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Abstract

Text documents can be described by a number of abstract concepts such as semantic cate-

gory, writing style, or sentiment. Machine learning (ML) models have been trained to auto-

matically map documents to these abstract concepts, allowing to annotate very large text

collections, more than could be processed by a human in a lifetime. Besides predicting the

text’s category very accurately, it is also highly desirable to understand how andwhy the cat-

egorization process takes place. In this paper, we demonstrate that such understanding can

be achieved by tracing the classification decision back to individual words using layer-wise

relevance propagation (LRP), a recently developed technique for explaining predictions of

complex non-linear classifiers. We train two word-based ML models, a convolutional neural

network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt

the LRPmethod to decompose the predictions of these models onto words. Resulting

scores indicate howmuch individual words contribute to the overall classification decision.

This enables one to distill relevant information from text documents without an explicit

semantic information extraction step. We further use the word-wise relevance scores for

generating novel vector-based document representations which capture semantic informa-

tion. Based on these document vectors, we introduce a measure ofmodel explanatory

power and show that, although the SVM and CNNmodels perform similarly in terms of clas-

sification accuracy, the latter exhibits a higher level of explainability which makes it more

comprehensible for humans and potentially more useful for other applications.

1 Introduction

A number of real-world problems related to text data have been studied under the framework

of natural language processing (NLP). Examples of such problems include topic categorization,

sentiment analysis, machine translation, structured information extraction, and automatic

summarization. Due to the overwhelming amount of text data available on the Internet from

various sources such as user-generated content or digitized books, methods to automatically

and intelligently process large collections of text documents are in high demand. For several
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text applications, machine learning (ML) models based on global word statistics like TFIDF [1,

2] or linear classifiers are known to perform remarkably well, e.g. for unsupervised keyword

extraction [3] or document classification [4]. However more recently, neural network models

based on vector space representations of words (like [5]) have shown to be of great benefit to a

large number of tasks. The trend was initiated by the seminal work of [6] and [7], who intro-

duced word-based neural networks to perform various NLP tasks such as language modeling,

chunking, named entity recognition, and semantic role labeling. A number of recent works

(e.g. [7, 8]) also refined the basic neural network architecture by incorporating useful struc-

tures such as convolution, pooling, and parse tree hierarchies, leading to further improvements

in model predictions. Overall, these ML models have permitted to assign automatically and

accurately concepts to entire documents or to sub-document levels like phrases; the assigned

information can then be mined on a large scale.

In parallel, a set of techniques were developed in the context of image categorization to

explain the predictions of convolutional neural networks (a state-of-the-art ML model in this

field) or related models. These techniques were able to associate to each prediction of the

model a meaningful pattern in the space of input features [9–11] or to perform a decomposi-

tion onto the input pixels of the model output [12–14]. In this paper, we will make use of the

layer-wise relevance propagation (LRP) technique [13], which has already been substantially

tested on various datasets and ML models [15–18].

In the present work, we propose a method to identify which words in a text document are

important to explain the category associated to it. The approach consists in using a ML classi-

fier to predict the categories as accurately as possible, and in a second step, decompose the ML

prediction onto the input domain, thus assigning to each word in the document a relevance

score. The ML model of study will be a word-embedding based convolutional neural network

that we train on a text classification task, namely topic categorization of newsgroup docu-

ments. As a second ML model we consider a classical bag-of-words support vector machine

(BoW/SVM) classifier.

We contribute the following:

1. The LRP technique [13] is brought to the NLP domain and its suitability for identifying rel-

evant words in text documents is demonstrated.

2. LRP relevances are validated, at the document level, by building document heatmap visuali-

zations, and at the dataset level, by compiling representative words for a text category. It is

also shown quantitatively that LRP better identifies relevant words than sensitivity analysis.

3. A novel way of generating vector-based document representations is introduced and it is

verified that these document vectors present semantic regularities within their original fea-

ture space akin to word vector representations.

4. A measure for model explanatory power is proposed and it is shown that two ML models, a

neural network and a BoW/SVM classifier, although presenting similar classification per-

formance, may substantially differ in terms of explainability.

The work is organized as follows. In Section 2 we describe the related work for explaining

classifier decisions with respect to input space variables. In Section 3 we introduce our neural

network ML model for document classification, as well as the LRP decomposition procedure

associated to its predictions. We describe how LRP relevance scores can be used to identify

important words in documents and introduce a novel way of condensing the semantic infor-

mation of a text document into a single document vector. Likewise in section 3 we introduce a

baseline ML model for document classification, as well as a gradient-based alternative for
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assigning relevance scores to words. In Section 4 we define objective criteria for evaluating

word relevance scores, as well as for assessing model explanatory power. In Section 5 we intro-

duce the dataset and experimental setup, and in Section 6 we present the results. Finally, Sec-

tion 7 concludes our work.

2 Related work

Explanation of individual classification decisions in terms of input variables has been studied

for a variety of machine learning classifiers such as additive classifiers [19], kernel-based classi-

fiers [20] or hierarchical networks [12]. Model-agnostic methods for explanations relying on

random sampling have also been proposed [21–23]. Despite their generality, the latter however

incur an additional computational cost due to the need to process the whole sample to provide

a single explanation. Other methods are more specific to deep convolutional neural networks

used in computer vision: the authors of [9] proposed a network propagation technique based

on deconvolutions to reconstruct input image patterns that are linked to a particular feature

map activation or prediction. The work of [10] is aimed at revealing salient structures within

images related to a specific class by computing the corresponding prediction score derivative

with respect to the input image. The latter method is based on gradient magnitude, and thus

reveals the sensitivity of the classifier decision to some local variation of the input image; this

technique is related to sensitivity analysis [24, 25].

In contrast, the LRP method of [13] corresponds to a full decomposition of the classifier’s

actual prediction score value for the current input image. One can show that sensitivity analysis

decomposes the gradient square norm of the function f, i.e., ∑i Ri = krx f(x)k
2, whereas LRP

decomposes the function value itself ∑i Ri = f(x). Intuitively, when the classifier e.g. detects cars

in images, then sensitivity analysis answers the question “what makes this car image more or

less a car?”, whereas LRP answers the more fundamental question “what makes this image a

car at all?”. Note that the LRP framework can be applied to various models such as kernel sup-

port vector machines and deep neural networks [13, 18]. We refer the reader to [15] for a com-

parison of the three explanation methods, and to [14] for a view of particular instances of LRP

as a “deep Taylor decomposition” of the decision function. A tutorial on methods for inter-

preting and understanding deep neural networks can be found in [26].

