∫

fθ (u)r(u,y, m̃) du(10)

and so, in general, the conditional distribution of
o(Y,M) given M = m̃ is not that given by expression
(10). Nevertheless, the latter distribution is the distri-
bution that corresponds to likelihood L2(θ). Heitjan
and Basu [14] called the distribution of t{o(Y,M),M}
given M = m̃ implied by the distribution in (10)
the “potentially incorrect sampling distribution” of
t{o(Y,M),M}.

THEOREM 3. When the data are realised MCAR
and ∃y such that fθ (y)gφ(m̃ | y) > 0, the potentially
incorrect sampling distribution is equal to the correct
conditional sampling distribution.

PROOF. If the data are realised MCAR, then for
each value of φ the value of gφ(m̃ | y) does not depend
on y. Hence, expression (9) reduces to expression (10).

�
Note that in Theorem 3 repeated sampling is condi-

tional on the realised missingness pattern, that is, con-
ditional on M = m̃. Little [21] argued that it is wrong
to condition on M = m̃, as M is not an ancillary statis-
tic for θ unless the stronger condition of everywhere
MCAR is satisfied. Rubin [34] disagreed, saying that
“the usual definition of ancillary (Cox and Hinkley [3],
page 35) is incorrect for inference about θ and should
be modified to be conditional on the observed value of
the ancillary statistic”. Heitjan [12] continued this dis-
cussion, introducing the concept of an observed ancil-
lary statistic and agreeing with Rubin’s assertion that
the missingness pattern can be conditioned upon when
the data are realised MCAR. As Rubin noted, although
Theorem 3 might be regarded as a statement about
when the missingness mechanism can be ignored, the
realised missingness pattern itself is not ignored, be-
cause the repeated sampling is conditional on it.

As mentioned in Section 4, repeated sampling may
be conditional on a function of Y. We discuss this in
Section 6.

5.4 Frequentist Likelihood Inference

Since frequentist likelihood inference is a special
case of general frequentist inference, Theorem 3 still
applies. However, for frequentist likelihood inference
a further result can be obtained when the data are ev-
erywhere MAR and θ and φ are distinct. When the
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data are not realised MCAR, M is not observed an-
cillary, and so repeated sampling should not be con-
ditional on M. However, if the data are everywhere
MAR and �θ,φ = �θ ×�φ , it follows from Theorem 1
that L2(θ), L3,φ(θ) and L4(θ) are proportional not
only in the realised sample but also in repeated sam-
ples. Therefore, the MLE of θ , the estimated variance
of this MLE calculated from the observed information
matrix, likelihood intervals for θ , and likelihood-ratio,
Wald and score test statistics for hypotheses concern-
ing θ will be the same in both the realised and repeated
samples whether calculated using L2 or L1. That is,
the same frequentist likelihood inference for θ will be
made whether one uses L2 or L1.

A similar result applies for Bayesian point estimators
and credible intervals. Suppose that the data are every-
where MAR and, for every possible data vector Y and
missingness pattern M, the prior for (θ ,φ) in the joint
model can be written as p(θ ,φ) = p(θ)×p(φ), where
p(θ) is the prior for θ in the model that ignores the
missingness pattern. Then, for every possible (Y,M),
the posterior distribution for θ derived from the like-
lihood L1 and prior p(θ ,φ) of the joint model is the
same as that derived from the likelihood L2 and prior
p(θ) of the model that ignores the missingness pattern.
Consequently, under these assumptions, the repeated-
sampling properties of Bayesian point estimators and
credible intervals for θ in repeated samples will be the
same whether one uses L1 and p(θ ,φ) and integrates
over φ or one uses L2 and p(θ).

One important caveat needs to be stated. Standard
errors can, in general, be calculated using either the
expected or the observed information. When the data
are everywhere MAR and θ and φ are distinct, the
expected information from L2 should not be used
naively [20]. Using this expected information is only
appropriate under the stronger assumption that the data
are everywhere MCAR. It is recommended that the ob-
served information be used instead [20].

