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ABSTRACT

We provide a mathematical formulation of the idea of perfect competition for any economy with

infinitely many agents and commodities. We conclude that in the presence of infinitely many
commodities the Aumann ( 1 964, 1 966) measure space of agents, i.e., the interval [0, 1 ] endowed with

Lebesgue measure, is not appropriate to model the idea of perfect competition and we provide a

characterization of the "appropriate" measure space of agents in an infinite dimensional commodity
space setting. The latter is achieved by modeling precisely the idea of an economy with "many more"
agents than commodities. For such an economy the existence of a competitive equilibrium is proved.

The convexity assumption on preferences is not needed in the existence proof.





What is Perfect Competition?

Aldo Rustichini and Nicholas C. Yannelis

Abstract. We provide a mathematical formulation of the idea of perfect com-
petition for an economy with infinitely many agents and commodities. We con-

clude that in the presence of infinitely many commodities the Aumann (1964,

1966) measure space of agents, i.e., the interval [0,1] endowed with Lebesgue
measure, is not appropriate to model the idea of perfect competition and we
provide a characterization of the "appropriate" measure space of agents in an
infinite dimensional commodity space setting. The latter is achieved by model-

ing precisely the idea of an economy with "many more" agents than commodi-
ties. For such an economy the existence of a competitive equilibrium is proved.

The convexity assumption on preferences is not needed in the existence proof.

1. Introduction

Perfect competition prevails in an economy if no individual can in-

fluence the price at which goods are bought and sold.

In order to model rigorously the idea of perfect competition, Au-

mann (1964, 1965, 1966) assumed that the set of agents in the economy

is an atomless measure space. As a consequence of the non-atomicity as-

sumption, each agent in the economy is negligible and therefore will take

prices as given.

A special feature of the Aumann model is that the number of com-

modities in the economy is finite. In particular the commodity space in

his model is the positive cone of the Euclidean space R n
. This is quite

important because given the fact that the measure space of agents is

atomless and the dimension of the commodity space is finite, it turns out

that the convexity assumption on preferences is not needed to prove the

existence of a competitive equilibrium. In particular, the Lyapunov theo-

rem is used to convexify the aggregate demand set and make the standard

fixed point argument applicable.

However, the situation is quite different when the commodity space

is not finite dimensional. Indeed, the Lyapunov theorem fails in infinite

dimensional spaces [see for instance Diestel-Uhl (1977)] and one loses

the nice convexifying effect on the aggregate demand set. (Here, it is

important to note that all the basic results of Aumann (1965) which con-

stitute the main technical tools to model the idea of perfect competition
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fail in infinite dimensional spaces [see for instance Rustichini (1989) or

Yannelis (1990)].)

Moreover, as it is known from the work of Aumann (1964), in the

presence of finitely many commodities, core allocation characterize com-

petitive equilibrium allocations. However, contrary to the Aumann core

equivalence theorem, in infinite dimensional commodity spaces in general,

core allocations do not characterize competitive equilibrium allocations.

In particular, Rustichini-Yannelis (1991) showed that even if the mea-

sure space of agents is atomless, preferences are (weakly) continuous,

strictly convex, monotone, and initial endowments strictly positive, the

core equivalence theorem ceases to be true. Does this then suggest that

the nonatomicity assumption may not be enough in infinite dimensional

commodity spaces in order to model the idea of perfect competition?

It may be useful, before we proceed, to put aside for a moment the

strictly mathematical nature of the problem, and look more closely at the

economic significance of the nonatomicity condition, and its implications

in the case where the commodity space is finite dimensional. By defini-

tion, any subset of the space of agents, that is any coalition, must have

positive measure in order not to be insignificant. We may think of this

as a "critical mass" condition on any coalition.

On the other hand, thanks to the nonatomicity condition, any coali-

tion of nonzero measure will have a set of possible subcoalitions (still of

positive measure) which is so large that it makes any collusive behavior

arduous.