In the context of neural networks for text classification [27] proposed to extract salient sen-

tences from text documents using loss gradient magnitudes. In order to validate the pertinence

of the sentences extracted via the neural network classifier, the latter work proposed to subse-

quently use these sentences as an input to an external classifier and compare the resulting clas-

sification performance to random and heuristic sentence selection. The work by [28] also

employs gradient magnitudes to identify salient words within sentences, analogously to the

method proposed in computer vision by [10]. However their analysis is based on qualitative

interpretation of saliency heatmaps for exemplary sentences. In addition to the heatmap visu-

alizations, we provide a classifier-intrinsic quantitative validation of the word-level relevances.

We furthermore extend previous work from [29] by adding a BoW/SVM baseline to the exper-

iments and proposing a new criterion for assessing model explanatory power. Recent work

from [30, 31] uses LRP to explain recurrent neural network predictions in sentiment analysis

and machine translation.

3 Interpretable text classification

In this Section we describe our method for identifying words in a text document, that are rele-

vant with respect to a given category of a classification problem. For this, we assume that we

are given a vector-based word representation and a convolutional neural network that has
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already been trained to map accurately documents to their actual category. Our method can be

divided into four steps: (1) Compute an input representation of a text document based on

word vectors. (2) Forward-propagate the input representation through the convolutional neu-

ral network until the output is reached. (3) Backward-propagate the output through the net-

work using the layer-wise relevance propagation (LRP) method, until the input is reached. (4)

Pool the relevance scores associated to each input variable of the network onto the words to

which they belong. As a result of this four-step procedure, a decomposition of the prediction

score for a category onto the words of the documents is obtained. Decomposed terms are

called relevance scores. These relevance scores can be viewed as highlighted text or can be used

to form a list of top-words in the document. The whole procedure is also described visually in

Fig 1. While we detail in this Section the LRP method for a specific network architecture and

with predefined choices of layers, the method can in principle be extended to any architecture

composed of a similar or larger number of layers.

At the end of this Section we introduce different methods which will serve as baselines for

comparison. A baseline for the convolutional neural network model is the BoW/SVM classi-

fier, with the LRP procedure adapted accordingly [13]. A baseline for the LRP relevance

decomposition procedure is gradient-based sensitivity analysis (SA), a technique which assigns

sensitivity scores to individual words. In the vector-based document representation experi-

ments, we will also compare LRP to uniform and TFIDF baselines.

3.1 Representing words and documents

Prior to training the neural network and using it for prediction and explanation, we first derive

a numerical representation of the text documents that will serve as an input to the neural clas-

sifier. To this end, we map each individual word in the document to a vector embedding, and

concatenate these embeddings to form a matrix of size the number of words in the document

Fig 1. Diagram of a CNN-based interpretable machine learning system. It consists of a forward processing that computes for each input document a
high-level concept (e.g. semantic category or sentiment), and a redistribution procedure that explains the prediction in terms of words.

https://doi.org/10.1371/journal.pone.0181142.g001
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times the dimension of the word embeddings. A distributed representation of words can be

learned from scratch, or fine-tuned simultaneously with the classification task of interest. In

the present work, we use only pre-training as it was shown that, even without fine-tuning, this

leads to good neural network classification performance for a variety of tasks like e.g. part-of-

speech tagging or sentiment analysis [7, 32].

One shallow neural network model for learning word embeddings from unlabeled text

sources, is the continuous bag-of-words (CBOW) model of [33], which is similar to the log-

bilinear language model from [34, 35] but ignores the order of context words. In the CBOW

model, the objective is to predict a target middle word from the average of the embeddings of

the context words that are surrounding the middle word, by means of direct dot products

between word embeddings. During training, a set of word embeddings for context words v

and for target words v0 are learned separately. After training is completed, only the context

word embeddings vwill be retained for further applications. The CBOW objective has a simple

maximum likelihood formulation, where one maximizes over the training data the sum of the

logarithm of probabilities of the form:

Pðwtjwt�n:tþnÞ ¼
exp ð 1

2n
�
P

�n�j�n;j 6¼0 vwtþj
Þ
>
v0wt

� �

P

w2V exp ð 1
2n
�
P

�n�j�n;j 6¼0 vwtþj
Þ
>
v0w

� �

where the softmax normalization runs over all words w in the vocabulary V, 2n is the number

of context words per training text window, wt represents the target word at the tth position in

the training data and wt−n:t+n represent the corresponding context words.

In the present work, we utilize pre-trained word embeddings obtained with the CBOW

architecture and the negative sampling training procedure [5]. We will refer to these embed-

dings as word2vec embeddings.

3.2 Predicting category with a convolutional neural network

Our ML model for classifying text documents, is a word-embedding based convolutional neu-

ral network (CNN) model similar to the one proposed in [32] for sentence classification,

which itself is a slight variant of the model introduced in [7] for semantic role labeling. This

architecture is depicted in Fig 1 (left) and is composed of several layers.

As previously described, in a first step we map each word in the document to its word2vec

vector. Denoting by D the word embedding dimension and by L the document length, our

input is a matrix of shape D × L (e.g., for the purpose of illustration, in Fig 1 we have D = 8 and

L = 6). We denote by xi,t the value of the i
th component of the word2vec vector representing

the tth word in the document. The convolution/detection layer produces a new representation

composed of F sequences indexed by j, where each element of the sequence is computed as:

8j; t : xj;t ¼ max 0;
X

i;t
xi;t�tw

ð1Þ
i;j;t þ b

ð1Þ
j

� �

¼ max 0;
X

i
ðxi � w

ð1Þ
i;j Þt þ b

ð1Þ
j

� �

where t indicates a position within the text sequence, j designates a feature map, and

τ 2 {0, 1, . . .,H − 1} is a delay with range H, the filter size of the one-dimensional convolu-

tional operation �. After the convolutional operation, which yields F features maps of length

