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Abstract: Stochastic resonance is said to be observed
when increases in levels of unpredictable fluctuations—
e.g., random noise—cause an increase in a metric of the
quality of signal transmission or detection performance,
rather than a decrease. This counterintuitive effect relies
on system nonlinearities and on some parameter ranges
being ‘‘suboptimal’’. Stochastic resonance has been
observed, quantified, and described in a plethora of
physical and biological systems, including neurons. Being
a topic of widespread multidisciplinary interest, the
definition of stochastic resonance has evolved significant-
ly over the last decade or so, leading to a number of
debates, misunderstandings, and controversies. Perhaps
the most important debate is whether the brain has
evolved to utilize random noise in vivo, as part of the
‘‘neural code’’. Surprisingly, this debate has been for the
most part ignored by neuroscientists, despite much
indirect evidence of a positive role for noise in the brain.
We explore some of the reasons for this and argue why it
would be more surprising if the brain did not exploit
randomness provided by noise—via stochastic resonance
or otherwise—than if it did. We also challenge neurosci-
entists and biologists, both computational and experi-
mental, to embrace a very broad definition of stochastic
resonance in terms of signal-processing ‘‘noise benefits’’,
and to devise experiments aimed at verifying that random
variability can play a functional role in the brain, nervous
system, or other areas of biology.

Introduction

Noise is an all-encompassing term that usually describes

undesirable disturbances or fluctuations. In biology, ‘‘noise’’

typically refers to variability in measured data when identical

experiments are repeated, or when biosignals cannot be measured

without background fluctuations distorting the desired measure-

ment.

Noise is also the fundamental enemy for communications

engineers, whose goal is to ensure messages can be transmitted

error-free and efficiently from one place to another, at the fastest

possible rate. When random noise in the form of electronic

fluctuations or electromagnetic interference corrupts transmitted

messages, this places limits on the rate at which error-free

communication can be achieved. If everything else is ideal, then

noise is the enemy.

But what if not everything is ideal? Can an ideal system always

be implemented in practice? The answer is of course no;

engineering is about designing systems with tradeoffs between

different conflicting objectives. The same could be said of

evolution. Given this, there are circumstances—see below—where

unavoidably present noise or unpredictable fluctuations can be

used purposely, or deliberately introduced to lead to a benefit.

Stochastic Resonance (SR) is the name for a phenomenon that is a

flagship example of this idea. It has mostly been studied by

physicists—for more than 25 years—but may also be familiar to

some biologists, as well as to those in many other disciplines.

Research into SR has had a colorful evolutionary journey, and

extracting important principles and results from the literature can

be confusing.

In particular, the paradoxical notion of ‘‘good noise’’ is a

double-edged sword for SR researchers. To some, working to

understand paradoxes and counterintuitive ideas is a significant

curiosity-driven challenge. This has drawn many scientists and

engineers to study SR, leading to many interesting and useful

theoretical and experimental published results. Others naturally

focus only on the ingrained principle of great utility in engineering,

where noise needs to be eradicated, and, the more it is present, the

more diminished is performance. This preconception can be a

sufficient reason for many scientists to ignore or dismiss SR.

The purpose of this essay is to discuss issues that have sometimes

clouded the topic. Our first aim is to bring some clarity to the

debate and to illustrate the pitfalls and controversies for biologists

unfamiliar with stochastic resonance, or who have held only a

peripheral interest in the area.

The second aim is to advocate to readers that when they come

across studies of SR, they should focus less on the counterintuitive

idea of ‘‘good noise’’, and instead understand SR in terms of

‘‘randomness that makes a nonlinearity less detrimental to a

signal’’. Such a change of focus away from ‘‘noise’’ and on to

‘‘helpful randomness’’ may shift the balance away from skepticism

of the form ‘‘how can noise be good?’’ toward thinking ‘‘does this

variability have a useful function?’’

Provoking a discussion on this topic is especially timely, given

recent increasing interest in the topic of neuronal variability. For

example, SR is mentioned in several recent PLoS articles [1–4],

while a symposium on ‘‘Neuronal Variability and Its Functional

Significance’’ was held in conjunction with the 2008 Society for

Neuroscience meeting. Furthermore, a recent review on noise in
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the nervous system [5] has highlighted the multiple sources of

neuronal noise and recently developed methods for quantifying

them. It is sensibly pointed out in [5] that the nervous system is

likely to have evolved methods for both ‘‘countering the

detrimental effects of noise,’’ as well as discussing its potential

benefits [5].