The previous discussion suggests that one should not look for a char-

acterization of perfect competition (or more generally of a strategic situ-

ation where each single player has an insignificant influence) in the space

of agents or players by itself, but in the relation of the dimension of the

measure space of agents and the dimension of the commodity (or strategy)

space. The concept of dimension, of course, has to be given a rigorous

formulation. Simply and informally stated, the characterization of per-

fect competition that we introduce in this paper does not just specify how

many agents there are, but how many agents (or players) deal with how

many commodities (or strategy choices). To put it differently, the assump-

tion which is introduced in this paper is that the economy needs to have

"many more" agents than commodities. Such an assumption (see Sec-
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tions 3 and 6 for a rigorous definition) is stronger than the nonatomicity

condition of the measure space of agents in an infinite dimensional com-

modity space setting and it is equivalent to the nonatomicity assumption

in finite dimensional commodity spaces. In essence, this is the hidden

assumption in the Aumann model which drives his results.
1

The main contribution of this paper is to provide a rigorous formu-

lation of the idea of perfect competition, and derive the analogous results

to those of Aumann for separable Banach spaces. Moreover, we charac-

terize the measure space of agents which satisfy the condition that the

dimensionality of the measure space of agents is bigger than that of the

commodity space. As it may be expected, the Aumann (1964, 1966)

measure space of agents, i.e., the [0, 1] interval endowed with Lebesgue

measure is not "large enough" to model the idea of perfect competition

in the presence of infinitely many commodities.

The rest of the paper is organized as follows: Section 2 contains

definitions and some mathematical preliminaries. Section 3 contains the

main result, i.e., the integral of a Banach- valued correspondence is convex

provided that the dimensionality of the measure space is greater than the

dimensionality of the Banach space. This result is interpreted as the

convexifying effect on the aggregate demand set. Section 4 characterizes

the measure space whose dimensionality is bigger than that of the Banach

space of commodities. Some important corollaries of the main result are

collected in Section 5. Section 6 uses the main result of this paper to prove

the existence of the competitive equilibrium. Finally, Section 7 contains

an application of our main theorem to the problem of the existence of a

pure strategy Nash equilibrium in games with a continuum of players and

with an infinite dimensional strategy space.

It should be noted that several authors have already made remarks of this

nature [see for example, Mertens (1990), Mas-Colell (1975), Gretsky-Ostroy

(1985), Ostroy-Zame (1988)], but they did not provide a precise mathematical

modeling of the idea of "many more" agents than commodities. The only

exemption is the work of Lewis (1977) which uses nonstandard analysis. In

particular, she makes use of a nonstandard analog of the Lyapunov theorem

proved by Loeb (1971).

25



2. Definitions and Preliminaries

The space X is a Banach space over the field R of real numbers; it is

assumed to be separable. The norm of an element x G X will be denoted

by ||x||. Unless otherwise specified, the topology on X will be the norm

topology.

A special importance will be assumed by a fixed weak compact subset

K of X. We recall that (Dunford-Schwartz [1958], V. 6.3) the weak

topology ofK is a metric topology. As usual for a set A C X we denote by

co A and coA the convex hull and the closed convex hull of A, respectively.

For a subset A C X , we denote by P{A) or 2A the set of all nonempty

subsets of A, and PAA) the set of all closed subsets of A.

The Banach space topology on X induces a natural structure of

measure space on it if we denote by P(X) the set of norm Borel subsets

of X (and for any A G 0(X), /3(A) are the Borel subsets of A). If W{X)

denotes the Borel cr-algebra generated by the weak topology of X , then

from Masani [1978], Theorem 2.5(b), we have (3(X) = PW (X).

We now proceed to describe our measure space. T will be a measur-

able space, with a a-algebra r, and a measure fi; we shall always assume

(T, r, /z) to be complete and finite. We do not assume nonatomicity, since

such condition will be contained in an assumption which we will introduce

later.

//^(/i) is the space of real valued, measurable, essentially bounded

functions defined on T. For any E G f, the measure space (E,te,he )

is naturally defined; and so is the space L^ E (fj.) = {/ : E — R, / is

te -measurable and /z^-essentially bounded}.

In this paper a set-valued function (or correspondence) F is defined

to be a map from T to a set of all the nonempty subsets of X , P{X). We
denote the graph of F by GF - {(t,x) G T x X : x G F(t)}. For a given

correspondence F, the new correspondence co F and co.F are defined by

(co F)(t) = co(F(t)), and analogously for co.F.

Various notions of measurability are discussed in Himmelberg [1957].