L −H + 1, we apply the ReLU non-linearity element-wise (e.g., in Fig 1, we have F = 5 features

maps and a filter size H = 2, hence we use τ 2 {0, 1} and the resulting feature maps have a

length of 5). Note that the trainable parameters w(1) and b(1) do not depend on the position t

in the text document, hence the convolutional processing is equivariant with this physical

dimension. The next layer computes, for each dimension j of the previous representation, the
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maximum over the entire text sequence of the document:

8j : xj ¼ max tfxj;tg

This layer creates invariance to the position of the features in the document. Finally, the F

pooled features are fed into a logistic classifier where the unnormalized log-probability of

each of the C classes, indexed by the variable k are given by:

8k : xk ¼
P

j xj w
ð2Þ
jk þ b

ð2Þ
k

where w(2), b(2) are trainable parameters of size F × C resp. size C defining a fully-connected

linear layer (e.g., in Fig 1, C = 3). The outputs xk can be converted to probabilities through

the softmax function pk = exp(xk)/∑k0exp(xk0). For the LRP decomposition we take the unnor-

malized classification scores xk as a starting point.

3.3 Explaining predictions with layer-wise relevance propagation

Layer-wise relevance propagation (LRP) [13, 36] is a recently introduced technique for esti-

mating which elements of a classifier input are important to achieve a certain classification

decision. It can be applied to bag-of-words SVM classifiers as well as to layer-wise structured

neural networks. For every input data point and possible target class, LRP delivers one scalar

relevance value per input variable, hereby indicating whether the corresponding part of the

input is contributing for or against a specific classifier decision, or if this input variable is rather

uninvolved and irrelevant to the classification task.

The main idea behind LRP is to redistribute, for each possible target class separately, the

output prediction score (i.e. a scalar value) that causes the classification, back to the input

space via a backward propagation procedure that satisfies a layer-wise conservation principle.

Thereby each intermediate classifier layer up to the input layer gets allocated relevance values,

and the sum of the relevances per layer is equal to the classifier prediction score for the class

being considered. Denoting by xi,t, xj,t, xj, xk the neurons of the CNN layers presented in the

previous Section, we associate to each of them respectively a relevance score Ri,t, Rj,t, Rj, Rk.

Accordingly the layer-wise conservation principle can be written as:
P

i;tRi;t ¼
P

j;tRj;t ¼
P

jRj ¼
P

kRk ð1Þ

where each sum runs over all neurons of a given layer of the network. To formalize the redistri-

bution process from one layer to another, we introduce the concept of messages Ra b indicat-

ing how much relevance circulates from a given neuron b to a neuron a in the next lower-

layer. We can then express the relevance of neuron a as a sum of incoming messages using:

Ra = ∑b2upper(a) Ra b where upper(a) denotes the upper-layer neurons connected to a. To

bootstrap the propagation algorithm, we set the top-layer relevance vector to 8k: Rk = xk � δkc
where δ is the Kronecker delta function, and c is the target class of interest for which we would

like to explain the model prediction in isolation from other classes.

In the top fully-connected layer, messages are computed following a weighted redistribu-

tion formula:

Rj k ¼
zjk

P

jzjk
Rk ð2Þ

where we define zjk ¼ xjw
ð2Þ
jk þ F�1ðbð2Þk þ � � ð1xk�0

� 1xk<0
ÞÞ. This formula redistributes rele-

vance onto lower-layer neurons in proportion to zjk representing the contribution of each neu-

ron to the upper-layer neuron value in the forward propagation, incremented by a small
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stabilizing term � that prevents the denominator from nearing zero, hence avoiding positive

and negative relevance messages that are too large. In the limit case where �!1, the rele-

vance is redistributed uniformly along the network connections. As a stabilizer value we use

� = 0.01 as introduced in [13]. After computation of the messages according to Eq 2, the latter

can be pooled onto the corresponding neuron by the formula Rj = ∑k Rj k.

The relevance scores Rj are then propagated through the max-pooling layer using the for-

mula:

Rj;t ¼
Rj if t ¼ argmaxt0 xj;t0

0 else

(

ð3Þ

which is a “winner-take-all” redistribution analogous to the rule used during training for back-

propagating gradients, i.e. the neuron that had the maximum value in the pool is granted all

the relevance from the upper-layer neuron. Finally, for the convolutional layer we use the

weighted redistribution formula:

Rði;t�tÞ ðj;tÞ ¼
zi;j;t

P

i;tzi;j;t
Rj;t ð4Þ

where zi;j;t ¼ xi;t�tw
ð1Þ
i;j;t þ ðHDÞ

�1
ðbð1Þj þ � � ð1xj;t>0

� 1xj;t�0
ÞÞ, which is similar to Eq 2 except for

the increased notational complexity incurred by the convolutional structure of the layer. Mes-

sages can finally be pooled onto the input neurons by computing Ri,t = ∑j,τ R(i,t) (j,t+τ).

3.4Word relevance and vector-based document representation

So far, the relevance has been redistributed only onto individual components of the word2vec

vector associated to each word, in the form of single input neuron relevances Ri,t. To obtain a

word-level relevance value, one can pool the relevances over all dimensions of the word2vec

vector, that is computed as:

Rt ¼
P

iRi;t ð5Þ

and use this value to highlight words in a text document, as shown in Fig 1 (right). These

word-level relevance scores can further be used to condense the semantic information of text

documents, by building vectors d 2 RD representing full documents through linearly combin-

ing word2vec vectors:

8i : di ¼
P

t Rt � xi;t ð6Þ

The vector d is a summary that consists of an additive composition of the semantic representa-

tion of all relevant words in the document. Note that the resulting document vector lies in the

same semantic space as word2vec vectors. A more fined-grained extraction technique does not

apply word-level pooling as an intermediate step and extracts only the relevant subspace of

each word:

8i : di ¼
P

t Ri;t � xi;t ð7Þ

This last approach is particularly useful to address the problem of word homonymy, and will

thus result in even finer semantic extraction from the document. In the remaining we will

refer to the semantic extraction defined by Eq 6 as word-level extraction, and to the one from

Eq 7 as element-wise (ew) extraction. In both cases we call vector d a document summary

vector.
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3.5 Baseline methods

In the following we briefly mention methods which will serve as baselines for comparison.

