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Abstract: Idescribe the Color Glass Condensate and its importance for
avariety ofproblems related to small-x physics.

1 What is the Small-x Problem?

We imagine some hadron in a frame where it 4asa very large momentum
which we take along the z (longitudinal) axis. We define x as the ratio of the
plus components of light cone momenta:

x = ~kstituent/p~drm . (1)

The rapidity of the constituent is

Y = Yhadron – ln(l/z) (2)

and the rapidity density is related to the structure function as

dN

dy
— = xG(x, Q2). (3)

where Q2 is the momentum squared at which we resolve the constituent.
Most of the constituents at small x should be gluons.

The small x distributions for gluons are illustrated in Figure 1.[1] The
small-x problem is the observation that these distributions are not flat in
rapidity for small x. In fact they seem to grow, perhaps like an exponential
dN/dy w &l?J–!kmOj I
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Figure 1: The Zeus data for the gluon structure functions.

This rapid growth in the phase space density of gluons implies the ex-
istence of a scale in the problem, the saturation momenta. [2]-[4] It is pro-
portional to the density of gluons per unit area per unit rapidity. If the
phase space density becomes really large, then the saturation momentum
can become larger than AQCD,

At some very small x, we are led to believe the
coupled since

a~(A) <<1

(4)

system becomes weakly

(5)

(We will later identify A’ w Qjat/aS(QA) ).
This does not necessarily mean that the system is trivial. The high

density of gluons can make the typical phase space density of gluons very
large,

ldNl—.
- wR2dy-~

so that even though the intrinsic interactions
interact coherently and produce large effects.

(6)

are weak, the gluon field can
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2 Space-Time Distribution of Glue

It is useful to develop a space-time picture of the small x gluon distribution.
The ordinary rapidity of produced hadrons is

y = &(p+/p-)=h@+/mT) (7)

where mT is the transverse mass. This is also approximately

Y = ‘n(p~adron/mT) + ‘n(p+/p;adron ) w yhadron – zn(l/~) (8)

Using that p” z = p~- xT – p+x- – p–Z+ so that the uncertainty principle is
# w l/z~, we see that

?) - !)H – ‘n(x-p~adron) N ~z?_(X+/X-) (9)

These exhaust all the standard definitions of momentum space and coordi-
nate space rapidity. They are all equal to within a unit of rapidity. This
implies that particles born in a momentum spate rapidity range arise from
more or less the same range in space time rapidity. It also means that lo-
calization in momentum space rapidity implies a localization in space time .“.
rapidity. Therefore, the increase in dN/dy comes in a spatially localized
region of longitudinal phase space, that is the densities become large in a <

comoving frame.
In Fig. 2, a distribution of particles is shown inside a hadron. The ra-

pidity variable along the lower axis may be taken to be both the momentum
space and coordinate space rapidity. In Fig. 3, the same region of longitudi-
nal phase space is shown in real coordinate variable. Here, the longitudinal
phase space is Lorentz contracted. The region of the tube which intersects
the nucleus is large. Viewed in the second frame, all the charges of the
individual quarks and gluons which are intersected by the tube must add.
together incoherently. The density of charge is large in the small x limit at
fixed resolution scale dx.

These sources of color charge produce a color field. For a field measured
at a rapidity much less than the rapidity of the particles in the sheet, the
variations in Z+ are small due to Lorentz time dilation. On the other hand,
variations in x– are large, since the charges sit on a spatially localized sheet
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Figure 2: A single nucleus shown in terms of the space-time rapidity. The
red circles indicate partons.
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Figure 3: A single nucleus in the iniinite momentum frame as seen by a small
x probe.

4



Figure4: Thenon-abelian Lienard-Wiechert pot~ntials which formthe Color
Glass Condensate.

of small size. The field strength I’i+ is big, .Fi– is.,small, and the F@ are
of intermediate strength. Since this implies Fio ~ F’i’ are the big compo-
nents, the fields are ~ 1 ~ 1 .5?.The color orientations are random, as the
color charges which generate the surface charge density are longitudinally far
separated in the limit dx is small. This is shown in Fig. 4.

3 The Color Glass Condensate

The distribution of fields shown in Fig. 4 is called the Color Glass Condensate.{5]
It’s name is derived from:

● Color: The matter is composed of colored gluons.