In the case where the measure space T is complete, X is Souslin (con-

ditions which are satisfied in our case) and F is closed valued they turn

out to be equivalent [Himmelberg [1957], Theorem 3.5]. We adopt the

following:
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Definition. The correspondence F : T — P(X) is said to be measurable

if the graph of F, {(t,x) G T x A' : x G F(t)} ,s an element of the

product measure space r ® /?( X). 77ie co operation preserve measurability

[Himmelberg [1915], Theorem 9.1J.

K is now a compact Hausdorff space (in the weak topology). Let

C{K) be the space of continuous functions on K , and C(K) m
its dual

space. It is well known [Dunford-Schwartz [1957] Theorem IV. 6. 3] that

this last space is (isometrically isomorphic to) the space rca(A'), the space

of all regular, countably additive real valued set functions, defined on the

a-field of the Borel (norm) subsets of K\ rca+ (ii
r

) are the nonnegative

elements of rca(A'). For any Borel subset A, rca(A) and rca+ (A) are

defined in the natural way. For any Borel subset A of K, we denote MA

the unit ball of rca+ (>l); that is:

MA = {fji G rca+ (A) : y.(A) < 1}.

If fi(A) = 1, we refer to /x as usual as a probability measure. Among
the probability measures over a Borel set we single out those having unit

mass concentrated at one point:

Definition. For any Borel subset A, the set of Dirac measures on A,

denoted DA , is the subset ofMA of elements Sa , with a G A, such that

(6a ,<f>) = <f>(a) for every
<f> G C{K).

For any m G rca(ii'), its norm \m\ is the total variation. We shall

consider on the following measurable functions defined on T and with

values in the space MK . More precisely we introduce L^ (/i,M
/<-),

the

set of M^-valued functions / which satisfy: (i) j|/|| G L°°(fi); (ii) t t-+

(f(t),<f>) is a measurable (real valued) function for every
<f> G C(K); [see

Ionescu-Tulcea, A. and C, (1969), p. 99]. Also we let

L£faMF) = {7 e L£(n,MK ) : u(t) G MF(t) /i-a.e.}

L£(p t D) = {ie L£(n,MK ) K0 e D ^-a.e.}

L£(p,DF )
= {je L£(vl,D) : u(t) e DF{t) /x-a.e.}.

Also for u G M, F a closed subset ofK , we define (v, F) = jK xxp>(x)dv(x)

where \f IS tne indicator function of the set F. If A is a Banach space,
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we will denote by L
x (n,X) the space of equivalence classes of X-valued

Bochner integrable functions / :T — X normed by

ll/H = jf ||/(0II^(0-

The integral of the set-valued function F : T — 2X is as usual:

/ F(t)dfjL(t) = I
J

x(t)dfi(t) : x(t) £ F(t) /J-a.e. I .

We will denote the above integral by J F or / Fdfi.

3. The Main Theorem
(Convexifying Effect on Aggregation)

The following simple lemmata will be used later.

Lemma 1. Let v £ MA \ DA . Then there exist two measures v± which

satisfy:

v± = v ± v
2 £ MA with: v

2 ^ 0, v
2 £ rca(A).

Remark. Note v
2 is not an element of MA .

Proof. Since v is not Dirac, there exist two disjoint Borel subsets of

A, 5 and B say, such that

< i/(5) < u(B) < 1. (1)

We denote with ^(5), vB the restriction of u to the two set 5, B. Define

now 6 = u(S)/i/(B): from (1) above follows that 6 G (0, 1]; also define:

v2 = — v$ + ^B (clearly £/
2 7^ 0); and ^± — " i u2- ^ 1S now an easy

computation to check that u± G MA .

Lemma 2. Let E £ r with /z(£) > 0, and v G L£((*,MF ) with i/(t) G

MF r
t
\ \ DF /

t )
for every t £ E. Then there exists a measurable function

v
2
{i) G rca(F(0), ^ ^ and v ± v

2 £ MF^, fi-a.e.

28
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Proof. The function v
2

will result as a measurable selection from a

correspondence. We recall MF ,
t
\ is a u;*-compact, convex subset of MK .

Define now: 6 = max{0 > : B{v(t),6) C MF(t) }. From Lemma 1, d >

for every t £ E; also 6 is a measurable function.

Now the correspondence N(t) = B(~}(t)),6(t)) is measurable [see

Castaing and Valadier, (1977), 111-41] with complete values, and takes

values in MK , a separable space (because this space is compact and met-

ric). The result follows from the previous lemma and the Kuratowski and

Ryll-Nardzewski (1962) measurable selection theorem.