6. CONDITIONAL LIKELIHOOD AND REPEATED
SAMPLING

We now consider (1) conditional likelihoods and (2)
repeated sampling conditional not only on M = m̃ but
also on some function of Y. Let X = b(Y) denote the
function of Y being conditioned on and x̃ denote the
realised value of X.

First, consider the use of conditional likelihood. One
example of the use of a conditional likelihood is where
data Y consist of a set of covariates and an outcome for

a sample of individuals and this outcome is regressed
on the covariates. When the covariates are fully ob-
served, there is no need to specify a likelihood for all
of Y; instead, a likelihood for the outcomes conditional
on the covariates is sufficient. Here, X consists of the
covariates. A second example is conditional logistic re-
gression for matched case-control data, where the like-
lihood is conditional on the number of cases and con-
trols in each matched set. So here, X consists of these
numbers of cases and controls.

Assume that either x̃ is observed or
∫

fθ (y | x =
x̃)r(y, ỹ, m̃) dy does not depend on the value of the
missing part of x̃. In equations (2)–(5), fθ (y) should
be replaced by fθ (y | x = x̃), the conditional probabil-
ity distribution of Y given X = x̃. Theorem 1 then still
applies. Moreover, if the data are everywhere MAR,
then L2(θ) and L4(θ) [both with fθ (y) replaced by
fθ (y | x = x̃)] will be proportional not only in the re-
alised sample but also in repeated samples. Note that
this repeated sampling is conditional on X = x̃ but not
on M = m̃.

Second, consider repeated sampling conditional on
X = x̃ and M = m̃. Assume that either x̃ is observed
or the distribution of t{o(Y, m̃), m̃}, given M = m̃
and X = x̃ implied by the distribution

∫
fθ (y | x =

x̃)r(y, ỹ, m̃) dy, does not depend on the value of the
missing part of x̃. In equations (2)–(5) and (10), fθ(y)

should be replaced by fθ (y | x = x̃), and fθ (u) in equa-
tion (9) should be replaced by fθ (u | x = x̃). Theorem 3
then continues to apply if “fθ (y)gφ(m̃ | y) > 0” is re-
placed by “fθ(y | x = x̃)gφ(m̃ | y) > 0 and b(y) = x̃”.
Moreover, the realised MCAR condition in Theorem 3
can be replaced by the following weaker condition:
∀φ, gφ(m̃ | y) = gφ(m̃ | y∗) ∀y,y∗ such that b(y) =
b(y∗) = x̃. In the special case of repeated-measures
data with fully observed covariates and X being these
covariates, the everywhere version of this weaker con-
dition has been called “covariate-dependent MCAR”
[22, 41].

7. DISCUSSION

In this article we have highlighted inconsistencies in
the use of the terms “missing at random” and “likeli-
hood inference”, and clarified the conditions required
for ignorability of the missingness mechanism. We
urge those writing about missing data to be clearer with
respect to the assumptions being used and to employ
clear terminology when describing approaches to in-
ference, in particular, to make the distinction between
direct-likelihood and frequentist likelihood concepts.
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Rubin [33] used the term “ignorable” to mean that
two likelihoods, one derived from a model for the
data alone and one derived from a joint model for the
data and the missingness pattern, are proportional or
that two sampling distributions, the “potentially incor-
rect” and correct conditional distributions, are equal.
In Section 5 we explained how this implies that cer-
tain inferences for θ from the two models are the
same. In this interpretation, ignorability is a property
of the assumed missingness model. Whether this as-
sumed model is correctly specified is not relevant.
This interpretation of “ignorability” may not be uni-
versal, however. As we saw in Section 3, some writers
have omitted the parameter φ from their definition of
MAR. Rather than refer to a model for the missingness
mechanism, they appear to have been referring to the
“true” missingness mechanism (which is usually un-
known). Such writers may have interpreted ignorabil-
ity to mean that using L2(θ) for frequentist likelihood
(or frequentist Bayesian) inference will be valid, that
is, will yield consistent MLEs (or posterior modes),
consistent variance estimators, confidence (or credible)
intervals with asymptotic nominal coverage, etc. The-
orem 1 implies the following result. Suppose that the
“true” missingness mechanism is P(M = m | Y = y)

and that P(M = m | Y = y) = P(M = m | Y = y∗)
∀m,y,y∗ such that o(y,m) = o(y∗,m). A hypothetical
analyst who knew this “true” missingness mechanism
and wanted to make inference for θ taking missingness
into account would use the likelihood

