
Synthese (2016) 193:1983–2012
DOI 10.1007/s11229-015-0824-z

What is Shannon information?

Olimpia Lombardi1 · Federico Holik2 ·
Leonardo Vanni3

Received: 1 June 2014 / Accepted: 5 July 2015 / Published online: 17 July 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Despite of its formal precision and its great many applications, Shannon’s
theory still offers an active terrain of debatewhen the interpretation of itsmain concepts
is the task at issue. In this article we try to analyze certain points that still remain
obscure or matter of discussion, and whose elucidation contribute to the assessment of
the different interpretative proposals about the concept of information. In particular,we
argue for a pluralist position, according to which the different views about information
are no longer rival, but different interpretations of a single formal concept.

Keywords Shannon entropy · Coding theorem · Bit · Epistemic interpretation ·
Physical interpretation

1 Introduction

Although theuse of theword ‘information’,with differentmeanings, canbe tracedback
to antique and medieval texts (see Adriaans 2013), it is only in the twentieth century
that the term begins to acquire the present-day sense. Nevertheless, the pervasiveness
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of the notion of information both in our everyday life and in our scientific practice
does not imply the agreement about the content of the concept. As Floridi (2010,
2011) stresses, it is a polysemantic concept associated with different phenomena,
such as communication, computation, knowledge, reference, meaning, truth, etc. In
the second half of the twentieth century, philosophy begins to direct its attention to
this omnipresent but intricate concept in an effort of unravel the tangle of significances
surrounding it.

According to a deeply rooted intuition, information is relatedwith data, it has or car-
ries content. In order to elucidate this idea, the philosophyof information has coined the
concept of semantic information (Bar-Hillel andCarnap 1953; Bar-Hillel 1964; Floridi
2013), strongly related with notions such as reference, meaning and representation:
semantic information has intentionality—“aboutness”, it is directed to other things.
On the other hand, in the field of science certain problems are expressed in terms
of a notion of information amenable to quantification. At present, this mathematical
perspective for understanding information is manifested in different formalisms, each
corresponding to its own concept: Fisher information (whichmeasures the dependence
of a random variable X on an unknown parameter θ upon which the probability of X
depends; see Fisher 1925), algorithmic information (which measures the length of the
shortest program that produces a string on a universal Turingmachine; see Solomonoff
1964; Kolmogorov 1965, 1968; Chaitin 1966), von Neumann entropy (which gives
a measure of the quantum resources necessary to faithfully encode the state of the
source-system; see Schumacher 1995), among others. Nevertheless, it is traditionally
agreed that the seminal work for the mathematical view of information is the paper
where Shannon (1948) introduces a precise formalism designed to solve certain spe-
cific technological problems in communication engineering (see also Shannon and
Weaver 1949). Roughly speaking, Shannon entropy is concerned with the statistical
properties of a given system and the correlations between the states of two systems,
independently of the meaning and any semantic content of those states. Nowadays,
Shannon’s theory is a basic ingredient of the communication engineers training.

At present, the philosophyof informationhas put on the table a number of openprob-
lems relatedwith the concept of information (seeAdriaans and vanBenthem2008): the
possibility of unification of various theories of information, the question about a logic
of information, the relations between information and thermodynamics, the meaning
of quantum information, the links between information and computation, among oth-
ers. In this wide panoply of open issues, it can be supposed that any question about the
meaning and interpretation of Shannon information has a clear and undisputed answer.
However, this is not the case. In this paper we will see that, in spite of the agree-
ment concerning the traditional and well understood formalism, there are many points
about Shannon’s theory that still remain disputed or have not been sufficiently stressed.
Moreover, the very interpretation of the concept of information is far from unanimous.

In order to develop the argumentation, Sect. 2 will begin by recalling the basic for-
malism of Shannon’s theory. Section3will supply a brief consideration about the terms
‘entropy’ and ‘information’ as used in Shannon’s original paper. In Sect. 4, the abstract
nature of information will be discussed, and in Sect. 5 the question about whether the
theory deals with averages or not will be considered. The gradual transformation expe-
rienced by the meaning of the term ‘bit’ during the last decades will be pointed out in
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Sect. 6. In Sect. 7, the relation between the definition of information and the coding of
information will be analyzed. The next two sections will be devoted to argue for the
relative nature of information (Sect. 8), and for the theoretical neutrality of informa-
tion (Sect. 9). Section10 will explore the relation between Shannon information and
algorithmic complexity. The differences between two traditional interpretations of the
concept information in the context of Shannon’s theory, the epistemic and the physical
interpretations, will be emphasized in Sect. 11. This task will allow us to propose, in
Sect. 12, a formal reading of the concept of Shannon information, according to which
the epistemic and the physical views are different possible models of the formalism.

2 Shannon’s theory

With his paper “The Mathematical Theory of Communication” (1948), Shannon
offered precise results about the resources needed for optimal coding and for error-free
communication. This paper was immediately followed by many works of application
to fields as radio, television and telephony. Shannon’s theory was later mathematically
axiomatized (Khinchin 1957).

According to Shannon (1948; see also Shannon and Weaver 1949), a general com-
munication system consists of five parts:

– A source S, which generates the message to be received at the destination.
– A transmitter T, which turns the message generated at the source into a signal to
be transmitted. In the cases in which the information is encoded, encoding is also
implemented by this system.

– A channel CH, that is, the medium used to transmit the signal from the transmitter
to the receiver.

– A receiver R, which reconstructs the message from the signal.
– A destination D, which receives the message.

S T R D    CHmessage signal messagesignal

The source S is a systemwith a range of possible states s1, . . . , sn usually called let-
ters, whose respective probabilities of occurrence are p(s1), . . . , p(sn).1 The amount
of information generated at the source by the occurrence of si can be defined as:

I (si ) = log (1/p(si )) = − log p(si ) . (1)

Since S produces sequences of states, usually calledmessages, the entropy of the source
S is defined as:

H(S) =
n�

i=1

p(si ) log (1/p(si )) = −
n�

i=1

p(si ) log p(si ) . (2)

1 Here we are considering the discrete case, but all the definitions can be extended to the continuous case
(see, e.g., Cover and Thomas 1991).
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Analogously, the destination D is a system with a range of possible states d1, . . . , dm,

with respective probabilities p(d1), . . . , p(dm). The amount of information I (d j )

received at the destination by the occurrence of d j can be defined as:

I
�
d j

� = log
�
1/p

�
d j

�� = − log p
�
d j

�
, (3)

and the entropy of the destination D is defined as:

H(D) =
m�

j=1

p
�
d j

�
log

�
1/p

�
d j

�� = −
m�

j=1

p
�
d j

�
log p

�
d j

�
. (4)

In his original paper, Shannon (1948, p. 349) explains the convenience of the use
of a logarithmic function in the definition of the entropies: it is practically useful
because many important parameters in engineering vary linearly with the logarithm
of the number of possibilities; it is intuitive because we use to measure magnitudes
by linear comparison with unities of measurement; it is mathematically more suitable
because many limiting operations in terms of the logarithm are simpler than in terms
of the number of possibilities. In turn, the choice of a logarithmic base amounts to a
choice of a unit for measuring information. If the base 2 is used, the resulting unit is
called ‘bit’—a contraction of binary unit. With these definitions, one bit is the amount
of information obtained when one of two equally likely alternatives is specified.

The relationship between the entropies of the source H(S) and of the destination
H(D) can be represented in the following diagram (see, e.g., Cover and Thomas 1991,
p. 20):

H(S) H(D)

H(S;D)E N

where:

• H(S; D) is the mutual information: the average amount of information generated
at the source S and received at the destination D.

• E is the equivocation: the average amount of information generated at S but not
received at D.

• N is the noise: the average amount of information received at D but not generated
at S.

As the diagram clearly shows, the mutual information can be computed as:

H(S; D) = H(S) − E = H(D) − N . (5)

Equivocation E and noise N are measures of the dependence between the source S and
the destination D:

• If S and D are completely independent, the values of E and N are maximum (E =
H(S) and N = H(D)), and the value of H(S; D) is minimum (H(S; D) = 0).
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• If the dependence betweenS andD ismaximum, the values ofE andN areminimum
(E = N = 0), and the value of H(S; D) is maximum (H(S; D) = H(S) =
H(D)).

The values of E and N are functions not only of the source and the destination,
but also of the communication channel CH. The introduction of the communication
channel leads directly to the possibility of errors in the process of transmission: the
channel CH is defined by the matrix [p(d j/si )], where p(d j/si ) is the conditional
probability of the occurrence of d j in the destination D. Given that si occurred in the
source S, and the elements in any row add up to 1. On this basis, E and N can be
computed as:

N =
n�

i=1

p(si )
m�

j=1

p
�
d j/si

�
log

�
1/p

�
d j/si

��
, (6)

E =
m�

j=1

p
�
d j

� n�

i=1

p
�
si/d j

�
log

�
1/p

�
si/d j

��
, (7)

where p(si/d j ) = p(d j/si )p(si )/p(d j ). The channel capacity C is defined as:

C = maxp(si )H(S; D), (8)

where the maximum is taken over all the possible distributions p(si ) at the source. C
measures the largest amount of information that can be transmitted over the commu-
nication channel CH.