Recall now that for any vector space over the real field an algebraic

(Hamel) basis exists. The cardinality of any Hamel basis is the same, and

we denote, for any vector space X, dimX the cardinality of any of its

bases.

We introduce the following condition.

(Al) For the pair ((T, r,/x),X), if E belongs to r, ^{E) > 0, then

dim LE )00
(/x) > dimX.

Remark 1. This is the condition that there are "many more" agents

than commodities. In section 4 we shall characterize the measure spaces

that satisfy the above condition.

Remark 2. The assumption implies that for any linear map T from

LE ooifi) to X there exists a function / such that / ^ 0, T(f) = G X

.

This is the condition which will be actually used in the proof of the main

theorem and its corollaries.

Remark 3. When X is finite dimensional, the assumption that the

measure space (T,r,fi) is non-atomic implies the assumption (Al) above.

Of course, the reverse is also true. Hence the Main Theorem below, as

well as the corollaries of the section 5 imply the analogous results in

Aumann (1965).

Remark 4. We recall here that a Banach space is of second category

and so (since every finite dimensional proper subspace is closed and with

empty interior) it cannot have, if it is infinite dimensional, a countable

Hamel basis. On the other hand such a space, as being a separable metric

space, has cardinality at most K . We conclude (under the continuum

hypothesis) d'imX = N .
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Remark 5. Readers familiar with the proof by Lindenstrauss (1966) of

Lyapunov's convexity theorem, or Knowles' theorem [see Knowles (1974)

or Kluvanek- Knowles (1975)] will recognize the main idea of the proof.

Main Theorem. Let K be a weakly compact, nonempty subset of X
and let F : T —* 2K be a measurable, closed valued correspondence. As-

sume that the pair ((T, r,fi),X) satisfy (Al). Then

l'-l coF.

Proof. Fix t € T. Define

7(MF(t) ) = {x G X : x = / adfi(a), with // G MF^}.

Clearly

coF(t)Cl(MF{t) ).

Also, since MF ,
t
\ is iu*-compact convex, and the map /x — fk adfj.(a) is

linear, and w* to tu-continuous, I(MF ) is closed and convex, and therefore

coF C I{MF ).

Clearly

/ Fdfji= {xeX :x= f (6(t), F(t))dfi(t), 6e DF }.

Jt Jt

Obviously, fT Fdfi C JT coFd}i. We shall now prove the converse inclu-

sion. From coF(t) C I{MF ,
t
\) it follows that

We shall now prove that

J
coFdfiC J I(MF(t) )dfi(t).

J
I(Mm )dn(t) C

J
Fd/x,

and this will complete the proof of the theorem.
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For any x £ JT Fdfi, define

Hx = {ue L^(n,MF ) :

J
(v,F)dfi = x}.

The set Hx is convex, and tu*-compact [see Castaing and Valadier, (1977),

V-2]. We shall now prove that the set of extreme points of Hx (denoted

by ext#z ) are contained in Z™"(/z, DF ). From the representation formula

for fT Fdp., this will prove our claim. Let v £ extH ; we assume, arguing

by contradiction that v £ L^£(n,DF ), i.e., that for a set E of //-measure

nonzero: u(t) g" DF ,
t j,

t £ E.

From Lemma 2 we derive the existence of a rca( if) valued r-measur-

able function v>
2
sucn tnat KO ^ ^(0 € ^F(t) an(^ u

2 7^ 0. Now from

(Al) we deduce the existence of an / £ LE ^(p) such that

h(fv2l F)dn(t) = 0; ||/|| LjSiOo0l) > 0.

Now extend / to a function / £ ^<x>(fi)
settmg /(0 = 0» for every t £ E.

We conclude:

v
x
± /z/

2 £ #, i/j + /i^
2 ^ i/j - /j/2

so that i/j is no£ an extreme points of 77, a contradiction.

The above result tells us the following: Suppose that (T,T,fi) is

interpreted as the measure space of agents and X is the commodity space.