However, discussion on SR in [5] focuses on a traditional

definition that is restrictive in its scope, where the input signal is

periodic, necessarily weak compared to the noise, and nearly

always ‘‘subthreshold’’. This special case where noise allows a

weak signal to be ‘‘detected’’ often places a focus on single

neurons. The concept of beneficial noise by no means needs to be

constrained to such conditions, and we discuss in this essay how

the definition of SR has evolved beyond the scope discussed by [5].

Example discussions of the many possible ways in which

randomness may be useful in biology and neuroscience appear in

[6–8]. One particularly important idea is that neuronal variability

can provide a ‘‘probabilistic population code’’ [9], which allows

the brain to represent probability distributions, and perform

Bayesian inference [10]. Noise can lead to highly complex

phenomena, and other very different benefits beyond signal

processing [11,12]. See also [13] for a review of the physics of

biological fluctuations at the molecular level and [14] regarding

stochastic gene expression and its advantages. Many of these

‘‘noise benefits’’ could be described as SR—provided that input

and output signals can be defined—simply by showing how

performance varies as a function of noise level. When this is the

case, techniques employed by engineers and physicists to quantify

and understand SR may provide theoretical insights in the

biological case.

Of course, one can have too much of a good thing: in no way do

we suggest that all variability is a sign of exploited randomness. It

is quite likely that variability in measurements has no significance,

and needs to be filtered or otherwise minimized. But we propound

that there are sound reasons why the idea encapsulated by SR

should be openly considered. The lesson from studies of SR is that

observations of random noise or background fluctuations may be

evidence of a source of biological randomness that could

potentially be exploited for a functional benefit, whether SR or

some other effect. Alternatively, measurements of an information-

bearing signal with unpredictable variability may be evidence that

randomness has already been utilized to assist representation of

information.

We also wish to highlight that unfortunately SR does not always

have a good reputation. There are many reasons for this, some of

which are touched on in this essay. One reason is that, in the early

days of SR research, there was a tendency for perhaps too much

enthusiasm, leading to overstatement and exaggeration of what

might be achieved by exploiting the idea in applications, and the

possibility that it could help us understand brain function. For

example, the idea that noise can help ‘‘detect weak signals’’ has

sometimes been misstated as proof that our brains may be affected

by distant electrical power lines. Even more unfortunately, SR has

sometimes been invoked in pseudoscientific contexts, such as

explaining why ‘‘Native Americans can hear the voices of their

ancestors in the noise of the grass’’!

While such events remain scarce exceptions to a large body of

high-quality scientific research, anecdotal evidence suggests it is

timely to discuss why the idea of ‘‘noise benefits’’ should be taken

seriously by biologists, whether labeled as SR or not.

The remainder of this essay provides a brief overview of SR

research, before progressing to discuss some of the debates and

controversies, including those regarding the definition of SR. We

then outline some thoughts on the future of SR-related research in

biology and its potential application in biomedical engineering.

We end with six recommendations for biologists to consider when

thinking about SR or the possible functional role of neuronal

variability. Parts of the following discussion follow along similar

lines to argumentation contained in [15].

A Brief History of Stochastic Resonance

Stochastic Resonance (SR), although a term originally used in a very

specific context, is now broadly applied to describe any

phenomenon where the presence of noise in a nonlinear system

is better for output signal quality than its absence. There are

several key terms in the previous sentence that require clarifica-

tion. The first key term is nonlinear. Noise cannot be beneficial in a

linear system, and it is only the more complex interactions

between nonlinearities and randomness that can (sometimes) lead

to SR. Another key term is better. A wide variety of performance

measures have been used to quantify better, and in nearly all cases it

is understood to mean that some aspect of the processing or

transmission of a signal is improved. The third key term is the

word noise itself. Noise is usually associated with words such as

nuisance, undesirable, or irritating, and the concept of it being useful is

apparently contradictory.

This idea can be distilled into stating that whenever SR occurs,

it must be true that

performance noiseznonlinearityð Þwperformance nonlinearityð Þ:

The term stochastic resonance was first used in the context of noise-

enhanced signal processing in 1980 by Roberto Benzi, at the 1980

NATO International School of Climatology, as a name for the

mechanism suggested to be behind the periodic behavior of the

earth’s ice ages [16,17]. The same idea was independently

proposed in [18,19]. Stochastic Resonance has been used—according

to the ISI Web of Science database—in more than 2,300

publications—see Figure 1. About 20% of papers on SR also

contain a reference in the title, abstract, or keywords to the words

neuron or neural, which illustrates the significant interest in studying

a positive role for randomness in neural function.