Sensitivity analysis. Sensitivity analysis (SA) [20, 24, 25] assigns scores Ri,t = (@xk/@xi,t)
2

to input variables representing the steepness of the decision function in the input space. These

partial derivatives are straightforward to compute using standard gradient propagation [37]

and are readily available in most neural network implementations. We would like to point out

that, per definition, sensitivity analysis redistributes the quantity krxkk
2

2
, while LRP redistrib-

utes xk. However, the local steepness information is a relatively weak proxy of the actual func-

tion value, which is the real quantity of interest when estimating the contribution of input

variables with respect to a current classifier’s decision. We further note that relevance scores

obtained with LRP are signed, while those obtained with SA are positive.

BoW/SVM. As a baseline to the CNNmodel, a bag-of-words linear SVM classifier will be

used to predict the document categories. In this model each text document is first mapped to a

vector x with dimensionality V the size of the training data vocabulary, where each entry is

computed as a term frequency—inverse document frequency (TFIDF) score of the corre-

sponding word. Subsequently these vectors x are normalized to unit Euclidean norm. In a sec-

ond step, using the vector representations x of all documents, Cmaximum margin separating

hyperplanes are learned to separate each of the classes of the classification problem from the

other ones. As a result we obtain for each class c 2 C a linear prediction score of the form

sc ¼ w>c x þ bc, where wc 2 R
V and bc 2 R are class specific weights and biases. In order to

obtain a LRP decomposition of the prediction score sc for class c onto the input variables, we

simply compute Ri = (wc)i � xi + bc/D, where D is the number of non-zero entries of x. Respec-

tively, the sensitivity analysis redistribution of the prediction score squared gradient reduces to

Ri ¼ ðwcÞ
2

i .

Note that the BoW/SVMmodel, being a linear predictor relying directly on word frequency

statistics, lacks expressive power in comparison to the CNNmodel which additionally learns

intermediate hidden layer representations and convolutional filters. Moreover the CNNmodel

can take advantage of the semantic similarity encoded in the distributed word2vec representa-

tions, while for the BoW/SVMmodel all words are “equidistant” in the bag-of-words semantic

space. As our experiments will show, these limitations lead the BoW/SVMmodel to sometimes

identify spurious words as relevant for the classification task.

In analogy to the semantic extraction proposed in Section 3.4 for the CNNmodel, we can

build vectors d representing documents by leveraging the word relevances obtained with the

BoW/SVMmodel. To this end, we introduce a binary vector ~x 2 RV whose entries are equal

to one when the corresponding word from the vocabulary is present in the document and zero

otherwise (i.e. ~x is a binary bag-of-words representation of the document). Thereafter, we

build the document summary vector d component-wise, so that d is just a vector of word rele-

vances:

8i : di ¼ Ri � ~x i ð8Þ

Uniform/TFIDF based document summary vector. Instead of the word-level relevance

Rt resp. Ri used in Eqs 6 and 8, we can apply a uniform weighting. This corresponds to building

the document vector d as an average of word2vec word embeddings in the first case, and to

taking a binary bag-of-words vector as the document representation d in the second case.

Moreover, we can replace Rt in Eq 6 by an inverse document frequency (IDF) score, and Ri in

Eq 8 by a TFIDF score. Both correspond to TFIDF weighting of either word2vec vectors, or of

one-hot vectors representing words.

"What is relevant in a text document?": An interpretable machine learning approach
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4 Quality of word relevances andmodel explanatory power

In this Section we describe how to evaluate and compare the outcomes of algorithms which

assign relevance scores to words (such as LRP or SA) through intrinsic validation. Further-

more, we propose a measure of model explanatory power based on an extrinsic validation pro-

cedure. The latter will be used to analyze and compare the relevance decompositions or

explanations obtained with the neural network and the BoW/SVM classifier. Both types of

evaluations will be carried out in Section 6.

4.1 Measuring the quality of word relevances through intrinsic validation

An evaluation of how well a method identifies relevant words in text documents can be per-

formed qualitatively, e.g. at the document level, by inspecting the heatmap visualization of a

document, or by reviewing the list of the most (or the least) relevant words per document. A

similar analysis can also be conducted at the dataset level, e.g. by compiling the list of the most

relevant words for one category across all documents. The latter allows one to identify words

that are representatives for a document category, and eventually to detect potential dataset

biases or classifier specific drawbacks. However, in order to quantitatively compare algorithms

such as LRP and SA regarding the identification of relevant words, we need an objective mea-

sure of the quality of the explanations delivered by relevance decomposition methods. To this

end we adopt an idea from [15]: A word w is considered highly relevant for the classification

f(x) of the document x if removing it and classifying the modified document ~x results in a

strong decrease of the classification score f ð~xÞ. This idea can be extended by sequentially delet-

ing words from the most relevant to the least relevant or the other way round. The result is a

graph of the prediction scores f ð~xÞ as a function of the number of deleted words. In our exper-

iments, we employ this approach to track the changes in classification performance when suc-

cessively deleting words according to their relevance value. By comparing the relative impact

on the classification performance induced by different relevance decomposition methods, we

can estimate how appropriate these methods are at identifying words that are really important

for the classification task at hand. The above procedure constitutes an intrinsic validation, as it

does not rely on an external classifier.

4.2 Measuring model explanatory power through extrinsic validation

Although intrinsic validation can be used to compare relevance decomposition methods for a

given ML model, this approach is not suited to compare the explanatory power of different

ML models, since the latter requires a common evaluation basis. Furthermore, even if we

would track the classification performance changes induced by different ML models using an

external classifier, it would not necessarily increase comparability, because removing words

from a document may affect different classifiers very differently, so that their graphs f ð~xÞ are

not comparable. Therefore, we propose a novel measure of model explanatory power which

does not depend on a classification performance change, but only on the word relevances.

Hereby we consider ML model A as being more explainable than ML model B if its word rele-

vances are more “semantic extractive”, i.e. more helpful for solving a semantic related task

such as the classification of document summary vectors.

More precisely, in order to quantify the ML model explanatory power, we undertake the

following steps:

(1) Compute document summary vectors for all test set documents using Eqs 6 or 7 for the

CNN and Eq 8 for the BoW/SVMmodel. Hereby use the ML model’s predicted class as
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target class for the relevance decomposition (i.e. the summary vector generation is

unsupervised).