The two most important results obtained by Shannon are the theorems known
as First Shannon Theorem and Second Shannon Theorem. According to the First
Theorem, or Noiseless-Channel Coding Theorem, for sufficiently long messages, the
value of the entropy H(S) of the source is equal to the average number of symbols
necessary to encode a letter of the source using an ideal code: H(S) measures the
optimal compression of the source messages. The proof of the theorem is based on
the fact that the messages of N letters produced by S fall into two classes: one of
approximately 2NH(S) typical messages, and the other of atypical messages. When
N → ∞, the probability of an atypical message becomes negligible; so, the source
can be conceived as producing only 2NH(S) possible messages. This suggests a natural
strategy for coding: each typical message is encoded by a binary sequence of length
NH(S), in general shorter than the length N of the original message.

On the other hand, in the early 1940s, it was thought that the increase of the rate in
the information transmission over a communication channel would always increase
the probability of error. The Second Theorem, orNoisy-Channel Coding Theorem, sur-
prised the communication theory community by proving that that assumption was not
true as long as the communication ratewasmaintained below the channel capacity. The
channel capacity is equal to themaximumrate atwhich the information can be sent over
the channel and recovered at the destinationwith a vanishingly low probability of error.

The formal simplicity of Shannon’s theory might suggest that the interpretation of
the involved concepts raises no difficulty. As we will see in the following sections,
this is not the case at all.
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3 About the terms ‘entropy’ and ‘information’

It seems to be clear that, in the context of Shannon’s formalism, H(S) and H(D)

denote amounts of information: they are strongly related with a “mutual information”
that is transmitted from the source to the destination through a channel. Neverthe-
less, in Shannon’s paper and in the literature H(S) and H(D) are usually termed
‘entropies’. According to a traditional story, the term ‘entropy’ was suggested by
John von Neumann–Shannon in the following terms: “You should call it entropy, for
two reasons. In the first place your uncertainty function has been used in statistical
mechanics under that name. In the second place, and more importantly, no one knows
what entropy really is, so in a debate you will always have the advantage” (Tribus and
McIrving 1971, p. 180). The story is certainly apocryphal. However, in Italian it is
usually said: “se non è vero, è ben trovato”, that is, “if it is not true, it is a good story”: it
is not difficult to conceive the story as expressing the difficulties that von Neumann, as
many other scientists of that time, perceived about the concept of entropy in physics.
Even at present there are still many controversies about the content of the concept of
entropy, whose deep implications can be easily compared to those resulting from the
debates about the meaning of the term ‘information’.

A different and perhaps more interesting question is that related with the historical
context of the publicationof a theory that dealswith something called ‘information’ and
conceived as the clue of communication.According toTimothyGlander (2000), theUS
government’s agenda funded and dominated wartime and post-war communications
research. In fact, during World War II, Shannon was hired by the National Defense
Research Committee to work at the Bell Labs on cryptography. Later, he recognized
the strong influence of this wartime work on his later results on communication: “Bell
Labs were working on secrecy systems. I’d work on communication systems and I was
appointed to some of the committees studying cryptanalytic techniques. The work on
both the mathematical theory of communication and the cryptography went forward
concurrently from about 1941. I worked on both of them together and I had some of
the ideas while working on the other. I wouldn’t say that one came before the other
-they were so close together that you couldn’t separate them” (Kahn 1967, p. 744).
With these antecedents, it is very plausible to suppose that a theory that promised
a mathematical treatment of information were welcome in the old War atmosphere,
where preserving and managing information were priority concerns.2 Of course, these
matters are beyond the scope of this paper; nevertheless, they deserve to be studied
from a historical–sociological perspective.

4 A quantitative theory without semantic dimension

One of the most cited quotes by Shannon is that referred to the independence of his
theory with respect to semantic issues: “Frequently the messages have meaning; that
is they refer to or are correlated according to some system with certain physical or
conceptual entities. These semantic aspects of communication are irrelevant to the

2 We are grateful to one of the anonymous referees for pointing out this interesting issue.
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engineering problem. The significant aspect is that the actual message is one selected
from a set of possible messages” (Shannon 1948, p. 379).

Many authors are convinced that the elucidation of a philosophically technical con-
cept of semantic information, with his links with knowledge, meaning and reference,
makes sense (see, e.g., Barwise and Seligman 1997; Floridi 2013). Moreover, there
have been attempts to add a semantic dimension to a formal theory of information, in
particular, to Shannon’s theory (MacKay 1969; Nauta 1972; Dretske 1981). Although
very fruitful, these approaches do not cancel the fact that Shannon’s theory, taken
in itself, is purely quantitative: it ignores any issue related to informational content.
Shannon information is not a semantic item: semantic items, such as meaning, refer-
ence or representation, are not amenable of quantification. Therefore, the issue about
possible links between semantic information and Shannon information is a question
to be faced once the concept of Shannon information is endowed with a sufficiently
clear interpretation.

With the purpose of rejecting the idea of information as a substance or a kind
of stuff that travels from one place to another, Timpson (2004, 2008, 2013) takes a
deflationary stance and advocates for an abstract interpretation of the concept. His
best-known argument is based on the philosophical distinction between types and
tokens: if the source produces the sequence of states, what we want to transmit is
not the sequence of states itself, but another token of the same type: “one should
distinguish between the concrete systems that the source outputs and the type that this
output instantiates” (Timpson 2004, p. 22; see also Timpson 2008, 2013). The goal
of communication is, then, to reproduce at the destination another token of the same
type: “What will be required at the end of the communication protocol is either that
another token of this type actually be reproduced at a distant point” (Timpson 2008,
p. 25). Once this point is accepted, the argument runs easily: since the information
produced by the source, that we desire to transmit, is the sequence type, not the token,
and types are abstract, then information is abstract and ‘information’ is an abstract
noun (see Timpson 2004, pp. 21–22; see also 2008).

The idea that ‘information’ is an abstract noun, justified on the basis of the
type–token distinction, has enjoyed a wide acceptance in the philosophy of physics
community since the publication of Timpson’s PhD dissertation (2004). Nevertheless,
in one of his papers about the notion of information, Armond Duwell notes that: “To
describe the success criterion of Shannon’s theory as being the reproduction of the
tokens produced at the information source at the destination is unacceptable because
it lacks the precision required of a success criterion” (Duwell 2008, p. 199). First,
any token is a token of many different types simultaneously; so the type–token argu-
ment leaves undetermined the supposedly transmitted type (ibid., p. 199). Moreover,
in Shannon’s theory the success criterion is given by an arbitrary mapping from the
set of the letters of the source to the set of the letters of the destination (ibid., p. 200).
Duwell also notes that the Shannon entropy associated with a source can change due
to the change of the probability distribution describing the source, without the change
of the types that the source produces tokens of (ibid., p. 202). Furthermore, the types
a source produces tokens of can change without the Shannon entropy of the source
changing (ibid., p. 203). But the main reason is that, in Shannon’s theory, the suc-
cess criterion is given by a one–one mapping from the set of letters that characterize
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the source to the set of letters that characterize the destination, and this mapping is
completely arbitrary (ibid., p. 200). On this basis, and following Timpson’s distinc-
tion between bits of information and pieces of information (Timpson 2008, p. 227),
Duwell differentiates between Shannon quantity-information, which “is that which
is quantified by the Shannon entropy” (ibid., p. 201), and Shannon type-information,
which “is what is produced at the information source that is required to be reproduced
at the destination” (ibid., p. 201). However, this distinction makes clear that the infor-
mation usually measured in bits, and which engineers are really interested in, is the
quantity-information, which is not a type and has nothing to do with types and tokens
(Lombardi et al. 2014a).

In his recent book, Timpson adds a detailed discussion about the type–token distinc-
tion (2013, pp. 17–20), which begins with the traditional Peircean difference between
sentence-type (abstract) and sentence-token (concrete). But immediately it is general-
ized in terms of sameness of pattern or structure: “the distinction may be generalized.
The basic idea is of a pattern or structure: something which can be repeatedly realized
in different instances” (ibid., p. 18). However, some authors consider that isomorphism
is a purely formal relation, which cannot be simply identified with a meaningful philo-
sophical relation between tokens of the same type. A type needs to have some content
to be able to identify its tokens: the distinction between types and tokens is not merely
formal or syntactic; being tokens or a same type is not an arbitrary relation (for a
detailed argument, see Lombardi et al. 2014a). Nevertheless, even if the arguments
based on types and tokens are left aside and the success of communication is con-
ceived in terms of a formal mapping, the original claim is still valid: information is an
abstract item, and not a material individual or a material stuff. Summing up, Shannon
information is neutral with respect to any content, since the only relevant issue is the
selection of a message among many.