∫
fθ (y)P (M =

m̃ | Y = y)r(y, ỹ, m̃) dy and, by so doing, obtain valid
frequentist likelihood (or frequentist Bayesian) infer-
ence. Theorem 1 implies that L2(θ) is proportional to
this likelihood, and hence that valid frequentist likeli-
hood (or frequentist Bayesian) inference would also be
obtained using L2.

Despite MAR plus distinctness of parameters be-
ing presented in Little and Rubin [24] as the defini-
tion of ignorability (Definition 6.4), Theorems 1 and 2
only give sufficient conditions for when it is appropri-
ate to ignore the missingness mechanism when mak-
ing direct-likelihood and Bayesian inferences, respec-
tively. In the case of direct-likelihood inference, The-
orem 1 is concerned with sufficient conditions for
L3,φ(θ), the fixed-φ likelihood for θ , to be proportional
to L2(θ), the likelihood for θ ignoring the missing data
mechanism. It is conceivable that, even in the absence
of realised MAR, there may be a restricted set of φ
values for which L2(θ) is proportional to L3,φ(θ), and
for this restricted set to contain the “true” φ value. If
so, it would be appropriate to ignore the missingness

mechanism even though realised MAR does not hold.
Lu and Copas [25] showed that, when θ and φ are
distinct and the family of distributions fθ (y) form a
complete class, everywhere MAR is necessary and suf-
ficient for ignorability in frequentist likelihood infer-
ence. It is straightforward to adapt their proof to show
that when θ and φ are distinct and the family of dis-
tributions fθ (y | o(y,m) = o(ỹ, m̃)) form a complete
class, then realised MAR is necessary and sufficient for
ignorability in direct likelihood inference (we include
a proof in the Appendix). Furthermore, there may con-
ceivably be other ways, apart from that of using a fixed-
φ likelihood, to extract a likelihood for θ from L1,
ways which may not require realised MAR and param-
eter distinctness in order for the extracted likelihood to
be proportional to L2. In the case of Theorem 2, it is
conceivable that independence of the posterior distri-
butions for θ and φ may be a stronger condition than
is necessary, and it seems to still be an open question
whether there are substantially weaker conditions un-
der which it is appropriate to ignore the missingness
mechanism when performing Bayesian inference.

Note that the concept of missing data has been gen-
eralised to that of “coarsened” data [10]. When data
are coarsened, data values are not necessarily either ob-
served or missing, instead one observes a set of values
that is known to contain the realised values. Censored
survival data are an example of coarsened data: a sur-
vival time may be known to be greater than a given
(censoring) time but not known exactly.

We conclude with some brief remarks on the poten-
tial practical implications of this work. Our review of
the literature on the theory of missing data methods has
highlighted a number of inconsistencies and a lack of
clarity with respect to key definitions such as MAR and
ignorability. We believe that these issues have clouded
the development and broader understanding of meth-
ods in this area, partly because they intersect in con-
siderable measure with issues in the foundations of
statistical inference. Although the original definition
of MAR (our “realised MAR”) provides a clear basis
for thinking about direct likelihood and Bayesian infer-
ences, the majority of statistical practice is concerned
with frequentist evaluations. Even those who empha-
sise the Bayesian interpretation of particular analyses
are generally interested in repeated-sampling perfor-
mance of procedures. Incomplete data methods that
do not explicitly model the missing data mechanism
(i.e., that assume ignorability) cannot be guaranteed
to perform validly in repeated samples except under
an “everywhere” MAR assumption. The restrictiveness
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of this assumption does not seem to be well under-
stood, especially in complex problems with nonmono-
tone patterns of missingness [29, 31]. More impor-
tantly, further work is needed on methods to more ef-
fectively and systematically characterise the potential
sensitivity of inferences to departures from the MAR
assumption. Meanwhile, users of missing data meth-
ods need to be reminded that methods that assume ig-
norability provide tractable analyses only at the cost of
untestable assumptions.