(2) Normalize the document summary vectors to unit Euclidean norm, and perform a K-

nearest-neighbors (KNN) classification of half of these vectors, using the other half of

summary vectors as neighbors (using standard KNN classification, i.e. nearest neighbors

are identified by Euclidean distance and neighbor votes are weighted uniformly). Use dif-

ferent hyperparameters K.

(3) Repeat step (2) over 10 random data splits, and average the KNN classification accuracies

for each K. Finally, report the maximum (over different K) KNN accuracy as explanatory

power index (EPI). The higher this value, the more explanatory power the ML model and

the corresponding document summary vectors, will have.

In a nutshell, our EPI metric of explanatory power of a given ML model “f”, combined with

a relevance map “R”, can informally be summarized as:

dðxÞ ¼
X

t
½Rðf ðxÞÞ � x�t

EPIðf ;RÞ ¼ max
K

KNN accuracyðfdðxð1ÞÞ; . . . ; dðxðNÞÞg;KÞ
ð9Þ

where d(x) is the document summary vector for input document x, and subscript t denotes the

words in the document. The sum ∑t and element-wise multiplication� operations stand for

the weighted combination specified explicitly in Eqs 6–8. The KNN accuracy is estimated over

all test set document summary vectors indexed from 1 to N, and K is the number of neighbors.

In the proposed evaluation procedure, the use of KNN as a common external classifier

enables us to compare different ML models in an unbiased manner, in terms of the density

and local neighborhood structure of the semantic information extracted via the summary vec-

tors in input feature space. Indeed we recall that summary vectors constructed via Eqs 6 and 7

lie in the same semantic space as word2vec embeddings, and that summary vectors obtained

via Eq 8 lie in the bag-of-words space.

5 Experimental setup

This Section describes the dataset, preprocessing and training procedure used in our

experiments.

5.1 Dataset

We consider a topic categorization task, and employ the freely available 20Newsgroups dataset

consisting of newsgroup posts evenly distributed among twenty fine-grained categories. More

precisely we use the 20news-bydate version, which is already partitioned into 11314 training

and 7532 test documents corresponding to different periods in time.

5.2 Preprocessing and training

As a first preprocessing step, we remove the headers from the documents (by splitting at the

first blank line) and tokenize the text with NLTK. Then, we filter the tokenized data by retain-

ing only tokens composed of the following four types of characters: alphabetic, hyphen, dot

and apostrophe, and containing at least one alphabetic character. Hereby we aim to remove

punctuation, numbers or dates, while keeping abbreviations and compound words. We do not

apply any further preprocessing, as for instance stop-word removal or stemming, except for

the SVM classifier where we additionally perform lowercasing, as this is a common setup for

"What is relevant in a text document?": An interpretable machine learning approach
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bag-of-words models. We truncate the resulting sequence of tokens to a chosen fixed length of

400 in order to simplify neural network training (in practice our CNN can process any arbi-

trary sized document). Lastly, we build the neural network input by horizontally concatenating

pre-trained word embeddings, according to the sequence of tokens appearing in the prepro-

cessed document. In particular, we take the 300-dimensional freely available word2vec

embeddings [5]. Out-of-vocabulary words are simply initialized to zero vectors. As input nor-

malization, we subtract the mean and divide by the standard deviation obtained over the flat-

tened training data. We train the neural network by minimizing the cross-entropy loss via

mini-batch stochastic gradient descent using l2-norm and dropout as regularization. We

tune the ML model hyperparameters by 10-fold cross-validation in case of the SVM, and by

employing 1000 random documents as fixed validation set for the CNNmodel. However, for

the CNN hyperparameters, we did not perform an extensive grid search and stopped the tun-

ing once we obtained models with reasonable classification performance for the purpose of

our experiments.

6 Results

This Section summarizes our experimental results. We first describe the classification accuracy

of the four ML models: three CNNs with different filter sizes and a BoW/SVM classifier.

Remaining results are divided into two parts, first a qualitative one and then a quantitative

one. In the qualitative part, we demonstrate that LRP can be used to identify relevant words in

text documents. We also compare heatmaps for the best performing CNNmodel and the

BoW/SVM classifier, and report the most representative words for three exemplary document

categories. These results demonstrate qualitatively that the CNNmodel produces better expla-

nations than the BoW/SVM classifier. After that we move to the evaluation of the document

summary vectors, where we show that a 2D PCA projection of the document vectors com-

puted from the LRP scores groups documents according to their topics (without requiring the

true labels). Since worse results are obtained when using the SA scores or the uniform or

TFIDF weighting, this indicates that the explanations produced by LRP are semantically more

meaningful than the former. In the quantitative part, we confirm the observations made

before, namely that (1) the LRP decomposition method provides better explanations than SA

and that (2) the CNNmodel outperforms the BoW/SVM classifier in terms of explanatory

power.

6.1 Performance comparison

Table 1 summarizes the performance of our trained models. Herein CNN1, CNN2, CNN3

respectively denote neural networks with convolutional filter sizeH equal to 1, 2 and 3 (i.e.

covering 1, 2 or 3 consecutive words in the document). One can see that the linear SVM per-

forms on par with the neural networks, i.e. the non-linear structure of the CNNmodels does

not yield a considerable advantage toward classification accuracy. Similar results have also

been reported in previous studies [38], where it was observed that for document classification

Table 1. Test set performance of the MLmodels for 20-class document classification.

ML Model Test Accuracy (%)

BoW/SVM (V = 70631 words) 80.10

CNN1 (H = 1, F = 600) 79.79

CNN2 (H = 2, F = 800) 80.19

CNN3 (H = 3, F = 600) 79.75

https://doi.org/10.1371/journal.pone.0181142.t001
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a convolutional neural network model starts to outperform a TFIDF-based linear classifier

only on datasets in the order of millions of documents. This can be explained by the fact that

for most topic categorization tasks, the different categories can be separated linearly in the

very high-dimensional bag-of-words or bag-of-N-grams space thanks to sufficiently disjoint

sets of features. However, despite similar performance, the CNNmodels present some advan-

tages over the SVM in that their computational costs scale linearly with the training data size,

and that each training iteration involves a mini-batch of fixed size; besides, they can take

advantage of the word similarity information encoded in the distributed word embeddings,

whereas for a BoW/SVMmodel, any training algorithm that solves the dual optimization

problem for an arbitrary kernel has a computational cost that scales at least quadratically in the

number of training samples (moreover when the kernel matrix does not fit in memory, this

constitutes a major factor in the computation time) [39], additionally the latter model does not

consider any word similarity.