5 A theory about averages?

In Sect. 2, the quantities I (si ) and I (d j ) were introduced as the individual amounts
of information corresponding to the occurrence of a single state of the source and
of the destination, respectively [Eqs. (1) and (3)]. However, in some presentations of
Shannon’s theory the individual amounts of information do not even appear, and the
entropies H(S) and H(D) are defined directly in terms of the probabilities of the states
of the source and the destination according to Eqs. (2) and (4), respectively. Although
this difference may seem a merely formal detail, it is essential when the interpretation
of the concept of information is the issue at stake.

When I (si ) and I (d j ) are conceived as individual amounts of information, the
entropies H(S) and H(D) turn out to be average amounts of information per let-
tergenerated by the source and received by the destination, respectively (see, e.g.,
Lombardi 2005, pp. 24–25; Bub 2007, p. 558), and can be defined in terms of those
individual amounts:

H(S) =
n�

i=1

p(si ) I (si ) , (9)
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H(D) =
n�

i=1

p
�
d j

�
I
�
d j

�
. (10)

Certainly, Shannon didn’t focus on individual amounts of information, because he
was interested in solving problems related with the transmission of any message in
technological situations. Nevertheless, this does not mean that those quantities can-
not be defined. Timpson (2013, pp. 29–30) poses a number of plausible arguments
against the reading of H(S) and of − log p(si ) as uncertainty, usually linked with the
notion of “surprise” and with the everyday notion of information. However, this is
not sufficient to deny the possibility of considering that information, in its technical
Shannon sense, comes in individual amounts, which can be averaged when the source
and the destination are characterized as a whole.Who takes this position considers that
a single letter of the source is a particular kind of message and conveys information.

An authorwho incorrectly believes that Shannon’s theory cannot dealwith the infor-
mation associated with single states or with individual messages is Dretske (1981).
According to him, one of the reasons why Shannon’s theory is unable to incorporate
semantic content is that semantic notions apply to individual items, while the theory
of information is referred to average amounts of information: “if information theory
is to tell us anything about the informational content of signals, it must forsake its
concern with averages and tell us something about the information contained in par-
ticular messages and signals. For it is only particular messages and signals that have a
content” (Dretske 1981, p. 48). For this reason, he considers necessary to “complete”
the theory by defining the individual information I (sa) as the amount of information
generated at the source by the occurrence of a given state sa, and the individual mutual
information I (sa; ra) as the information about the occurrence of sa received at the
destination by the occurrence of ra (ibid., p. 52).

Dretske seems to believe that his new definitions, although consistent with the
traditional formalism, represent a novelty in the context of Shannon’s theory, since they
“are now being assigned a significance, given an interpretation, that they do not have in
standard applications of communication theory. They are now being used to define the
amount of information associated with particular events and signals” (Dretske 1981,
p. 52). However, this is not the case: when, in Shannon’s theory, the entropies of the
source and the destination are defined as averages amounts of information, it is clear
that the corresponding individual magnitudes must also be defined. When Dretske’s
proposal was criticized (Timpson 2004; Lombardi 2005), the criticisms did not rely
on the fact that it introduces individual amounts of information alien to Shannon’s
theory, but on a formal mistake in the definition of the individual mutual information
I (sa; ra),which does not lead to the mutual information H(S; D)when the weighted
averages are correctly computed (see Lombardi 2005 for the way in which the error
can be amended).

By contrast with the conception of entropies as averages, some authors never talk
about the information generated or received by a single letter or by a single message:
the entropies H(S) and H(D) are computed in terms of the probabilities of the source
and the destination, but they are not defined in terms of a more basic form of informa-
tion. For instance, Timpson takes this strategy when claims: “It is essential to realize
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that ‘information’ as a quantity in Shannon’s theory is not associated with individual
messages, but rather characterizes the source of the messages” (Timpson 2013, p. 21).
In this case, H(S) and H(D) cannot be conceived as average amounts, since only in
terms of individual magnitudes averages can be significantly computed as such. From
this viewpoint, individual messages do not convey information.

The discussion about which the most basic notions of Shannon’s theory are may
be considered irrelevant from an instrumental viewpoint, to the extent that the con-
clusions do not affect the application of the theory. However, it is essential to the
interpretation of the concept of information: in this context it is important to decide
whether I (si ) measures information and H(S) is a weighted average, or the concept
of information is directly embodied in H(S) and the talk about the information carried
by individual messages makes no sense. The difference between these two positions is
strongly related with the way in which information is conceived: if primarily as what
is transmitted in a situation of communication, or as a measure of the optimal com-
pression of the source’s messages. We will come back to this point in Sect. 7, devoted
to coding, and in Sect. 8, when the relation between Shannon entropy and algorithmic
complexity will be considered.

6 The units of measurement for information

As pointed out in Sect. 2, the choice of a logarithmic base amounts to a choice of a
unit for measuring information. If the base 2 is used, the resulting unit is called ‘bit’.
But the natural logarithm can also be used, and in this case the unit of measurement
is the nat, contraction of natural unit. And when the logarithm to base 10 is used, the
unit is the Hartley.

For a long time it was quite clear for communication engineers that “bit” was a
unit of measurement, and that the fact that a different unit can be used did not affect
the very nature of information. However, with the advent of quantum information, the
new concept of qubit entered the field: a qubit is primarily conceived not as a unit
of measurement of quantum information, but as a quantum system of two-states used
to encode the information of a source. This is not the appropriate place to analyze
this concept and its role in the discussions about quantum information. Nevertheless,
it is worth noticing that this way of talking about qubits has gradually seeped into
Shannon’s theory in the talk about bits. This process led to a progressive reification
of the concept of bit, which now is also—and many times primarily—conceived as
referring to a classical system of two states. Some authors still distinguish between
the two meanings of the concept: “I would like to distinguish two uses of the word
‘bit.’ First, ‘bit’ refers to a unit of information that quantifies the uncertainty of two
equiprobable choices. Second, ‘bit’ also refers to a system that can be in one of two
discrete states” (Duwell 2003, p. 486). But nowadays the identification of the two
meanings is much more frequent: “The Shannon information H(X) measures in bits
(classical two-state systems) the resources required to transmit all the messages that
the source produces” (Timpson 2006, p. 592).

Although very widespread, this undifferentiated use of the term ‘bit’ sounds odd to
the ears of an old communication engineer, for whom the difference between a system
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and a unit of measurement is deeply internalized. For him, to conflate a bit with a
two-state system is like confusing a meter with the prototype meter bar, an object
made of an alloy of platinum and iridium and stored in the Bureau International des
Poids et Mesures in Sèvres. And saying that the Shannon information H(X) gives a
measure “in bits (classical two-state systems)” is like saying that the length L gives a
measure “in meters (platinum-iridium bars)”.

In order to avoid this kind of confusions about the concept of bit, it might be
appropriate to follow the suggestion ofCaves and Fuchs (1996), who propose to use the
term ‘cbit’ to name a two-state classical system used to encode Shannon information,
by analogy with the two-state quantum system, the qubit, used to encode quantum
information (or, at least to encode information by means of quantum resources). This
terminology keeps explicit the distinction between the entropy of the source, which is
usually measured in bits, the alphabet by means of which the messages of the source
are encoded, which consist of a number q of symbols, and the systems of q states used
to physically implement the code alphabet.

Again, these distinctions may seem an irrelevant matter of detail. Nevertheless, not
distinguishing clearly enough between the units of measurement for information and
the number of states of the systems used for coding—or the number of symbols of the
code alphabet—may be a manifestation of the not sufficient differentiation between
the stage of the generation of messages and the stage of the coding of information.
And this, in turn, affects the very definition of the concept of information, as will be
argued in the next section.

7 Information and its coding

In the previous section it has been said that the entropy of the source can be expressed
in different units of measurement. In this section the attention will be directed to the
coding stage, in which the length of the sequences of symbols used to encode the
information depends on the alphabet selected for coding.

The source S is a system of n states si , which can be thought as the letters of an
alphabet AS = {s1, . . . , sn}, each with its own probability p(si ); the sequences of
letters (states) are called messages. The entropy of the source H(S) can be computed
exclusively in terms of these elements—the number of the letters and their probabili-
ties, and ismeasured in bitswhen the logarithm to base 2 is used. In turn, the transmitter
encodes the messages of the source, and this amounts to performing the conversion
between the alphabet of the source, AS = {s1, . . . , sn}, and the code alphabet of the
transmitter T, AC = {c1, . . . , cq}, whose q members ci can be called symbols; the
sequence of symbols produced by the transmitter and entering the channel is the sig-
nal. The n-ary source alphabet AS may be very different depending on the situation,
but the code alphabet AC is more often binary: q = 2. In this case, the symbols are
binary digits (binary alphabet symbols). Finally, the code alphabet AC can be physi-
cally implemented by means of systems of q states; in the particular case that q = 2,
the two-state systems are cbits.