Let P be a separable metric space denoting the price space. Denote by

D(t,p) the demand set of agent t at prices p, i.e., D is a set-valued function

from T x P to K. If (Al) is satisfied (i.e., if there are "many more"

agents than commodities), then it follows from our Main Theorem that

the aggregate demand set J T D(t,p)dfi(t) is convex (see also Corollary 1

in Section 5). In other words there is a convexifying effect on aggregation

despite the fact that we have infinitely many commodities [compare with

Khan-Yannelis (1990) or Ostroy-Zame (1988)].

4. Models of Agents' Spaces

We now take a closer look at the possible variety of measure spaces

of agents. Our main purpose is to describe those spaces for which the
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assumption (Al) holds, when A' is an (infinite dimensional) separable

Banach space.

In the following we shall say that two measure spaces (T
t

, r-,^
t ),

i —

1,2, are isomorphic if there exists a measure preserving set isomorphism

between them. A set isomorphism is a one to one mapping : r
x
—* t

2

such that <MTX
\E) = T2 \ <f>(E), ^((JSi E t ) = USi <K^i) if E

i $ T
x
for

i = 1,2, <f>
is said to be measure preserving if /i

2 (0(£')) = p~ 1
(E) for

every E £ r
x ; we consider here the equivalence classes of measurable sets

modulo the ideal of sets of measure zero.

Consider now the unit interval / = [0,1], with /? the Borel subsets

of /, and A the Lebesgue measure. For every ordinal number a we now

define that product

TQ — I I 7Q , with IQ = I for every a.

The measure theoretic product space, a complete finite measure space, is

denoted (Ta ,rQ ,/x
Q

). Recall that a measurable rectangle is a set of the

form n 7<Q ^-y' where Ay
= I for all but a finite number of indices, and

A
7 G P otherwise. The <r-algebra rQ is the <r-algebra generated by the

clan of all measurable rectangles. The measure /z
Q

satisfies

for every measurable rectangle where the sides {A7J
-

|
i = 1, . . . ,m} are

different from / (for details, see for instance von Neumann (1950)).

When a < u the measure space (TQ ,rQ ,/x
Q

) is (isomorphic to) the

unit interval with Borel subsets and Lebesgue measure. Note that by the

isomorphism theorem of Halmos and von Neumann (1948) every separable

and nonatomic measure space of total measure one is isomorphic to it.

For cardinals of cardinality higher than lj a complete classification

of the measure spaces is possible thanks to Maharam's Theorem [Ma-

haram (1942)]. For a a-algebra r, let f be the least cardinal number

which is the power of a basis of r. The cr-algebra is called homogeneous if

A = f for any principal ideal A < r which is not the null ideal. Maharam's

theorem now states that every homogeneous measure algebra of total one
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1 ifx, eA;

if x« i A'

is isomorphic to a (TQ ,Ta
, /j,

a
), as previously described for some cardinal

a. We may therefore restrict our attention to such product spaces.

For any ordinal number 7, 7 < a, and every set AG/3 we define the

function:

where x^ is the coordinate of the point x in the measure space which

corresponds to the ordinal 7. Clearly, every such function is measurable

(note {/^ > 1/2} = fl7<^
D^xAx [[K^<a Dy ) and essentially bounded.

The set of functions {/7 }7<a is a set of linearly independent functions,

and has cardinality K(a). Setting a = u^ is clearly enough to satisfy (Al).

We have proved the following result:

Theorem 4.1. For every separable Banach space X , there exists a mea-

sure space (T-pTj,

^

x ) such that the assumption (Al) is satisfied. This

measure space can be taken to be the product measure space with factors

(/,/?, A) and a = u>
1

.

The conclusion to be drawn from the above result is that the [0, 1]

interval endowed with Lebesgue measure [as Aumann (1964, 1966) for-

mulated his model] is not "large enough" to model perfect competition

in infinite dimensional commodity spaces.

5. Some Corollaries

Suppose that the correspondence F : T — 2K satisfies all the as-

sumptions of the Main Theorem. Then we can deduce the following

Corollaries.

Corollary 1. fT Fdfi is convex.

Proof. Directly from the fact that JT Fdfi = JT coFdfi, and that

jT coFdfi is convex because it is the linear image of the convex set S^F =

{y e L
l (fj.,X) : y(t) G coF(t) /x-a.e.}.

Corollary 2 (Fatou's Lemma, exact version). If Fn (-) : T —

2K (n — 1,2,..

.