6.2 Identifying relevant words

Fig 2 compiles the resulting LRP heatmaps we obtain on an exemplary sci.space test docu-
ment that is correctly classified by the SVM and the best performing neural network model

CNN2. Note that for the SVMmodel the relevance values are computed per bag-of-words fea-

ture, i.e., the same words will have the same relevance irrespectively of their context in the doc-

ument, whereas for the CNN classifier we visualize one relevance value per word position.

Here we consider as target class for the LRP decomposition the classes sci.space and
sci.med.We can observe that the SVMmodel considers insignificant words like the, is, of as

very relevant (either negatively or positively) for the target class sci.med, and at the same

time mistakenly estimates words like sickness, mental or distress as negatively contributing to

this class (indicated by blue coloring). Besides, in the present work, we compute the TFIDF

Fig 2. LRP heatmaps of the document sci.space61393 for the CNN2 and SVMmodel. Positive relevance is mapped to red, negative to blue. The
color opacity is normalized to the maximum absolute relevance per document. The LRP target class and corresponding classification prediction score is
indicated on the left.

https://doi.org/10.1371/journal.pone.0181142.g002
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score of a word w as the raw word count multiplied by 1þ log 1þN
1þnw

� �

, where N is the total

number of training documents, and nw is the number of training documents in which w

occurs, hence the inverse document frequency has a minimum value of one; this further

explains, in part, why frequent words like the are not entirely ignored by the SVMmodel. On

the other hand, we notice that the CNN2 heatmap is consistently more sparse and concen-

trated on semantically meaningful words. This sparsity property can be attributed to the max-

pooling non-linearity which for each feature map in the neural network selects the most rele-

vant feature that occurs in the document. As can be seen, it significantly simplifies the

interpretability of the results by a human. Another disadvantage of the SVMmodel is that it

relies entirely on local and global word statistics, thus can only assign relevances proportionally

to the TFIDF BoW features (plus a class-dependent bias term), while the neural network

model benefits from the knowledge encoded in the word2vec embeddings. For instance, the

word weightlessness is not highlighted by the SVMmodel for the target class sci.space,
because this word does not occur in the training data and thus is simply ignored by the SVM

classifier. The neural network however is able to detect and attribute relevance to unseen

words thanks to the semantic information encoded in the pre-trained word2vec embeddings.

As a dataset-wide analysis, we determine the words identified through LRP and SA as class

representatives. For that purpose we set one class as target class for the relevance decomposi-

tion, and conduct LRP, resp. SA, over all test set documents (i.e. irrespectively of the true or

ML model’s predicted class). Subsequently, we sort all the words appearing in the test data in

decreasing order of the obtained word-level relevance values, and retrieve the twenty most rel-

evant ones. The result is a list of words identified via LRP or SA as being highly supportive for

a classifier decision toward the considered class. Figs 3 and 4 list the most relevant words for

different target classes, as well as the corresponding word-level relevance values for the CNN2

and the SVMmodel. Through underlining we indicate words that do not occur in the training

data. Interestingly, we observe that some of the most “class-characteristic” words identified via

the neural network model correspond to words that do not even appear in the training data. In

contrast, such words are simply ignored by the SVMmodel as they do not occur in the bag-of-

words vocabulary. Similarly to the previous heatmap visualizations, the class-specific analysis

reveals that the SVM classifier occasionally assigns high relevances to semantically insignifi-

cant words like for example the pronoun she for the target class sci.med (20th position in the

first row left column of Fig 4), or to the names pat, henry, nicho for the target the class sci.
space (resp. 7, 13, 20th position in the first row middle column of Fig 4). In the former case

the high relevance is due to a high term frequency of the word (indeed the word she achieves

its highest term frequency in one sci.med test document where it occurs 18 times), whereas

in the latter case this can be explained by a high inverse document frequency or by a class-

biased occurrence of the corresponding word in the training data (pat appears within 16 differ-

ent training document categories but 54.1% of its occurrences are within the category sci.
space alone, 79.1% of the 201 occurrences of henry appear among sci.space training
documents, and nicho appears exclusively in nine sci.space training documents). On the

contrary, the neural network model seems less affected by word count regularities and system-

atically attributes the highest relevances to words semantically related to the target class. These

results demonstrate that, subjectively, the neural network is better suited to identify relevant

words in text documents than the BoW/SVMmodel. For a given classifier, when comparing

the lists of the most relevant words obtained with LRP or SA in Figs 3 and 4, we do not discern

any qualitative difference between LRP and SA class representatives. Nevertheless, we recall

that these “keywords” correspond to the greatest observed relevance scores across the test set

documents, and do not reflect the differences between LRP and SA at the document level.
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Indeed in practice we noticed that within a document, the first two most relevant words identi-

fied with LRP or SA are often identical, but the remaining words will be ordered differently in

terms of their LRP or SA relevance. As an example, if we consider the test documents of the

classes sci.space,sci.med, and comp.graphics, retaining only documents with a

length greater or equal to 10 tokens (this amounts to 1165 documents), and perform a rele-

vance decomposition for the true document class using the CNN2 model, then in 81,9% of the

cases LRP and SA will identify the same word as the most relevant per document, and if the

two most relevant words are considered, 42.6% of the cases will be equal, 15,8% for three

words and only 4.0% for four words. Similar results are obtained using the SVMmodel: in

50.9% of the cases LRP and SA identify the same word as the most relevant, if we consider the

two most relevant, 23.1% of the cases are identical, 7.3% for three words and 1.6% for four

words. In addition, the differences between LRP and SA are confirmed by the quantitative

evaluation in Section 6.4.

6.3 Document summary vectors

The word2vec embeddings are known to exhibit linear regularities representing semantic rela-

tionships between words [5, 33]. We explore whether these regularities can be transferred to a

new document representation, which we denote as document summary vector, when building

Fig 3. The 20most relevant words per class for the CNN2model. The words are listed in decreasing
order of their LRP(first row)/SA(second row) relevance (value indicated in parentheses). Underlined words do
not occur in the training data.

https://doi.org/10.1371/journal.pone.0181142.g003
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this vector as a weighted combination of word2vec embeddings (see Eqs 6 and 7) or as a com-

bination of one-hot word vectors (see Eq 8). We compare the weighting scheme based on the

LRP relevances to the following baselines: SA relevance, TFIDF and uniform weighting (see

Section 3.5).