In Shannon’s context, coding is a mapping from the source alphabet AS to the
set of finite length strings of symbols from the code alphabet AC , also called code-
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words. In general, the code-words do not have the same length: the code-word wi ,

corresponding to the letter si , has a length li . This means that coding is a fixed–
variable-length mapping. Therefore, the average code-word length L can be defined
as:

L =
n�

i=1

p(si ) li . (11)

L indicates the compactness of the code: themore L is low, themore coding is efficient,
that is, fewer resources are needed to encode the messages. The Noiseless-Channel
Coding Theorem proves that, for very long messages, there is an optimal encoding
process such that the average code-word length L is as close as desired to the lower
bound Lmin for L:

Lmin = H(S)

log q
, (12)

where when H(S) is measured in bits, log is the logarithm to base 2.
The aim of this formal digression is to emphasize again the difference between

the entropy the source and the coding of information at the transmitter. On the one
hand, the entropy of the source is measured by H(S), only depends on the features
of the source, and can be expressed in bits or in any other unit of measurement. On
the other hand, the messages produced at the source can be encoded by means of a
code alphabet of any number of symbols, and the average length of the code-words
depends essentially of that number. Only when H(S) is measured in bits and the
code alphabet has two symbols (an alphabet of binary digits, q = 2), then log2 q =
log2 2 = 1, and the noiseless coding theorem establishes the direct relation between
the entropy of the source and the lower bound Lmin of the average code-word length
L [see Eq. (12)].

A simple reading of this formalism is to consider that the source S generates infor-
mation, which is quantified—perhaps in average—by H(S) and measured in some
unit of measurement, in general, in bits. This information, carried by the messages
produced at the source, is encoded in the transmitter by means of symbols embodied
in physical systems: the output of the transmitter is a signal that conveys the encoded
information. From this viewpoint, information can be defined and quantified at the
stage of the source, independently of how the information is encoded, and even of
whether it is encoded or not. Thus, the First Shannon coding theorem shows that the
amount of information generated at the source has the same value as (or is propor-
tional to, depending of the units of measurement and the coding alphabet) the average
code-word length in optimal coding.

Although natural, this is not the only reading of the situation. For instance, instead
of characterizing information at the source, Timpson defines information in terms
of Shannon’s theorems: “the coding theorems that introduced the classical (Shannon
1948) and quantum (Schumacher 1995) concepts of informationt [the technical con-
cept of information] do not merely define measures of these quantities. They also
introduce the concept of what it is that is transmitted, what it is that is measured”
(Timpson 2008, p. 23; emphasis in the original). From this perspective, the meaning
of the entropy H(S) is defined by the First Shannon theorem: “the minimal amount
of channel resources required to encode the output of the source in such a way that
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any message produced may be accurately reproduced at the destination. That is, to ask
how much informationt a source produces is ask to what degree is the output of the
source compressible?” (Timpson 2008, p. 27, emphasis in the original; see also Timp-
son 2013, pp. 37, 43). In the same vein, Timpson relates mutual information with the
noisy coding theorem: “the primary interpretation of the mutual informationt H(X:Y)
was in terms of the noisy coding theorem” (2013, p. 43). This view, which does not
establishes a relevant distinction between the stage of the generation of messages and
the stage of the coding of information, is in resonance with the assimilation of the
units of measurement for information with the number of states of the systems used
for coding, as discussed in the previous section.

The strategy of defining Shannon information via the coding theorems, although
seemingly innocuous, commits who adopts it with several consequences. First, since
H(D) is not involved in the noiseless coding theorem, strictly speaking it does not
represent information: it cannot be said that H(D) represents the information received
at the destination. Moreover, if H(D) does not represent information, it is not clear
how it can be involved together with H(S) in algebraic operations. For instance, let
us consider an ideal channel where noise and equivocation are zero and, therefore,
H(S; D) = H(S) = H(D) [see Eq. (3)]: in this case we would have a mathematical
identity between different magnitudes—since only H(S) but not H(D) represents
information, something not acceptable in mathematized sciences. In order to face this
difficulty, each situation of communication given by Source–Transmitter–Channel–
Receiver–Destination might be conceived as a stage of a potential communication
chain,where the destination of the first stagemight act as the source of the second stage.
Thus, H(D1) = H(S2) would turn out to be the entropy of the source of a potential
second stage,which nevertheless hasmeaningful relationswith themagnitudes defined
in the effective first stage. This conceptual detour through a potential situation is a
price to be paid for defining information in terms of the coding theorems instead of
conceiving it simply as what is transmitted in a situation of communication.

In turn, if the concept of information is defined through the noiseless coding the-
orem, it acquires content in the case of ideal coding. But, then, what happens in the
case of non-ideal coding? Can we still say that the same amount of information can be
better or worse encoded? Moreover, since the coding theorem is proved in the case of
very long messages, strictly speaking, for messages of length N → ∞, one wonders
whether short binary messages can be conceived as embodying information to the
extent that they are not covered by the theorem. To give an answer to these challenges
it is necessary again to make a detour through potential situations, in order to say that
a magnitude, defined in an ideal and perhaps unattainable situation, preserves its same
meaning in non-ideal and concrete cases. Although this may result unpalatable to the
empiricist taste, it is not wrong or inconsistent.

When explaining the elements of the general communication system, Shannon
(1948) characterizes the transmitter as a system that operates on the message coming
from the source in some way to produce a signal suitable for transmission over the
channel. He also stresses that, in many cases, such as in telegraphy, the transmitter is
also responsible for encoding the source messages. However, as any communication
engineer knows, in certain cases themessage is not encoded; for instance, in traditional
telephony the transmitter’s operation “consists merely of changing sound pressure into
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a proportional electrical current” (Shannon 1948, p. 381). If information is defined in
terms of the noiseless coding theorem, it is not easy to talk about information when no
coding is involved. If nevertheless the talk of information is intended to be maintained
in those situations, it should be considered that information is defined by the potential
but not effective situation of coding.3

It is quite clear that, before undertaking the interpretation of a theoretical concept,
the first step consists in deciding how the concept is introduced in the theory and
which terms of the theory refer to the concept. In this section we have tried to show
the commitments that the different decisions involve in the case of information, since
they influence the way in which the very concept is conceived.

8 Shannon entropy and algorithmic complexity

As stressed in the Sect. 1, there are several mathematical formalisms to deal with
information, among which Shannon’s theory is the classical one. However, the theory
of complexity of Solomonoff (1964), Kolmogorov (1965, 1968) and Chaitin (1966),
also known as ‘algorithmic information’ theory, deserves to be considered here, due
to its differences from and its relation with Shannon’s approach.4

Regardless of whether Shannon entropy is conceived as an average or as defined by
the noiseless coding theorem, in Shannon’s theory the amounts of information can only
be computed when the messages are elements of an ensemble and each one has its own
probability. Even when it is accepted that a single message can convey information, it
depends on the features of the whole source. In his founding article, Shannon stresses
that his notion is only concerned with the communication of messages selected among
a pool of messages produced by a source; so, the source “must be designed to operate
for each possible selection, not just the one which will actually be chosen since this is
unknown at the time of design” (Shannon 1948, p. 379). In other words, information
is determined by the features of the source, and not by the characteristics of the
objects that are its outcomes. By contrast, Kolmogorov emphasizes that his aim is
to supplement Shannon’s work by supplying a measure of information for individual
objects taken in themselves: “Our definition of the quantity of information has the
advantage that it refers to individual objects and not to objects treated as members of
a set of objects with a probability distribution given on it. The probabilistic definition
can be convincingly applied to the information contained, for example, in a stream of
congratulatory telegrams. But it would not be clear how to apply it, for example, to
an estimate of the quantity of information contained in a novel or in the translation of
a novel into another language relative to the original. I think that the new definition is
capable of introducing in similar applications of the theory at least clarity of principle”
(Kolmogorov 1983, p. 29).

3 We are grateful to one of the anonymous referees for urging us to consider the possible ways in which
the strategy of defining Shannon information via the coding theorems can be retained.
4 We are grateful to one of the anonymous referees for his suggestion of considering the relationship
between Shannon entropy and algorithmic complexity.
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In the theory of algorithmic complexity, the interest is to find the minimum number
of bits from which a particular message can effectively be reconstructed: this is the
basic question of the ultimate compression of individual messages. The main idea
that underlies the theory is that the description of some messages can be compressed
considerably, if they exhibit enough regularity. On this basis, given a finite string
x of symbols, the algorithmic complexity K (x) of x—also known as ‘Kolmogorov
complexity’—is defined as the length of the shortest computer program in a Turing
machine that prints x and then halts. Intuitively, the sequence

010101010101010101010101010101010101010101010101010101010101

is simple: it can be built by the program “Print 01 thirty times; halt’. By contrast, let
us suppose that the sequence

11011110011101010001011001010100010110111100010111001010011

is a truly random sequence generated by pure coin flips. In this case, it cannot be
compressed, that is, there is no better program for build it than simply ‘Print …’,
where the dots stand for the complete sequence.