It is also important to consider that when there are
missing data, there is more than one possible target of
inference. Diggle et al. [4] discuss alternative possible
study objectives and targets of inference that are rele-
vant to those objectives.

Much recent research in methods for handling miss-
ing data has considered issues that are specific to the
structure of the problem. For example, missingness in
outcomes poses different challenges than does miss-
ingness in covariate values, and longitudinal (repeated
measures) data present specific issues of their own. We
believe that it should be possible to tackle these prob-
lems with greater clarity if the fundamental assump-
tions about missing data mechanisms and their connec-
tion with the concept of ignorability are better under-
stood.

APPENDIX

Here we show that when θ and φ are distinct and the
family of distributions fθ(y | o(y,m) = o(ỹ, m̃)) form
a complete class, then realised MAR is necessary and
sufficient for ignorability.

Let ō(Y,M) denote the subvector of Y consisting
of the elements whose corresponding elements of M
equal zero. So, ō(Y,M) contains the missing elements
of Y. For any fixed value m of M, fθ (y) can be written
as

fθ (y) = f1,θ

{
o(y,m)

}
f2,θ

{
ō(y,m) | o(y,m)

}
.(11)

Thus, choosing m = m̃ in equation (11), L1 can be
written as

L1(θ ,φ) =
∫

f1,θ

{
o(y, m̃)

}
f2,θ

{
ō(y, m̃) | o(y, m̃)

}

· gφ(m̃ | y)r(y, ỹ, m̃) dy

= f1,θ

{
o(ỹ, m̃)

} ∫
f2,θ

{
ō(y, m̃) | o(ỹ, m̃)

}

· gφ(m̃ | y)r(y, ỹ, m̃) dy

and L2 can be written as L2(θ) = f1,θ {o(ỹ, m̃)}.

THEOREM. Suppose that �θ,φ = �θ × �φ , that
f2,θ {ō(y, m̃) | o(ỹ, m̃)} is complete, and that gφ(m̃ |
ỹ) > 0 for all φ ∈ �φ . Then L1(θ ,φ) is proportional
to L2(θ) for any φ ∈ �φ if and only if realised MAR
holds.

PROOF. The “if” argument holds because of The-
orem 1. So, consider the “only if” argument. Suppose
that L1(θ ,φ) is proportional to L2(θ) for any φ ∈ �φ .
Then it must be true that for all φ ∈ �φ ,∫

f2,θ

{
ō(y, m̃) | o(ỹ, m̃)

}
gφ(m̃ | y)r(y, ỹ, m̃) dy(12)

cannot depend on θ . Hence, we can denote expression
(12) as Q{m̃, o(ỹ, m̃),φ}.

By definition,∫
f2,θ

{
ō(y, m̃) | o(ỹ, m̃)

}
gφ(m̃ | y)r(y, ỹ, m̃) dy

− Q
{
m̃, o(ỹ, m̃),φ

} = 0.

So,∫
f2,θ

{
ō(y, m̃) | o(ỹ, m̃)

}
gφ(m̃ | y)r(y, ỹ, m̃) dy

− Q
{
m̃, o(ỹ, m̃),φ

}

·
∫

f2,θ

{
ō(y, m̃) | o(ỹ, m̃)

}
r(y, ỹ, m̃) dy = 0

for all φ ∈ �φ . It then follows that∫
f2,θ

{
ō(y, m̃) | o(ỹ, m̃)

}

· [
gφ(m̃ | y) − Q

{
m̃, o(ỹ, m̃),φ

}]
r(y, ỹ, m̃) dy = 0

for all φ ∈ �φ . So, if f2,θ {ō(y, m̃) | o(ỹ, m̃)} is com-
plete, then Q{m̃, o(ỹ, m̃),φ} = gφ(m̃ | y) for all φ ∈ �

and for all y such that o(y, m̃) = o(ỹ, m̃). Therefore,
gφ(m̃ | y) cannot depend on ō(ỹ, m̃), that is, the data
are realised MAR. �
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