The word resonance in the term stochastic resonance was originally

used because the signature feature of SR is that a plot of a

performance measure—such as output signal-to-noise ratio

(SNR)—against input noise ‘‘intensity’’ has a single maximum at

a nonzero value. Such a plot, as shown in Figure 2, has a similar

appearance to frequency-dependent systems that have a maximum

SNR, or output response, for some resonant frequency. However, in

the case of SR, the resonance is ‘‘noise-induced’’ rather than at a

particular frequency.

Stochastic resonance has been the subject of many thorough

technical reviews, some focussing on physical and mathematical

descriptions of SR [20–28], others on observations of SR in

electronic systems and potential applications of SR [15,29–32],

and a third group devoted to SR in biology [15,33–35]. For

detailed information on theoretical aspects of SR, the reader is

referred to these articles. Descriptions of the topic for wider

audiences have also appeared [36–40].

Stochastic resonance has been widely observed throughout

nature—it has been reported and quantified in such diverse

systems as climate models [17], electronic circuits [41,42],

differential equations [43,44], lasers [45,46], neural models

[47,48], physiological neural populations [49–51] and networks

[52], chemical reactions [53], ion channels [54], SQUIDs

(superconducting quantum interference devices) [55], the behavior

PLoS Computational Biology | www.ploscompbiol.org 2 May 2009 | Volume 5 | Issue 5 | e1000348



of feeding paddlefish [56–58], ecological models [59], cell biology

[60,61], financial models [62], psychophysics [63–66], carbon-

nanotube transistors [67,68], nanomechanical oscillators [69,70],

organic semiconductor chemistry [71], and even social systems

[72].

In its early years, SR was defined only in the very specific

context of a bistable system acting on a combination of a periodic

input signal and random noise. Its definition later evolved to

broader contexts, enabling the explosion of interest in the late

1990s—see Figure 1. Interestingly, while SR has been observed in

many other systems, its explanatory power for the periodicity of ice

ages is still a subject of debate.

Questions Concerning Stochastic Resonance
There are a number of misconceptions and controversies about

stochastic resonance that are apparent in the literature. The

following list of questions encapsulates the main points of

contention: (i) What is the definition of stochastic resonance?; (ii)

Is stochastic resonance exploited by the nervous system and brain

as part of the neural code?; (iii) Does stochastic resonance only

occur if a signal’s power is weak compared to the power of the

noise in a system?; (iv) Can stochastic resonance lead to a signal-to-

noise ratio gain, and is this consistent with information theory?; (v)

Was stochastic resonance known about prior to the first use of the

term ‘‘stochastic resonance’’ in 1980?; (vi) How is stochastic

resonance different from a signal-processing technique called

dithering?

Although question (ii) is quite clearly the most interesting

scientific question, and seemingly the motivation behind much SR

research, the literature reveals that the other questions in the

above list have sometimes provided a diversion. The problem is

that reaching a consensus on the answers to questions (ii)–(vi) really

depends on an agreed-upon answer to question (i).

The broadest possible definition of stochastic resonance is that it

occurs when randomness has a positive role in a signal-processing

context. Given this definition, we believe that the answers to these

questions are (ii) yes, although it is difficult to prove, the brain

would almost certainly not function as it does if it operated

completely deterministically; (iii) no, randomness can have a

positive role even if it is only a small amount of randomness; (iv)

yes, in the information-theoretic sense, random noise in a system’s

input signal can lead to a less-noisy output signal, provided that the

system is nonlinear and suboptimal; (v) yes, randomness has been

known to have a positive role in many circumstances for decades,

if not centuries; and (vi) stochastic resonance occurs when

dithering is used—dithering can be described as the exploitation

of SR [15].

On the other hand, if the definition of stochastic resonance is

restricted to its original narrow context, then the answers to

questions (ii)–(vi) change to: (ii) maybe—this is yet to be

conclusively answered [35], (iii) yes, (iv) no, (v) no, and (vi)

dithering is quite different from SR [73].

This discussion is intended to illustrate that the debate on the

topics listed above can depend crucially on what one means by

stochastic resonance.