It is worth insisting on the difference between Shannon information and algorithmic
complexity: for any source producing two messages, the Shannon entropy is at most
1 bit, but the messages can be chosen with arbitrarily high algorithmic complexity.
In fact, algorithmic complexity considers only the message itself to determine the
number of bits in the ultimate compressed version, irrespective of the manner in which
the message was generated. For this reason, some information theorists, especially
computer scientists, regard algorithmic complexity asmore fundamental than Shannon
entropy as a measure of information (Cover and Thomas 1991, p. 3). The price to pay
for thismove derives from the fact that K (x) is not a recursive function: the algorithmic
complexity is not computable in general. This means that there exists no computer
program that, when receives an arbitrary sequence as an input, outputs the algorithmic
complexity of that sequence and then halts. Therefore, although we can compress
a sequence in an optimal way by storing or transmitting the shortest program that
generates it, we cannot find such a program in general.

In spite of the conceptual difference betweenShannon entropy and algorithmic com-
plexity, there is a meaningful relation between the two magnitudes: given a sequence
drawn at random from a distribution that has Shannon entropy H, the expected value
of its algorithmic complexity is close to H. More precisely: let us suppose a source S
with entropy H(S) = �n

i=1 p(si ) log(1/p(si )),whose letters si are encoded by code-
words wi , each one with algorithmic complexity K (wi )—independent of the values
of the probabilities p(si ). The expected value of the algorithmic complexity of these
code words can be computed as a weighted average: �K (wi )� = �n

i=1 p(si )K (wi ). It
can be proved that, under some weak restrictions on the distribution p(si ) (see Cover
and Thomas 1991, pp. 153–155):

�K (wi )� =
n�

i=1

p(si ) K (wi ) � H(S). (13)
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Algorithmic complexity and its relation with Shannon entropy add a new dimen-
sion to the question of how to define information. In the previous sections we have
distinguished between (i) the approach that views information as what is transmitted
in a situation of communication and, so, conceives the Shannon entropy as a weighted
average of the individual amounts of information generated by the occurrence of the
letters of the source, and (ii) the position that defines the Shannon entropy as ameasure
of the optimal compression of the source’s messages and, as a consequence, rejects the
idea of information carried by individual messages. From the first position, Shannon’s
theory is primarily concerned with communication, that is, with the possibility of
identifying at the destination end the message selected at the source end among a pool
of possible messages, each with its own probability; by contrast, complexity theory
is primarily concerned with the compression of individual messages, irrespective of
the way in which they were generated. Therefore, there are two different meanings of
information, which are nevertheless meaningfully linked through the noiseless coding
theorem and the theorem expressed by Eq. (13): the challenge is to explain why the two
ways of message compression, Shannon’s and Kolmogorov’s, lead to the same result
in generic situations. According to the second position, which defines information in
terms of the compression of messages as expressed by the Shannon’s theorems, it is
easier to assume that the two formalisms deal with a single concept of information,
which is measured slightly differently in the two cases. In this case the challenge is
to make sense of the individual amounts of information denoted by the algorithmic
complexity, and whose average tends to the value of the Shannon entropy in generic
situations. Summing up, in both cases, the relations between Shannon’s theory and
complexity theory shed new light on the discussions about the meaning of the concept
of information.

9 The relative nature of information

As stressed in Sect. 5, in Shannon’s theory it makes sense to talk about the information
associated with the occurrence of individual states. However, this does not mean that
Shannon information can be defined independently of the consideration of the systems
involved in the communication arrangement as systems that produce states with their
corresponding probabilities. And the characterization of those systems as sources or
destinations is not unique, but depends on the particular case of interest. In otherwords,
information is not an absolute magnitude, but is relative to the whole communication
situation.

The relative nature of information is usually stressedmainly by thosewho link infor-
mationwith knowledge. From this perspective, information depends on the knowledge
about the source available at the destination before the transmission: “the datum point
of information is then the whole body of knowledge possessed at the receiving end
before the communication” (Bell 1957, p. 7). But the different ways of characterizing
the source may depend not only on epistemic reasons, but also on pragmatic matters,
such as the particular interest that underlies the definition of the whole communication
arrangement as such. For instance, a roulette wheel can be described as a source with
37 states when we are interested in a single number, or as a source with 3 states when
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we are interested in color: although the physical system is the same, in informational
terms the two sources are completely different. The choice between one alternative or
the other depends exclusively on pragmatic reasons.

But not only is the characterization of the source of information relative. As noticed
in Sect. 4, the success criterion in Shannon’s theory is completely conventional. The
criterion is given by a one-to-one mapping from the source alphabet to the destination
alphabet that is not unique or essentially fixed: on the contrary, it is also usually
determined by pragmatic reasons. As Duwell points out when considering the success
of communication as a convention: “one might simply treat real information sources
as producing an abstract sequence as on the bare Shannon theory, and have a success
condition be relative to an arbitrarily chosen one-one function between the information
source and destination” (Duwell 2008, p. 201).

It is interesting to notice that the relativity of information is usually not thematized
in the textbooks about Shannon’s theory. Perhaps the reason for this is an implicit iden-
tification between relativity and subjectivity: it is supposed that admitting the relative
character of information would threaten the scientific status of Shannon’s theory. But,
of course, this conclusion is drawn from an incorrect identification. The pragmatic
decisions that underlie the characterization of the communication arrangement must
not be conceived as a subjective ingredient, but as a reference frame with respect to
which themagnitudes are defined without losing their objectivity. The relativization of
objective magnitudes is very frequent in sciences; in this sense, information is not dif-
ferent from velocity and simultaneity, which are relative to a certain reference frame,
but not for this reason are less objective. In fact, only on the basis of a conception of
information as an objective and quantifiable magnitude, a formal and precise theory
with many technological applications could be formulated.

10 The theoretical neutrality of Shannon information

For many years after the publication of the 1948 paper, the theory was successfully
applied to technological problems and nobody was interested in discussing what phys-
ical theory, if any, underlies Shannon’s proposal. However, during the last decades we
are witnessing the explosion of a new field, that of the so-called quantum information.
At present it is considered that the work of Schumacher (1995) offers the quantum
analog of Shannon’s theory, and that in the new formalism the von Neumann entropy
measures quantum information, playing a role analogous to that of the Shannon infor-
mation in Shannon’s theory. So, since the emergence of quantum information, the
idea that Shannon information is “classical” and essentially different from quantum
information has progressively permeated the information scientists’ community.

A clear example of this position is given by Brukner and Zeilinger (2001), who
argue that the Shannon information is closely linked to classical concepts, in particu-
lar, to the classical conception of measurement, and for this reason it is not appropriate
as a measure of information in the quantum context. Besides of an incorrect interpre-
tation of the so-called grouping axiom (Shannon 1948, p. 393; for a demolishing
criticism of Brukner and Zeilinger’s argument, see Timpson 2003), the authors claim
that the concept has no operational meaning in the quantum case because quantum
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observables have no definite values pre-existing to measurements: “The nonexistence
of well-defined bit values prior to and independent of observation suggests that the
Shannon measure, as defined by the number of binary questions needed to determine
the particular observed sequence 0’s and 1’s, becomes problematic and even unten-
able in defining our uncertainty as given before the measurements are performed”
(Brukner and Zeilinger 2001, p. 1; emphasis in the original). But, as Timpson (2003)
clearly argues, there is nothing in Shannon’s theory that requires actual sequences
of states-letters in the source S to define the entropy H(S). In fact, as shown by the
presentation of the formalism of the theory in the previous sections, H(S) depends on
the statistical features of the source, that is, its states and the corresponding probabil-
ities. But nothing is said about how the probabilities are determined nor about their
interpretation: they may be conceived as propensities theoretically computed, or as
frequencies previously measured; in any case, once the system S turns out to play the
role of source of information, the measurement of an actual sequence of states is not
necessary to define and compute the entropy H(S).

From a more general perspective, the central point to emphasize is that the defi-
nition of the elements involved in Shannon’s theory is independent of their physical
substratum: the states-letters of the source are not physical states but are implemented
by physical states, which may be of very varied nature. And the same can be said
about the channel, which embodies the correlations between source and destination: it
does not matter how those correlations are established and physically “materialized”;
what only matters is that they link the states of the source and the states of the destina-
tion (we will come back to this point in the next section). This means that Shannon’s
theory is not “classical” in any meaningful physical sense of the term ‘classical’, and
“can be applied to any communication system regardless whether its parts are best
described by classical mechanics, classical electrodynamics, quantum theory, or any
other physical theory” (Duwell 2003, p. 480).