) are measurable correspondences, then

w-Ls / Fn(t)dfi, C / vt-Ls Fn (t)dfji.

JT JT
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Proof. The proof is the following chain of inclusions:

w-Ls / Fn(t)dfxC cl / w-Ls Fn (t)dp.
Jt Jt

= / co w-Ls Fn (t)dfj.

Jt

— / w-Ls Fn (t)dfi.

Jt

The first inclusion is the approximate version of Fatou's lemma in infinite

dimensional spaces [see Yannelis (1988)], the second is the Datko-Khan

theorem [Khan (1985)]. Finally the third inclusion follows from our Main

Theorem.

Corollary 3 (integration preserves u.s.c). Let A be a metric

space and F : A X T — 2K be a correspondence such that for each fixed

t € T, F(- ,t) is weakly u.s.c. (w-u.s.c), i.e., if the sequence pn converges

to p, then w-Ls F(pn ,t) C F(p,t). Then fT F(- ,t)dp. is w-u.s.c.

Proof. Since for each t G T, F(- , t ) is w-u.s.c, we have that

w-LsF(p, t) C F(pQ ,t), whenever pn — p . (5.1)

We show that fT F(- , t)dfi(t) is w-u.s.c, i.e., if pn —* p then

w-Ls / F(pn,t)dn{t) C / F{pQ ,t)dii(t).

jt Jt

It follows from Corollary 2 that

w-Ls / F{pn ,t)dfi(t) C / w-Ls F(pn , t)dfi(t). (5.2)
Jt Jt

From (5.1) it follows that

/ w-Ls F(pni t)dfi(t) C / F(pQ ,t)dti(t). (5.3)

Combining now (5.2) and (5.3) we can conclude that

w-Ls
J F{Pn , t)dfi(t) C [ F{p ,t)dn(t),

i.e., J F(- ,t)dp,(t) is w-u.s.c.
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Note that Corollary 1 is the infinite dimensional generalization of

Theorem 1 in Aumann (1965) or Debreu (1967, p. 369) known as the

Lyapunov-Richter theorem. Corollary 2 is an exact version of the Fatou

Lemma in infinite dimensional spaces. It is worth pointing out that the

sequence of set-valued functions Fn (-) need not be convex valued contrary

to the related results obtained in Yannelis (1988) and Rustichini (1989).

The latter is also true for Corollary 3, i.e., no convexity assumption is

needed to show that integration preserves w-u.s.c. It is worth pointing out

that all the above Corollaries are false in infinite dimensional spaces [see

for instance Rustichini (1989) or Yannelis (1990) for a counterexample]

even if the measure space is atomless. What seems to drive the above

results is condition (Al).

6. The Existence of a Competitive

Equilibrium

Let X denote the commodity space where X is an ordered, separa-

ble Banach space whose positive cone X+ has an interior point u. An

economy £ is a quadruple [(T, r,/i),y, >, e] where

(1) (T,t,h) is the measure space of agents;

(2) Y : T — 2X+ is the consumption set-valued function of each agent;

(3) >
t
C Y(t) x Y(t) is the preference relation of agent t;

(4) e : T — A"+ is the initial endowment of agent t, where e(t) € Y(t)

/x-a.e., and for all t £ T, e{i) belongs to a norm compact subset of

Y(t);

(5) the pair [(T,r,fi),X] satisfies the assumption (Al).

Denote the budget set of agent t at prices p by B(t,p) = {x £ Y{i) :

p x < p • e(Z)}. The demand set of agent t at prices p is D(t,p) = {x 6

B(t,p) : x >
t
y for all y £ B(t,p)}. A competitive equilibrium for £ is a

pair (p, /), p e X+ \ {0}, / £ L^^X^) such that:

(0 /(0 £ D{t,p) /z-a.e., and

(ii) iT f{t)dli{t)<ST e{i)d
l
i{t).

We now introduce the following assumptions:

(a.l) (T,t,h) is a complete finite separable measure space.
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(a.2) The correspondence Y : T — 2*+ is integrably bounded, closed,

convex, nonempty, weakly compact valued, and it has a measur-

able graph, i.e., GY G t <8> P(X+ ).