Defining Stochastic Resonance
Stochastic resonance is often described as a counterintuitive

phenomenon. This is largely due to its historical background, since

in the first decade and a half since the coining of the term in 1980,

virtually all research into SR considered only systems where the

input was a combination of a periodic single-frequency input

signal and broadband noise. In such systems, a natural measure of

system performance is the output signal-to-noise ratio (SNR), or,

more precisely, often the ratio of the output power-spectral-density

at the input frequency, to the output noise-floor power-spectral-

density measured with the signal present. The noise floor is

measured with the signal present, rather than absent, as the output

noise may change if the signal is not present. This is because the

Figure 1. Frequency of stochastic resonance papers by year—
between 1981 and 2007—according to the ISI database. There
are several epochs in which large increases in the frequency of SR
papers occurred. The first of these is between 1989 and 1992, when the
most significant events were the first papers examining SR in neural
models [47,48,118]. The second epoch is between about 1993 and 1996,
when the most significant events were the observation of SR in
physiological experiments on neurons [49–51], the popularization of
array-enhanced SR [110], and of Aperiodic Stochastic Resonance (ASR)
[107]. Around 1997, a steady increase in SR papers occurred, as
investigations of SR in neurons and ASR became widespread.
doi:10.1371/journal.pcbi.1000348.g001

Figure 2. Typical curve of output performance versus input
noise magnitude, for systems capable of stochastic resonance.
For small and large noise, the performance metric (e.g., SNR, mutual
information, Fisher information, correlation, discrimination index) is very
small, while some intermediate nonzero noise level provides optimal
performance.
doi:10.1371/journal.pcbi.1000348.g002
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signal and output noise are generally not additive in a nonlinear

system, or, in other words, the output noise is signal-dependent.

For linear signal-processing systems, it is well-known that output

SNR is maximized in the absence of noise. This means that

observations of the presence of noise in a system providing the

maximum output SNR are often seen to be highly counterintu-

itive—see [39] (p. 149) for further discussion. When it is noted that

there are many examples of systems or algorithms where

randomness is of benefit, SR does not seem quite so counterin-

tuitive. Examples include: a) Brownian ratchets [74]—mechanical

applications of this idea include self-winding (batteryless) wrist-

watches [75]; b) dithering in signal processing and analog-to-

digital conversion [76–78]; c) coherence resonance [79,80]; d)

Parrondo’s games—the random combination of losing games to

produce a winning game [81]; e) random links between clusters of

nodes in networks to enhance ‘‘small world network’’ effects [82];

f) noise-induced linearization [83,84], noise-induced stabilization

[85], noise-induced synchronization [86], and noise-induced order

[87]; g) the use of mixed (probabilistic) optimal strategies in game

theory [88]; h) random switching to control electromagnetic

compatibility performance [89]; i) random search optimization

techniques, including genetic algorithms [90] and simulated

annealing [91]; j) random noise radars—that is, radars that

transmit random-noise waveforms in order to provide immunity

from jamming, detection, and interference [92]. Further discussion

and other examples appear in [15,39,93–95].

Note that while noise or variability, whether in biology or in

engineered systems, may not be truly random—it can, for

example, be constant or deterministic (even chaotic)—it is often

possible to characterize observations by modeling it as random.

Consequently, SR research has tended to focus on the stochastic

case. The most common assumption is that the noise is white—

that is, constant in power across all frequencies—and Gaussian-

distributed. In most cases, changing the distribution or power

spectrum of the noise does not change the fact that SR occurs. In

this essay, fine details about the noise process are not significant;

the important point is that unpredictable variability or fluctuations

can be said to be present.

While SR was initially considered to be restricted to the case of

periodic input signals, the literature reveals that it now is widely

used as an all-encompassing term, whether the input signal is a

periodic sine wave, a periodic broadband signal, or aperiodic. An

appropriate measure of output performance depends on the task at

hand, and the form of input signal. For example, for periodic

signals and broadband noise, SNR is often used [24]. When the

signal is random and aperiodic, SR can be observed by calculating

the mutual information [96,97] or correlation [98] between the

input and output signals, as a function of noise intensity. Another

often-used measure is Fisher information [57,99], which is useful

when the goal is to estimate an input signal (or its parameters) from

an observed output signal.

These alterations to the original definition have sometimes led

to confusion, so we now explicitly discuss the two competing

definitions of SR: the conventional definition, and what we

contend is the contemporary and more useful definition.