Once it is acknowledged that Shannon’s theory is neutralwith respect to the physical
theory on the basis of which the communication arrangement is implemented, it is easy
to see that there is no obstacle to its application to the quantum context. In fact, when
the letters of a source S with entropy H(S) are encoded by means of non-orthogonal
quantum states, or by means of orthogonal quantum states but decoded in a different
basis, there is a loss of information that can be represented in Shannon’s terms as
an equivocation E [see Eq. (7)], such that the mutual information [the amount of
information generated at the source S and received at the destination D, see Eq. (5)] is
computed as de difference between the entropy of the source and the loss represented
by E : H(S; D) = H(S) − E (see Schumacher 1995, p. 2739).

Up to this point we have shown that Shannon’s theory is a quantitative theory whose
elements have no semantic dimension, and that it defines amounts of information that
can be measured in different units of measurement and whose values are relative
to the whole communication arrangement. Moreover, Shannon’s theory is not tied
to a particular physical theory, but is independent of its physical implementation. If
Shannon information is what is thematized by Shannon’s theory, the agreement about
all these features of the theory might suggest that there is a clear interpretation of the
concept of Shannon information shared by the whole information community. But this
is not the case at all: the concept of Shannon information is still a focus ofmuch debate.
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11 Interpreting the concept of information

The concept most usually connected with the notion of information is that of knowl-
edge: information provides knowledge, modifies the state of knowledge of those who
receive it. It can be supposed that the link between information and knowledge is
a feature of the everyday notion of information and not of Shannon’s concept (see
Timpson 2004, 2013), but the literature on the subject shows that this is not the case:
that link can be frequently found both in philosophy and in science. For instance,
taking Shannon’s theory as the underlying formalism for his proposal, Fred Dretske
says: “information is a commodity that, given the right recipient, is capable of yielding
knowledge” (1981, p. 47). Some authors devoted to special sciences are persuaded
that the core meaning of the concept of information, even in its technical sense, is
linked to the concept of knowledge. In this trend, Jon M. Dunn defines information
as “what is left of knowledge when one takes away believe, justification and truth”
(2001, p. 423). Also physicists frequently speak about what we know or may know
when dealing with information. For instance, Zeilinger even equates information and
knowledge when he says that “[w]e have knowledge, i.e., information, of an object
only through observation” (1999, p. 633) or, with Brukner, “[f]or convenience we will
use here not a measure of information or knowledge, but rather its opposite, a measure
of uncertainty or entropy” (2009, pp. 681–682). In a traditional textbook about Shan-
non’s theory applied to engineering it can also be read that information “is measured
as a difference between the state of knowledge of the recipient before and after the
communication of information” (Bell 1957, p. 7). Although not regarding Shannon’s
theory but in the quantum context, Christopher Fuchs adheres to Bayesianism regard-
ing probabilities and, as a consequence, advocates for an epistemic interpretation of
information (see Caves et al. 2002).

Although from the epistemic perspective information is not a physical item, in
general it is assumed that the possibility of acquiring knowledge about the source of
information by consulting the state of the destination is rooted in the nomic connection
between them, that is, in the lawfulness of the regularities underlying the whole situa-
tion: “The conditional probabilities used to compute noise, equivocation, and amount
of transmitted information […] are all determined by the lawful relations that exist
between source and signal. Correlations are irrelevant unless these correlations are a
symptom of lawful connections” (Dretske 1981, p. 77). In fact, if those conditional
probabilities represented accidental, merely de facto correlations, the states in the des-
tination would tell us nothing about the state of the source. Nevertheless, this appeal
to lawful connections opens new questions for the epistemic view. Noise and equivo-
cation are indeed defined in terms of nomic correlations, but in what sense they supply
knowledge? Whereas the mutual information H(S; D) can be easily interpreted as
a measure of the knowledge about the source obtained at the destination, noise and
equivocation do not measure knowledge but, on the contrary, are obstacles to knowl-
edge acquisition. It is not easy to see how noise, which can be generated outside of
the communication arrangement and has no relation with the source of information
(think, for instance, in white noise in a radio receiver), can be conceived as something
carrying or yielding knowledge. A way out of this problem might be to suppose that
only the entropies of source and destination and the mutual information, but not noise
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and equivocation, can be meaningfully conceptualized as measures of knowledge. But
this answer would lead to admit the possibility of adding and subtracting variables
referring to different kinds of items, in this case knowledge and something different
from knowledge [see, e.g., Eq. (5)], a practice absolutely not allowed in mathematized
sciences.

A different view about information is that which considers information as a physical
magnitude. This is the position of many physicists (see, e.g., Rovelli 1996) and the
usual view of communication engineers, for whom the essential feature of information
consists in its capacity to be generated at one point of the physical space and transmitted
to another point; it can also be accumulated, stored and converted from one form to
another. From this perspective, the Shannon information I (S) of the source S is a
physical magnitude that, if recovered at the destination D as I (D) [that is, I (S) =
I (D) = I (S; D)], guarantees that, for any i and j, the occurrence of the state si
produces the occurrence of the state d j at the destination with certainty. In this case
the linkwith knowledge is not a central issue, since the transmission of information can
be used only for control purposes, such as operating a device at the destination end by
modifying the state of the source. The goal in the field of communication engineering is
to optimize the transference of information through channels conveniently designed.
The capacity of the channel is measured in bits per second: it gives the maximum
rate of transference through the channel. The fact that the measure of information
participates in calculations in the same way as other physical magnitudes, such as
time, gives support to the idea that information is also a physical magnitude.

In general, the physical interpretation of information appears strongly linked with
the idea expressed by the well-known dictum ‘no information without representation’:
the transmission of information between two points of the physical space necessarily
requires an information-bearing signal, that is, a physical process propagating from
one point to the other. Rolf Landauer is an explicit defender of this position when
he claims that “[i]nformation is not a disembodied abstract entity; it is always tied to
a physical representation. It is represented by engraving on a stone tablet, a spin, a
charge, a hole in a punched card, a mark on a paper, or some other equivalent” (1996,
p. 188; see also Landauer 1991). This view is also adopted by some philosophers
of science; for instance, Peter Kosso states that “information is transferred between
states through interaction” (1989, p. 37). The need of a carrier signal sounds natural
in the light of the generic idea that physical influences can only be transferred through
interactions. On this basis, information is conceived by many physicists as a physical
entity with the same ontological status as energy; it has also been claimed that its
essential property is the power to manifest itself as structure when added to matter
(Stonier 1990, 1996).

As stressed in the previous section, Shannon’s theory is theoretically neutral regard-
ing physics. Perhaps this feature is what leads some authors to consider that Shannon
information is not physical. An active representative of this position is Timpson, for
whom the slogan ‘Information is physical’, applied to the technical concept of infor-
mation, if not trivial—meaning that some physically defined quantity is physical, is
false precisely because ‘information’ is an abstract noun and, therefore, “it doesn’t
serve to refer to a material thing or substance” (Timpson 2004, p. 20; see also 2008;
2013). Timpson distinguishes between pieces of information (what is transmitted) and
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bits of information (the amount ofwhat is transmitted) (Timpson 2013, p. 16).Whereas
information as bits is a quantitative notion that raises no interpretive problems, it is
pieces of information which are not physical. According to the author, the slogan
“simply involves a category mistake. Pieces of information, quantum or classical, are
abstract types. They are not physical” (2013, p. 69). The idea seems to be that informa-
tion is not physical because it is not material: it “is not part of the material contents of
the world” (2013, p. 65). This “deflationary” view of information, according to which
“there is not a question […] of ‘the information’ being a referring term” (Timpson
2006, p. 599), is in line with his interpretation of the entropy H(S), not as quantifying
something produced by the source, but as a measure of compressibility of messages.

One can agree with the claim that informationmust not be conceived as a substance,
that is, as a kind of stuff that “travels” from source to destination. However, this is not
sufficient to deny the physical character of information. Independently of the reasons
to reach the conclusion about the abstract nature of information (recall our discussion
in Sect. 4), it is worth noting that the fact that an item is abstract does not imply
that it is not physical, and even less that its name does not refer. Timpson conceives
the type/token distinction as a particular instance of a more basic distinction, that
between property and object; therefore, the abstractness of types is inherited from the
abstractness of properties (Timpson 2013, p. 18).5 But the realmof physics is populated
by countless properties, usually referred to as ‘observables’, which are not substances
nor concrete or material things; only from an extreme nominalist perspective the
existence of physical properties can be called into question. This means that it is not
necessary to be a substance, or a concrete thing, or a material entity, to be physical,
that is, to populate the physical world.