The two-dimensional PCA projection of the summary vectors obtained via the CNN2 resp.

the SVMmodel, as well as the corresponding TFIDF/uniform weighting baselines are shown

in Fig 5. In these visualizations we group the 20Newsgroups test documents into six top-level

categories (the grouping is performed according to the dataset website), and we color each

document according to its true category (note however that, as mentioned earlier, the rele-

vance decomposition is always performed in an unsupervised way, i.e., with the ML model’s

predicted class). For the CNN2 model, we observe that the two-dimensional PCA projection

reveals a clear-cut clustered structure when using the element-wise LRP weighting for seman-

tic extraction, while no such regularity is observed with uniform or TFIDF weighting. The

word-level LRP or SA weightings, as well as the element-wise SA weighting present also a form

of bundled layout, but not as dense and well-separated as in the case of element-wise LRP. For

the SVMmodel, the two-dimensional visualization of the summary vectors exhibits partly a

cross-shaped layout for LRP and SA weighting, while again no particular structure is observed

for TFIDF or uniform semantic extraction. This analysis confirms the observations made

in the last Section, namely that the neural network outperforms the BoW/SVM classifier in

terms of subjective human interpretability. Fig 5 furthermore suggests that LRP provides

Fig 4. The 20most relevant words per class for the BoW/SVMmodel. The words are listed in decreasing
order of their LRP(first row)/SA(second row) relevance (value indicated in parentheses). Underlined words do
not occur in the training data.

https://doi.org/10.1371/journal.pone.0181142.g004
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Fig 5. PCA projection of the summary vectors of the 20Newsgroups test documents. The LRP/SA based weightings were computed using the ML
model’s predicted class, the colors denote the true labels.

https://doi.org/10.1371/journal.pone.0181142.g005
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semantically more meaningful semantic extraction than the baseline methods. In the next Sec-

tion we will confirm these observations quantitatively.

6.4 Quantitative evaluation

6.4.1 How well does LRP identify relevant words?. In order to quantitatively validate the

hypothesis that LRP is able to identify words that either support or inhibit a specific classifier

decision, we conduct several word-deleting experiments on the CNNmodels using LRP scores

as relevance indicator. More specifically, in accordance with the word-level relevances we

delete a sequence of words from each document, re-classify the documents with “missing

words”, and report the classification accuracy as a function of the number of deleted words.

The word-level relevances are computed on the original documents (with no words deleted).

For the deleting experiments, we consider only 20Newsgroups test documents that have a

length greater or equal to 100 tokens (after prepocessing), this amounts to 4963 test docu-

ments, from which we delete up to 50 words. For deleting a word we simply set the corre-

sponding word embedding to zero in the CNN input. Moreover, in order to assess the

pertinence of the LRP decomposition method as opposed to alternative relevance models, we

additionally perform word deletions according to SA word relevances, as well as random dele-

tion. In the latter case we sample a random sequence of 50 words per document, and delete the

corresponding words successively from each document. We repeat the random sampling 10

times, and report the average results (the standard deviation of the accuracy is less than 0.0141

in all our experiments). We additionally perform a biased random deletion, where we sample

only among words contained in the word2vec vocabulary (this way we avoid deleting words

we have already initialized as zero-vectors as they are outside the word2vec vocabulary, how-

ever as our results show this biased deletion is almost equivalent to strict random selection).

As a first deletion experiment, we start with the subset of test documents that are initially

correctly classified by the CNNmodels, and successively delete words in decreasing order of

their LRP/SA word-level relevance. In this first deletion experiment, the LRP/SA relevances

are computed with the true document class as target class for the relevance decomposition. In

a second experiment, we perform the opposite evaluation. Here we start with the subset of ini-

tially falsely classified documents, and delete successively words in increasing order of their

relevance, while considering likewise the true document class as target class for the relevance

computation. In the third experiment, we start again with the set of initially falsely classified

documents, but now delete words in decreasing order of their relevance, considering the classi-

fier’s initially predicted class as target class for the relevance decomposition.

Fig 6 summarizes the resulting accuracies when deleting words from the CNN1, CNN2 and

CNN3 input documents respectively (each row in the figure corresponds to one of the three

deletion experiments). Note that we do not report results for the BoW/SVMmodel, as our

focus here is the comparison between LRP and SA and not between different ML models.

Besides we note that intrinsic validation is also not the right tool for comparing the BoW/SVM

and the CNNmodels, as the resulting accuracies are not directly comparable (deleting a word

from the bag-of-words document representation has a different effect than setting a word to

zero in the CNN input). Through successive deletion of either “positive-relevant” words in

decreasing order of their LRP relevance, or of “negative-relevant” words in increasing order of

their LRP relevance, we confirm that both extremal LRP relevance values capture pertinent

information with respect to the classification problem. Indeed in all deletion experiments, we

observe the most pronounced decrease resp. increase of the classification accuracy when using

LRP as relevance model. We additionally note that SA, in contrast to LRP, is largely unable to

provide suitable information to pinpoint words that speak against a specific classification
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Fig 6. Word deletion experiments for the CNN1, CNN2 and CNN3model. The LRP/SA target class is either the true document class, and words are
deleted in decreasing (first row, lower curve is better) resp. increasing (second row, higher curve is better) order of their LRP/SA relevance, or else the target
class is the predicted class (third row, higher curve is better) in which case words are deleted in decreasing order of their relevance. Random (biased)
deletion is reported as average over 10 runs.

https://doi.org/10.1371/journal.pone.0181142.g006
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decision. Instead it appears that the lowest SA relevances (which mainly correspond to zero-

valued relevances) are more likely to identify words that have no impact on the classifier deci-

sion at all, as this deletion scheme has even less impact on the classification performance than

random deletion when deleting words in increasing order of their relevance, as shown by the

second deletion experiment.