Conventional SR: A ‘‘bona fide’’ resonance. The

definition of SR, and the word resonance itself, have both been

objects of debate. In particular, ‘‘resonance’’ is usually thought of

in the sense of a resonant frequency, rather than an optimal noise

intensity. For the typical early assumptions of periodic signals and

small SNRs, ‘‘resonance’’ was more or less resolved as being

appropriate, after a new way—using residence time

distributions—of looking at SR found that the effect was a bona

fide resonance [100]. The reasoning was that resonance means a

matching of two characteristic frequencies (or physical time scales),

and residence time distribution provided a way of interpreting SR

in this way [37,73].

However, there was also some debate about this [101–103], and

although this definition satisfactorily characterized SR in a

manner that allowed ‘‘resonance’’ to be phenomenologically

accurate for dynamical bistable systems energized by periodic

input signals, it implied that ‘‘stochastic resonance’’ was no longer

appropriate for systems consisting of simple ‘‘static threshold’’

nonlinearities. Many papers on SR use the term static threshold to

describe the nonlinearity being studied. It is used to differentiate

between dynamical systems—such as the bistable potential wells

typically used in traditional studies of SR—and nondynamical

‘‘static’’ systems [104]. A system is called static when nonlinear

deformation—SR cannot occur in a linear system—of an input

signal is not governed by time-evolving differential equations, but

by simple rules that produce an output signal based on the

instantaneous value of the input signal. There are at least two

reasons why this has been debated.

First, noise-enhanced behavior in static threshold nonlinearities

also occurs in a signal-processing technique known as dithering.

Dithering involves deliberately adding a random—or pseudo-

random—signal to another signal, prior to its digitization or

quantization [76]. It is most often associated with audio or image

processing, where the effect of the added noise signal, called the

dither signal, is to randomize the error signal introduced by

quantization. This randomization, although increasing the total

power of the noise at the output, reduces undesirable harmonic

distortion effects introduced by quantization. As discussed in [15],

we believe that the contemporary definition of SR is such that

dithering can be described as a technique that exploits SR, and the

two terms are not mutually exclusive. See also [105].

Secondly, the initial questions about whether noise-enhanced

behavior in static threshold systems should be called stochastic

resonance relate to whether a bona fide resonance occurs, since no

frequency matching occurs for threshold systems [73]. Although

this point is technically reasonable, we take the point of view that

such questions of semantic nomenclature are no longer relevant.

While the ‘‘time-scale matching’’ definition of SR is a satisfactory

way of ensuring that ‘‘resonance’’ truly can be said to occur in a

restricted subset of noise-enhanced scenarios, it is incongruous

with the fact that widespread interest in ‘‘stochastic resonance’’

comes not from whether the term is semantically accurate, but

instead from the notion of beneficial randomness.

Furthermore, the strict definition in [100] excludes a significant

amount of the content—which could be described in terms of

static nonlinearities—of the single most highly cited nonreview

paper on SR [106], which was published in 1989 and helped lead

to the first great acceleration in SR research, and the first

investigations of SR in neurons.

Stochastic resonance as ‘‘noise benefits’’. The term stochastic

resonance is now used so frequently in the much wider sense of being

the occurrence of any kind of noise-enhanced signal processing, that

we believe this common usage has, by ‘‘weight of numbers’’, led to a

redefinition. Indeed, electrical engineer Bart Kosko, who made

pioneering developments in fuzzy logic and neural networks,

concisely defines SR in his popular science book Noise as meaning

‘‘noise benefit’’ [39] (pp. 148–149). Kosko also states the caveat that

the noise interferes with a ‘‘signal of interest’’, and we concur that SR

can be defined as a ‘‘noise benefit in a signal-processing system’’, or

alternatively ‘‘noise-enhanced signal processing’’. Put another way,

SR occurs when the output signal from a system provides a better

representation of the input signal (or of some useful aspect of it) than it

would in the complete absence of noise.
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Evidence for the emergence of a wider definition includes the

many ‘‘flavors’’ of SR that have been described, e.g., aperiodic SR

(ASR) [107,108], array-enhanced SR (AESR) [109,110], supra-

threshold SR (SSR) [15,111–114], system size SR [115], ghost SR

[116], and diversity-induced resonance [117]. Although many

authors still define SR only in its original narrow context where a

resonance effect can be considered to be bona fide, in line with the

evolution of languages, words or phrases often end up with a

different meaning from their original roots. All the variations

mentioned are extensions beyond the original definition of SR, yet

they can be classified as ‘‘noise benefits’’ phenomena (in terms of

signal enhancement), and our experience is that a majority of

researchers are comfortable using the term SR to describe this

broadened and richer scope.