On the other hand, it might be thought that the neutrality of Shannon information
with respect to the physical theory—or theories—involved in the implementation of
the communication arrangement (recall our discussion in Sect. 10) is really a trouble
for the physical interpretation. However, this conclusion is not unavoidable. In fact,
many physical concepts, through the evolution of the discipline, have experienced
a process of abstraction and generalization in such a way that, at present, they are
no longer tied to a specific theory but permeate the whole of physics. Energy is the
most conspicuous example: since essentially present in all the theories of physics,
it is not tied to one in particular; it has different physical manifestations in different
domains; nevertheless, the concept of energy is perhaps the physical concept par
excellence. Moreover, independently of its interpretation as a “primary substance” or
a “secondary substance” in Aristotelian terms (a matter whose treatment is far beyond
the limits of this paper), energy seems to be something non-material but, at the same
time, it is one of the fundamental physical concepts and plays a central unifying role
in physics. Mutatis mutandis, the defender of the physical interpretation might say the
same about information: its theoretical neutrality and its abstract, non-material nature
are not insurmountable obstacles to endow it with a physical interpretation.

5 In his book of 2013, Timpson talks about information not being a “common-or-garden” referring term
(p. 83). Perhaps here he tries to moderate his earlier claims about the non-referring nature of the term
‘information.’ We are grateful to one of the anonymous referees for making us notice this point.
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The difference between the epistemic and the physical interpretations of infor-
mation is not merely nominal, but may yield different conclusions regarding certain
common physical situations. For instance, in the influential philosophical tradition that
explains scientific observation in terms of information (Shapere 1982; Brown 1987;
Kosso 1989), the way in which information is conceived leads to very different conse-
quences regarding observation. This turns out to be particularly clear in the so-called
‘negative experiments’ (see Jammer 1974), in which it is assumed that an object or
event has been observed by noting the absence of some other object or event. From
the informational view of scientific observation, observation without a direct phys-
ical interaction between the observed object and an appropriate destination is only
admissible from an epistemic interpretation of information. According to a physical
interpretation, by contrast, without interaction there is no observation: the presence of
the object is only inferred (see Lombardi 2004).

Let us consider a source S that transmits information to two physically isolated TV
sets A and B via a certain physical link. In this case, the correlations between the states
of the two TV sets are not accidental, but they result from the physical dependence of
the states of A and B on the states of S. Nevertheless, there is no physical interaction
between the twoTV sets. Also in this case the informational description of the situation
is completely different from the viewpoints given by the two interpretations of the
concept of information. According to the physical interpretation, it is clear that there
is no information transmission between A and B to the extent that there is no physical
signal between them. However, from an epistemic interpretation, nothing prevents us
from admitting the existence of an informational link between the two TV sets. In fact,
we can define a communication channel betweenA andB because it is possible to learn
something about B by looking at A and vice versa: “from a theoretical point of view
[. . .] the communication channel may be thought of as simply the set of depending
relations between [a system] S and [a system] R. If the statistical relations defining
equivocation and noise between S and R are appropriate, then there is a channel
between these two points, and information passes between them, even if there is no
direct physical link joining S with R” (Dretske 1981, p. 38). The TV set B may even
be farther from the source S than A, so that the events at B may occur later than those
at A. Nevertheless, this is irrelevant from the epistemic view of information: despite
the fact that the events at B occur later, A carries information about what will happen
at B.

Although the description of the situation given from the epistemic view is com-
pletely consistent, there is still something in it that sounds odd when one considers
that information is related with communication. In fact, communication implies that,
at some place, someone does something that has consequences somewhere else. But
in the case of the two TV sets, nothing can be done, say, at the A end that will affect
what happens in the B end. In other words, the change of the state of A cannot be
used to control the state of B; so, something of the usual conception of the process
of transmitting information is missing. The example of the two receivers would be
analogous to the case of the EPR-type experiments, characterized by theoretically
well-founded correlations between two spatially separated particles. During many
years it was repeated that information cannot be sent between both particles because
the propagation of a superluminal signal from one particle to the other is impossible:
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there is no information-bearing signal that can be modified at one point of space in
order to carry information to the other spatially separated point. For the defender of
the physical interpretation of information these arguments act as a silver bullet for the
epistemic view, since they make clear the need of a physical carrier of information
between source and destination; it is this physical signal that allows us to say that what
happens at the source causes what happens at the destination.

However, things are not so easy when quantum mechanics comes into play with
the case of teleportation. Broadly speaking, an unknown quantum state is transferred
from Alice to Bob with the assistance of a shared pair prepared in an entangled state
and of two classical bits sent from Alice to Bob (the description of the protocol can be
found in any textbook on the matter). In general, the idea is that the very large (strictly
infinite) amount of information required to specify the teleported state is transferred
from Alice to Bob by sending only two bits (this idea can be critically assessed, see
Lombardi et al. 2014c; however this is not the place to undertake this task). When
addressing this problem, many physicists try to find a physical link between Alice and
Bob that could play the role of the carrier of information. For instance, Penrose (1998)
and Jozsa (1998, 2004) claim that information may travel backwards in time: “How
is it that the continuous ‘information’ of the spin direction of the state that she wishes
to transmit […] can be transmitted to Bob when she actually sends him only two bits
of discrete information? The only other link between Alice and Bob is the quantum
link that the entangled pair provides. In spacetime terms this link extends back into
the past from Alice to the event at which the entangled pair was produced, and then it
extends forward into the future to the event where Bob performs his” (Penrose 1998,
p. 1928). According to Deutsch and Hayden (2000), the information travels hidden
in the classical bits. These physicists do not explicitly acknowledge that the problem
derives from the physical interpretation of information to which they are strongly tied,
and that an epistemic view would not commit them to find a physical channel between
Alice and Bob. Perhaps for this reason Timpson prefers to directly reject the physical
interpretation and designs his deflationary view to support such rejection.

The case of teleportation shows that, although the mere correlation is not suffi-
cient for communication of information, when entanglement is involved asking for a
physical signal acting as a carrier of information from source to destination is a too
strong requirement, which leads to artificial solutions as those of backwards flowing
information or of classically hidden information. What a non-epistemic interpretation
of information needs is the idea that what happens at the source causes what hap-
pens at the destination, but with a concept of causality that does not rely on physical
interactions or space–time lines connecting the states of the source with the states
of the destination: causality cannot be conceived in terms of energy flow (Fair 1979;
Castañeda 1984), physical processes (Russell 1948; Dowe 1992), or property trans-
ference (Ehring 1986; Kistler 1998). Perhaps good candidates for conceptualizing the
informational links from a non-epistemic stance are the manipulability theories of
causation, according to which causes are to be regarded as devices for manipulating
effects (Price 1991; Menzies and Price 1993;Woodward 2003). The rough idea is that,
ifC is genuinely a cause of E, then if one canmanipulateC in the right way, this should
be a way of manipulating or changing E (for an introduction, and also criticisms, see
Woodward 2013). The view of causation as manipulability is widespread among sta-

123



2006 Synthese (2016) 193:1983–2012

tisticians, theorists of experimental design and many social and natural scientists, as
well as in causal modeling. In the present context we are not interested in discussing
whether this is the correct or the best theory of causation in general, or whether it
can account for all the possible situations usually conceived as causation. Here it suf-
fices to notice that the manipulability view may be particularly useful to elucidate the
concept of Shannon information, in the context of a theory for which “[t]he funda-
mental problem of communication is that of reproducing at one point either exactly
or approximately a message selected at another point” (Shannon 1948, p. 379). This
view blocks situations like those of the two correlated receivers as cases of information
transmission; but, at the same time, it admits cases, such as teleportation, in which
there is a certain control of what happens in the destination end by means of actions
at the source end, in spite of the absence of any physical signal between the two ends
of the communication arrangement.

12 A formal view of Shannon information

In the traditional textbooks about information, Shannon’s theory is usually introduced
from a physical perspective, although frequently including epistemic elements, with-
out realizing the difference between the two interpretations. However, this has changed
in the last decades. As a result, at present the textbooks on the matter begin by treating
information in an exclusively formalway. There are no sources, destinations or signals;
the basic concepts are introduced in terms of random variables and probability distrib-
utions over their possible values. The traditional case of communication is introduced
only after the formal presentation, as one of the many applications of the theory. This
formal view of information already appears in the classical books of Khinchin (1957)
and Reza (1961), who conceive information theory as a new chapter of the mathemat-
ical theory of probability. But perhaps the best-known example of this approach is the
presentation offered by Thomas Cover and Joy Thomas in his book Elements of Infor-
mation Theory (1991), who clearly explain their viewpoint just from the beginning:
“Information theory answers two fundamental questions in communication theory:
what is the ultimate data compression […] and what is the ultimate transmission rate
of communication […]. For this reason some consider information theory to be a
subset of communication theory. We will argue that it is much more. Indeed, it has
fundamental contributions to make in statistical physics (thermodynamics), computer
sciences (Kolmogorov complexity or algorithmic complexity), statistical inference
(Occam’s Razor: ‘The simplest explanation is best’) and to probability and statistics
(error rates for optimal hypothesis testing and estimation)” (Cover and Thomas 1991,
p. 1).