When comparing the different CNN models, we observe that the CNN2 and CNN3 mod-

els, as opposed to CNN1, produce a steeper decrease of the classification performance when

deleting the most relevant words from the initially correctly classified documents, both

when considering LRP as well as SA as relevance model, as shown by the first deletion

experiment. This indicates that the networks with greater filter sizes are more sensitive to

single word deletions, most likely because during these deletions the meaning of the sur-

rounding words becomes less obvious to the classifier. This also provides some weak evi-

dence that, while CNN2 and CNN3 behave similarly (which suggests that a convolutional

filter size of two is already enough for the considered classification problem), the learned fil-

ters in CNN2 and CNN3 do not only focus on isolated words but additionally consider

bigrams or trigrams of words, as their results differ a lot from the CNN1 model in the first

deletion experiment.

6.4.2 Quantifying the explanatory power. In order to quantitatively evaluate and com-

pare the ML models in combination with a relevance decomposition or explanation tech-

nique, we apply the evaluation method described in Section 4.2. That is, we compute the

accuracy of an external classifier (here KNN) on the classification of document summary

vectors (obtained with the ML model’s predicted class). For these experiments we remove

test documents which are empty or contain only one word after preprocessing (this

amounts to remove 25 documents from the 20Newsgroups test set). The maximum KNN

mean accuracy obtained when varying the number of neighbors K (corresponding to our

EPI metric of explanatory power) is reported for several models and explanation techniques

in Table 2.

When comparing the best CNN based weighting schemes with the corresponding TFIDF

baseline result from Table 2, we find that all LRP element-wise weighted combinations of

word2vec vectors are statistical significantly better than the TFIDF weighting of word embed-

dings at a significance level of 0.05 (using a corrected resampled t-test [40]). Similarly, in the

bag-of-words space, the LRP combination of one-hot word vectors is significantly better than

the corresponding TFIDF document representation with a significance level of 0.05. Lastly, the

best CNN2 explanatory power index is significantly higher than the best SVM based explana-

tion at a significance level of 0.10. Although the CNN2 model has only a slightly superior result

over the SVMmodel, the document vectors obtained through the former model have a much

lower dimensionality than those extracted via the SVM.

In Fig 7 we plot the mean accuracy of KNN (averaged over ten random test data splits) as a

function of the number of neighbors K, for the CNN2 and the SVMmodel, as well as the corre-

sponding TFIDF/uniform weighting baselines (for CNN1 and CNN3 we obtained similar plot

as for CNN2). One can further see from Fig 7 that (1) (element-wise) LRP provides consis-

tently better semantic extraction than all baseline methods and that (2) the CNN2 model has a

greater explanatory power than the BoW/SVM classifier since it produces semantically more

meaningful summary vectors for KNN classification.

Overall the good performance, both qualitatively as well as quantitatively, of the element-

wise combination of word2vec embeddings according to the LRP relevance illustrates the use-

fulness of LRP for extracting a new vector-based document representation preserving semantic

neighborhood regularities in the input feature space.
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7 Conclusion

We have demonstrated qualitatively and quantitatively that LRP constitutes a useful tool for

identifying, both for fine-grained analysis at the document level and as a dataset-wide intro-

spection across documents, words that are important to a classifier’s decision. This knowledge

enables us to broaden the scope of applications of standard machine learning classifiers like

Fig 7. KNN accuracy when classifying the document summary vectors. The accuracy is computed on one half of the 20Newsgroups test documents
(other half is used as neighbors). Results are averaged over 10 random data splits.

https://doi.org/10.1371/journal.pone.0181142.g007

Table 2. Results averaged over 10 random data splits. For each semantic extraction method, we report the dimensionality of the document summary vec-
tors, the explanatory power index (EPI) corresponding to themaximummean KNN accuracy obtained when varying the number of neighborsK, the corre-
sponding standard deviation over the multiple data splits, and the hyperparameter K that led to the maximum accuracy.

Dim Semantic Extraction Explanatory Power Index KNN Parameter

300 word2vec/CNN1 LRP (ew) 0.8045 (± 0.0044) K = 10

SA (ew) 0.7924 (± 0.0052) K = 9

LRP 0.7792 (± 0.0047) K = 8

SA 0.7773 (± 0.0041) K = 6

word2vec/CNN2 LRP (ew) 0.8076 (± 0.0041) K = 10

SA (ew) 0.7993 (± 0.0045) K = 9

LRP 0.7847 (± 0.0043) K = 8

SA 0.7767 (± 0.0053) K = 8

word2vec/CNN3 LRP (ew) 0.8034 (± 0.0039) K = 13

SA (ew) 0.7931 (± 0.0048) K = 10

LRP 0.7793 (± 0.0037) K = 7

SA 0.7739 (± 0.0054) K = 6

word2vec TFIDF 0.6816 (± 0.0044) K = 1

uniform 0.6208 (± 0.0052) K = 1

70631 BoW/SVM LRP 0.7978 (± 0.0048) K = 14

SA 0.7837 (± 0.0047) K = 17

BoW TFIDF 0.7592 (± 0.0039) K = 1

uniform 0.6669 (± 0.0061) K = 1

https://doi.org/10.1371/journal.pone.0181142.t002
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support vector machines or neural networks, by extending the primary classification result

with additional information linking the classifier’s decision back to components of the input,

in our case words in a document. Furthermore, based on LRP relevance, we have introduced a

new way of condensing the semantic information contained in word embeddings (such as

word2vec) into a document vector representation that can be used for nearest neighbors classi-

fication, and that leads to better performance than standard TFIDF weighting of word embed-

dings. The resulting document vector is the basis of a new measure of model explanatory

power which was proposed in this work, and its semantic properties could find applications in

various visualization and search tasks, where the document similarity is expressed as a dot

product between vectors. Another future application of LRP-based semantic extraction could

be the aggregation of word representations into sub-document representations like phrases,

sentences or paragraphs.

Our work is a first step toward applying the LRP decomposition to the NLP domain, and

we expect this technique to be also suitable for types of applications that are based on other

neural network architectures such as character-based or recurrent network classifiers, or on

other types of classification problems (e.g. sentiment analysis). More generally, LRP could con-

tribute to the design of more accurate and efficient classifiers, not only by inspecting and

leveraging the input space relevances, but also through the analysis of intermediate relevance

values “at classifier hidden layers”.
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