We emphasize here the fact that SR occurs only in the context

of signal enhancement, as this is the feature that sets it apart from

many of the list of randomness-enhanced phenomena above,

which could all be described as benefiting in some way from noise,

and yet cannot all be defined in terms of an enhanced signal.

Furthermore, SR is usually understood to occur in systems where

there are both well-defined input and output signals, and the optimal

output signal, according to some measure of quality, occurs for

some nonzero level and type of noise. In particular, note that

coherence resonance is often confused with SR. While similar to SR in

that an optimum level of noise leads to a benefit in terms of

maximally coherent oscillations [79,80], there is no concept of an

input signal being converted to an output signal.

The Future of ‘‘Noise Benefits’’ Research in
Biology and Biomedical Engineering

While SR has been observed in an increasingly diverse range of

biological research areas, such as ion channels [54], behavior

[56,58], ecological models [59], and cell biology [60,61], interest

has mostly focused on neuroscience. We therefore restrict our

remaining discussion to the question of how noise—whether

thought of in the context of stochastic resonance, or instead as a

source of beneficial randomness—may be demonstrated as having

functional utility in the brain.

Does Stochastic Resonance Occur In Vivo in Biological
Neurons and Brain Function?

We begin by giving a brief literature review of the main studies

on SR that are often cited as indirect evidence for its biological

utility. A recent summary of progress for sensory neurons was

published in [35].

The first papers investigating SR in neuron models appeared in

1991 [47,48,118], with the broader scientific community being

introduced to the topic after [48] was discussed by a widely read

news article [119]. Research into SR in neurons accelerated—for

example, [96,120–123]—after the 1993 observation of SR in

physiological experiments where external signal and noise were

applied to crayfish mechanoreceptors [49]. Later experimental

studies also demonstrated that SR can occur in neurons in the

cercal sensory system of a cricket when noise is applied externally

[50], and in the human proprioceptive system [51].

Crucially, none of the above-cited papers have been able to

prove that neurons ‘‘use’’ SR in a natural setting—the evidence for

neurons exploiting SR is only indirect. It can be convincingly

argued that these experiments do not prove that neurons utilize

SR in any way, because both the signal and the noise were applied

externally to sensory receptors and neurons. The fact that SR occurs

only demonstrates that these cells are nonlinear dynamical systems

for which SR effects occur when signal and noise are both added

externally. It remains an open question as to whether neurons

make use of internally generated noise and SR effects. A direct

observation of SR would require an external signal, and

measurements of internal neuronal noise, in vivo [124]. One

possibility is that synaptic background activity is a source of

beneficial noise [125]—see [5] for related discussion.

One theme of this essay is that it is not paradoxical that

randomness may provide benefits in neurons and the brain. It is

hardly surprising that the same idea was noticed prior to the first

papers on SR and neurons in 1991, as well as in contexts other

than SR. For example, in 1971 the first comprehensive analytical

studies of the effects of noise on neuron firing demonstrated that

noise ‘‘smoothes’’ the firing response of neurons [126,127]. Later,

[128] discusses noise-induced transitions in neural models, and in

particular [83] advocates noise as being an important element in

signal modulation by neurons.

Interestingly, a constructive role for noise in the context of

neuronal oscillations in the brain was reported around the same time

as the first observations of SR in neural models [129]. Today there

is accelerating interest in establishing the function of neuronal

oscillations, and the mechanisms that give rise to them

[7,130,131]. Various theories have been proposed, and random

variability may have an essential role in ensuring the robustness of

either synchronized oscillating populations [7,11] or the emer-

gence of fast oscillations in local field potentials [132]. It may also

be the case that variability in the spike-trains of individual sensory

neurons is important for ensuring that an overall population

produces tuning curves optimized for information transmission

[133,134].

Whether a positive role for random noise in such contexts can

be called SR or not depends, even with the broad definition used

in this paper, on whether it is useful to define an input and output

signal. The big picture, though, is independent of whether it

should be called SR or not. Instead, the fact that random noise can

provide a benefit is the key idea, regardless of what one calls it.

This essay is placed in the context of SR, since it provides a

paradigm for understanding why it should not be surprising that

random variability can have a function.