From this perspective, the first step is to define two discrete random variables with
alphabets A and B, and probability mass functions p(x) = Pr(X = x), with x ∈ A,

and p(y) = Pr(Y = y),with y ∈ B, respectively (the presentation can be extrapolated
to continuous variables). On this basis, the entropy of the variablesX and Y, H(X) and
H(Y ) are defined as usual. Other relevant magnitudes are the joint entropy H(X, Y )

of the variables X and Y, computed in terms of the joint distribution p(x, y), and the
conditional entropies H(X/Y ) of X given Y and H(Y/X) of Y given X, computed in
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terms of the conditional probabilities p(x/y) and p(y/x), respectively. In turn, the
mutual entropy H(X; Y ) is defined as the relative entropy between the joint distribu-
tion p(x, y) and the product distribution p(x)p(y). Since the presentation is merely
formal, all the above definitions can be extended to the case of more than two random
variables, leading, for instance, to the entropy H(X1, X2, . . . , Xn) of a collection
random variables, or to the conditional mutual entropy H(X1, X2, . . . , Xn/Y ) of the
random variables X1, X2, . . . , Xn given Y.

Of course, from a formal perspective information has nothing to do with physical
theories or propagation of signals. But this view also cuts any link between information
and knowledge to the extent that it does not require an underlying network of lawful
relations: the probabilities can be computed on the basis of merely de facto frequencies
and correlations. As we have stressed above, when the correlation between two vari-
ables is merely accidental, the value of one of them tells us nothing about the value of
the other. Therefore, from this formal approach the basic intuition according to which
information modifies the state of knowledge of those who receive such information
gets lost.

The defender of the epistemic interpretation of information may consider that this
is a too high price to pay to retain a formally precise formulation of information theory.
However, the formal view has its own advantage: by turning information into a formal
concept, it makes the theory applicable to a variety of fields. Communication bymeans
of physical signals is only one among those fields, as well as the entanglement assisted
communication supporting teleportation.

In more precise terms, the formal view endows the concept of information with
a generality that makes it a powerful formal tool for science. This means that the
word ‘information’ does not belong to the language of factual sciences or to ordinary
language: it has no semantic content. It is not only that messages have no semantic
content, but that the concept of information is a purely mathematical concept, whose
“meaning” has only a syntactic dimension. It is precisely from its syntactic nature that
the generality of the concept derives (see Lombardi et al. 2014b).

This formal view may raise a worry about what remains of a basic notion of infor-
mation in a formal concept and why to use the term ‘information’ to label a merely
mathematical formalism. The worry might be based on the fact that a certain part of
probability theory receives the name ‘information theory’ is a result of a historical
process, through which the word ‘information’ lost most of its original meaning in
ordinary language.6 However, this historical process, through which a word with its
own meaning in the everyday language finally acquired a new meaning in the con-
text of a scientific theory, is not an exceptional event in the history of science. For
instance, the word ‘work’ loses its everyday meaning linked with the effort of a living
organism, to acquire a technical and mathematically specified meaning in mechanics;
or the word ‘atom’ no longer refers to an indivisible particle in the context of molec-
ular chemistry. A task of philosophy is to expose the cases of meaning reorganization
when they are occurring, in order to avoid confusions and promote conceptual clarifi-
cation. At present, the everyday idea of information reappears partially in some of the

6 We are grateful to one of the anonymous referees for suggesting the discussion of this point.
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interpretations of the formal concept, but always in a context that provides a precise
elucidation of the interpreted concept.

In fact, from the formal perspective, the relationship between theword ‘information’
and the different views of information is the logical relationship between a mathemat-
ical object and its interpretations, each one of which endows the term with a specific
referential content. The epistemic view, then, is only one of themany different interpre-
tations, which may be fruitfully applied in psychology and in cognitive sciences: the
concept of information can be used to conceptualize the human abilities of acquiring
knowledge (see e.g., Hoel et al. 2013). The epistemic interpretation might also serve
as a basis for the philosophically motivated attempts to add a semantic dimension to
a formal theory of information (MacKay 1969; Nauta 1972; Dretske 1981).

In turn, the physical view, which conceives information as a physical magnitude, is
appropriate in communication theory, where the main problem consists in optimizing
the transmission of information by means of physical means. In traditional commu-
nication, these means are carrier signals, whose energy and bandwidth is constrained
by technological and economic limitations. In quantum assisted communication, the
technological problem consists in protecting quantum entanglement fromdecoherence
(Kim et al. 2012).

But this is not the only possible physical interpretation. In statistical mechanics,
the Shannon entropy can be interpreted as the statistical entropy. However, as the
apocryphal quote by von Neumann suggested, the concept of physical entropy is far
from clear. In fact, H(X) can be viewed as measuring the Boltzmann entropy SB
of a given macrostate X, SB(X) = k lnW, where k is the Boltzmann constant and
W is the number of equiprobable microstates compatible with the macrostate X. But
H(X) can also be interpreted as the Gibbs entropy SG(X) = k

�
i pi ln pi , where pi

is the probability of the microstate i. Although it is usual to introduce Gibbs entropy
as a generalization of Boltzmann entropy when microstates are not equiprobable,
such a presentation hides the deep differences between the Boltzmann and the Gibbs
approaches, which lead even to different concepts to equilibrium and irreversibility
(see Lombardi and Labarca 2005; Frigg 2008). This means that not even in statistical
mechanics the formal concept of Shannon information has a single interpretation.7

When the interpretation of the word ‘information’ is searched in factual sciences,
the focus is usually restricted to physics. However, the concept of information, and in
particular of Shannon information, has also a strong presence in biological sciences.
Since the 1950s, there were many attempts to apply Shannon’s theory to molecu-
lar biology, for instance, to calculate the amount of information contained in a DNA
sequence or even in a bacterial cell (for details, see Kay 2000; Sarkar 2005). This trend
reaches recent times, with the idea of replacing causal accounts of genetics by expla-
nations based on Shannon information (Bergstrom and Rosvall 2011; see also Lean
2013), and of using Shannon’s theory to gain information about the statistical regular-
ities of data derived from biological sequences of nucleotides or amino acids (Fabris
2009). But the presence of the concept of information is not exclusive of molecular
biology: in the context of evolutionary biology, there have been attempts to compute

7 We want to thank again one of the anonymous referees for urging us to stress this point.
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the increase in fitness that ismade possible by the Shannon entropy of the environment,
suggesting a close relationship between the biological concept of Darwinian fitness
and information-theoretic measures such as Shannon entropy or mutual information
(Bergstrom and Lachmann 2004). In turn, in ecology Shannon’s theory is commonly
employed to measure the diversity of species in a given community: the idea is that
diversity in a natural system can be computed just like the amount of information of
a message; this value is called “Shannon index” (Magurran 2004).

In the domain of formal sciences, Shannon information also has several mani-
festations. As explained in Sect. 8, Shannon entropy and algorithmic complexity are
meaningfully linked by the fact that given a sequence drawn at random from a distrib-
ution that has a given value of Shannon entropy, the expected value of its algorithmic
complexity is close to that value. There are also non-traditional applications, as those
based on the relation between Shannon entropy and gambling (see, e.g., Cover and
Thomas 1991, Chap. 6) or between Shannon entropy and investment in stock market
(see, e.g., Cover and Thomas 1991, Chap. 15).

Summing up, maybe it is time to set aside the monistic stances about information,
and to adopt a pluralist position, according to which the different views are no longer
rivals, but different interpretations of a single formal concept. Each one of these inter-
pretations is legitimate to the extent that its application is useful in a certain scientific
or technological field. In this sense, the formal view is in resonance not only with the
wide and strong presence of the concept of information in all contemporary human
activities, but also with Shannon’s position when claiming: “The word ‘information’
has been given different meanings by various writers in the general field of informa-
tion theory. […] It is hardly to be expected that a single concept of information would
satisfactorily account for the numerous possible applications of this general field”
(Shannon 1993, p. 180).

13 Conclusions

Despite of its formal precision and its great many applications, Shannon’s theory still
offers an active terrain of debate when the interpretation of its main concepts is the
task at issue. In this article we have tried to analyze certain points that still remain
obscure or matter of discussion, and whose elucidation contribute to the assessment
of the different interpretative proposals about the concept of information. Moreover,
the present argumentation might shed light on the problems related with the so-called
‘quantum information theory’, in particular as formulated by Schumacher (1995) on
the basis of an explicit analogy with the first Shannon coding theorem. Furthermore,
the discussion about the interpretation of the concepts involved in Shannon’s theory
would turn out to be particularly relevant if, as some believe, there were not two kinds
of information—classical and quantum, but only information encoded in different
ways.
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