(a.3)(a) For each t G T and each x G Y(t) the set R(t,x) = {t G Y(t) :

y >
t
x} is weakly closed and the set R~ l (t,x) = {y G Y(t) : x >

t

y} is norm closed,

(b) >
t

is measurable in the sense that the set {(t,x,y) G T x X+ x

X+ : y >
t
x} belongs tor® 0(X+ ) <g> /3(X+ ),

(c) >
t

is transitive, complete, and reflexive.

(a.4) For all < G T, there exists z(i) G V(<) such that e(<) — z(t) belongs

to the norm interior of X, .

Theorem 6.1. Let £ be an economy satisfying (a.l)-(a.4). Then a

competitive equilibrium exists in £.

Proof. It follows by combining the main existence result in Khan-

Yannelis (1990) together with the Main Theorem and its corollaries.

Note that Theorem 6.1 above is the counterpart of the Main Exis-

tence Theorem of a competitive equilibrium in Khan-Yannelis (1990). It

should be emphasized, that contrary to the Khan-Yannelis (1990) set-

ting, the economy that we considered in this paper has "many more"

agents than commodities [recall (5) above] and this allows us to drop the

convexity assumption on preferences.

It is worth pointing out that for the core equivalence theorem [see for

instance Rustichini-Yannelis (1989, 1991)] the convexity assumption on

preferences is also not needed regardless as to whether the economy has

"many more" agents than commodities. The reason is that for the proof

of the core equivalence theorem, one has to separate an open set from the

closure of the "aggregate net trade preferred set." By virtue of the approx-

imate Lyapunov theorem we will have that the norm closure of the "ag-

gregate net trade preferred set" is convex [see Rustichini-Yannelis (1989,

1991)] and this will enable us to apply the standard separating hyperplane

argument.

However, despite the fact that without convexity of preferences both

sets coincide (i.e., the core and the set of competitive equilibrium alloca-

tions are the same), they may be empty unless of course we have "many

more" agents than commodities, as the above theorem indicates.
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Finally it is worth pointing out that the preference relation > in

Theorem 6.1 need not be complete contrary to the Khan-Yannelis (1990)

existence theorem.

7. The Existence of a Pure Strategy

Nash Equilibrium

We now indicate how from our main theorem one can obtain a gener-

alization of Schmeidler's (1973) result on the existence of a pure strategy

Nash equilibrium for a game with a continuum of players with a finite

dimensional strategy space. In particular, in view of the failure of the

Lyapunov theorem in infinite dimensional spaces, as it was shown by

Khan (1986), one can only obtain an approximate pure strategy Nash

equilibrium once the dimensionality of the strategy space is allowed to

be infinite. However, by applying our main theorem, we show that one

can still obtain an exact pure strategy Nash equilibrium for a game with

a continuum of players and with an infinite dimensional strategy space,

provided that the game has "many more" players than strategies. We
outline the details below:

A game G is a quadruple ((T, t,/j.),X,Y, u) where

(1) (T,r,fi) is a complete finite measure space of players,

(2) X is the strategy space which is assumed to be a separable Banach

space,

(3) Y : T — 2X is a measurable function denoting the strategy set of

player t,

(4) u : T X X x -L
x
(/x, Y) —* R is the utility function of player t, where

for each fixed x, u(- , • , x) is a Borel measurable function on {(t,y) :

yeY(t)},

(5) the pair ((T,T,fi),X) satisfies the condition (A.l).

Note that the above definition of a game is identical with that of Khan

(1986) with the addition of (5), i.e., we have replaced the nonatomicity

assumption in Khan (1986), with the condition that we have "many more"

players than strategies.

Denote by extY(-) the extreme points of the set Y(-). We are now

ready to state the following result.
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Theorem 7.1. Let G = ((T,r,p,),X,Y,u) be a game satisfying the

following assumptions:

(7.1) Y : T — 2X is a nonempty, closed, convex, weakly compact and

integrably bounded correspondence;

(7.2) u:T x X x Z^/x, Y) -* R is linear on X;

(7.3) u : T x X X X
1
(/x,y) —» R is weakly continuous on X X L

x
{p:,Y).

XVien G has a pure strategy Nash equilibrium, i.e., there exists x" £

L
l
(fi,extY) such that for almost all t in T,

u(t,x*(t), ij) = max u(t,y,x^) where x*T = / x*(t)dfj.(t).
y€K(t) 7t6T

Proof. Combine Khan's (1986) theorem together with our Main The-

orem.
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