Debates about SR and Detection Theory
We now briefly outline one of the central arguments for

dismissing SR, i.e., the conclusion that optimal signal detection is

incompatible with the fact that SR is observed when detection

performance is non-monotonically decreasing with increasing

input SNR. This difficulty has been discussed several times in the

literature. Of particular relevance to biologists are the opposing

viewpoints of Tougaard and Ward et. al. Tougaard’s initial

critique concluded that ‘‘Improving detection by means of

stochastic resonance is thus a suboptimal strategy’’ [135]. Ward

et al. rebutted the idea that SR is always such an ‘‘epiphenomenon

of nonoptimal criterion placement’’, using counterexamples

beyond the scope of [135], and also a focus on whole organism

performance rather than on single neurons [65].

In response [136], Tougaard revisited the problem, and

conceded that the models of [65] led to SR due to nonlinearities

in the production of neural action-potentials, while detection

theory based on the ‘‘receiver’’ part of the neuron still decreased

monotonically with increasing noise. Tougaard’s conclusion was

that ‘‘the role of the noise is to compensate for the inherent

nonlinear process of spike generation … ’’ and ‘‘The detectability

… decreases monotonically with input noise level, in full

correspondence with the central dogma of signal detection

theory’’.
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Largely overshadowed—although touched upon—by the focus

of this debate, is the fact that ‘‘optimal detectors’’ may not be

efficiently implemented, and that optimal detection may not have

been the primary driving factor of evolution. Furthermore, the

focus of Tougaard is on single detectors, rather than on

populations of them. This is also a limitation in a similar

discussion of the fact that SR is a suboptimal strategy [137].

The conclusion that SR in threshold systems is simply a way to

overcome the incorrect threshold setting seems to have led many

to think that making use of noise is a suboptimal means of

designing a system. The contrasting viewpoint is that noise is

ubiquitous; since it is virtually impossible to remove all noise

completely from systems, design methods should consider the

effects of SR, and that various design parameters, such as a

threshold value, may in some circumstances need to be set in ways

that make use of the inherent noise to obtain an optimal response.

One example of this is suprathreshold stochastic resonance

(SSR) [15,111–114]. In this variant of SR, which relies on a

parallel population of ‘‘sensors’’ or neurons collectively encoding a

common stimulus—see, e.g., [138] for illustration—noise benefits

do disappear if the overall population is optimized [139].

However, the optimal solution is extremely complex and not

plausibly achievable by real neurons. A much simpler and robust

solution is to maintain a configuration that while suboptimal and

exhibiting noise benefits is close enough to optimal over a large

range of input SNRs. Furthermore, SSR is a form of aperiodic

stochastic resonance, meaning that detection is not at stake, but

instead the goal could be information transmission, signal

classification, or signal compression [140].

So, while Tougaard’s analysis is an important reminder that SR

‘‘… is not, as is sometimes misunderstood, able to make otherwise

nondetectable signals detectable’’—see also [141]—it seems clear

from this debate that while detection theory might suggest that

increasing noise can never improve detection, this in no way

implies that noise cannot have a useful role, due to (i) the

complexities of combining detection with nonlinear information

encoding; (ii) the possibility that the theoretically ‘‘optimal’’

detector is by no means optimal in a broad sense; and (iii) that

detection is not necessarily the signal-processing goal. See [142–144]

for some related discussion.

Indeed, very recently electronic engineers have started explor-

ing the possibility of improving necessarily suboptimal detectors by

randomizing them [145–148], and of deliberately employing noise

when device limitations do not allow any other kind of detector

optimization [68,149].

Biomedical Applications of SR
A different form of indirect evidence for SR existing naturally in

biology is successful biomedical applications. A particularly notable

example is the use of electrically generated subthreshold stimuli in

biomedical prosthetics to improve human balance control and

somatosensation [150–156]. This work led to James J. Collins

winning a prestigious MacArthur Fellowship in October 2003 [154].

Another proposed application inspired by SR, as first suggested

by Morse and Evans in 1996 [157], is that of enhanced cochlear

implant stimulation strategies. Cochlear implants can restore

hearing to the profoundly deaf by direct electronic stimulation of

the auditory nerve using a surgically implanted electrode array

[158]. Numerous authors have since advocated the exploitation of

SR in this area, e.g., [159–162].

The basic idea is that several sources of unpredictable variability

present in fibers of the auditory nerve during normal hearing

[163,164] are known to be absent in deafened ears. It is

hypothesized that a well-controlled random component in the

output of cochlear implant electrical signals would therefore

stimulate nerve fibers in a more natural way that may lead to

improved hearing. It has been proposed that healthy hearing

exploits SSR as a way of enabling the afferent nerve fibres that

synapse with inner hair cells to encode more information about

sound waveforms than would be possible in the absence of

randomness [15,160]. The prospect of reintroducing natural

variability to more closely mimic the natural activity of healthy

nerve fibres is taken very seriously, with at least two independent

approaches to practical implementation [165–167].

The same principle of making the output of biomedical

prosthetics more like biology has also been applied in mechanical

life-support ventilators. In order to more closely replicate natural

breathing, random noise was introduced into the operation of the

artificial ventilator, and it was found that it enhanced performance

in several ways [168]. Later modeling supported this result, and

interpreted it as a form of SR [169]. See [170] for a review.

The current acceleration of research into medical bionics such

as brain–machine interfaces, and electronic sensory prosthetics

(e.g., cochlear implants, auditory brainstem implants, and retinal

implants for restoring vision), means there is an increasing need to

understand how unpredictable fluctuations may be exploited in

biology. Such understanding may be critical for the successful

design of some types of future bionics.

Concluding Remarks: Six Recommendations for
Biologists

From an engineer’s perspective, if it can be established that SR

plays an important role in the encoding and processing of

information in the brain, and that it somehow provides part of the

brain’s superior performance to computers and artificial intelli-

gence in some areas, then using this knowledge in engineering

systems may revolutionize the way we design computers, sensors,

and communications systems.

For biological science, rather than view SR as a specifically

defined phenomenon of limited scope, we advocate thinking about

SR in terms of the broad idea of ‘‘noise benefits’’, and as a

reminder that ideal systems often cannot be engineered in

practice. When this is the case, it is necessary to make the best

of a suboptimal situation, such as exploiting noise to advantage.

This principle holds for evolution as well. If there are

nonlinearities involved, then it is easy to imagine that organisms

evolved to make the best possible use of noise and fluctuations that

are unavoidably present.

With this in mind, we present six recommendations for

biologists to consider when performing literature searches on

stochastic resonance or noise in biology, and when trying to

understand whether biological noise may have some useful

functional role.

1. It is not necessary, and indeed often meaningless, to define

performance in terms of signal-to-noise ratio (SNR) [171,172].

Likewise, it is not necessary to focus on detection. Output SNR is

unlikely to be a useful way of quantifying SR in biology, since it

is a measure designed for linear systems and artificial electronic

systems. If instead the goal is to prove that biological function

may rely on random noise, it makes more sense to measure

variations in function with changing internal or input noise

level, in whatever manner would normally be the case.

2. Adding noise to external stimuli cannot prove that neurons or

brain function depend on consistently available internal sources

of randomness, i.e., on endogenous neural noise [124]. The

challenge is to devise an experiment that can remove naturally

occurring healthy variability and demonstrate that function is
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impaired solely due to that removal. This has been termed

intrinsic stochastic resonance—see [124] for discussion. Alternative-

ly, it may be possible to empirically verify that function or

performance is impaired due to the loss of a source of

variability through disease or accident.

3. It is not necessary to focus on periodic input signals. For

example, for experiments on sensory neurons, it would be most

useful to utilize stimuli based on ‘‘natural scenes’’ [173,174] that

mimic the inputs expected to be processed by those neurons, and

to assess how noise might benefit coding of such signals.

4. It is not necessary to focus on subthreshold signals. Noise

benefits can occur for suprathreshold signals, in particular if a

common signal is processed by a population of neurons [111].

Further, a ‘‘hard-threshold’’ is by no means a necessary

condition for SR—see [175] and references therein.

5. If noise benefits are found, explaining why they occur will likely

be in terms of constraints that mean an alternative, superior,

non-noisy mechanism is not efficiently feasible or robust [96].

6. Describing SR as a technique is misleading. This is because it

implies that SR is a signal-processing strategy in its own right,

and confuses cause with effect. Instead, by recalling that

observations of frequency resonance in oscillators are analo-

gous to SR, we suggest SR can instead be accurately referred to

as an observed phenomenon that can potentially be exploited—e.g.,

‘‘stochastic resonance was observed to occur when the level of

random noise was changed, with peak performance occurring

when the noise variance was x’’. In this circumstance, the

system itself is capable of SR, and the technique that is employed

is that of modifying the noise intensity.
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