● Glass: The sources of the fields comes from higher vapidities. These
sources are time dilated. The fields evolve slowly compared to their
natural time scales.
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Figure 5: The gluon distribution function.

● Condensate: The phase space density of gluons is of order l/a~. The
occupation number for the condensed mode scales as the transverse
area times l/a~ and is big. r

One can construct a theory of ‘the Color Glass Condensate as classical
Yang-Mills theory in the presence of ia stochastic source. The classical ap-
proximation is justified because the occupation number of the gluon Fock
space states is large. We shall describe this’”construction later in this lecture.

The result of a simple computation of the gluon distribution function is
shown in Fig. 5.[6]-[9] @rem the curve, we identify A2 N Q~~Ja5. We see
that at large pT, the phase space density, which must be dimensionless, goes

/( 2 ). At low pT of order the saturation momentum, the curveas Qzat PT%
flattens and up to logarithms is of order l/a~. This softening of the curve is
due to a cancellation of field strengths when we try to resolve the fields on a
scale size larger than their typical separation.

In terms of a saturation picture, it means that gh.mnscannot be piled up
in phase space, due to repulsive gluon interactions. As one adds more glue to
the system, it must be added at a momentum larger than that of saturation
scale. This means the saturation scale itself is energy dependent. We expect
the saturation scale will grow with energy like some power of x. There is
never a problem with unitarity, since at fixed Q2, at some arbitrarily large
energy, the Q2 will become less than Q~at,an the gluon distribution function
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Figure 6: Deep inelastic scattering of an electron on a hadron.

at that resolution scale will cease growing. More quantitatively,

Q2
xG(x, Q2) N ~ d2pTd2:dy

t

G w ln(Q2)/a.

(lo)

(,11)

for Q2 >> Q~~t.

4 What Can One Compute with the Color
Glass Condensate?

(12)

The Color Glass Condensate description allows for a computation of deep
inelastic scattering from hadrons and nuclei at very small x as is shown in
Fig. 6. [10] One can also compute diffractive processes and there is a rela-
tion between diffractive and inclusive structure functions. Basically, inelas-
tic structure functions arise from computing the square of an amplitude in
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Figure7: Tlle~distribution formini-jets produced bya Color Gl~s Con-
densate.

the Color Glass background field and then averaging over sources of color.
Diffraction corresponds to computing the amplitude, averaging over color
and then squaring. The result of this computation are formulae very close

“ in functional form to that of the Golec-Biernat-Wiistolf model, and the data
.. ,

seem to be in accord with”these results. [11]-[12] ‘
“.. “One can also consider hadron-hadron scattering, ‘as shown in Fig. 7.[13] -

[15] At large p~, the Color Glass description reproduces the high p~ distribu-
tions computed for jets. At lower pT, the coherence of the color Glass CU~S

off the singular pT dependence at pT N QS~t. Here the phase space distri-
bution scales as l/Q~. In AA collisions, this predicts a t&al multiplicity for
central collisions which scales as NP~Tt,but at ~ >> Q~.t, the distributions

scale as h$~~tin accord with data.
One can also compute properties of PA scattering. This turns out to

be a very useful paradigm, because fo~ the AA scattering problem, or more
generally equal size hadrons at very small x, and at g = O, one is forced
to solve the problem numerically to compute multiplicities and transverse
energies. In pA collisions, the computations can be done analytically.[16]

It also turns out that diffractive and non-diffractive photoproduction of
heavy quarks from large nuclei can give information about the saturation
scale Q~.t. This might be studied in peripheral heavy ion collisions where
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the Coulomb field of one nucleus excites the hadronic components of the
other.

5 Recent Theoretical Developments

The theory which describes the Color Glass Condensate is classical Yang-
Mills theory in the presence of a stochastic source

J+= /l(y, z~) (13)

where the averaging is done with a measure

/[ 1@ ~-F[P] (14)

In the simplest version of this theory, F is Gaussian

F=– ; ~“’ dyd2xT /l(y,Z~)2//J(y)2 (15)

The sources are at space-time vapidities greater t$an a cutoff y. and the fields
exist for y < y~.

What determines go? It is an arbitrary scale. In fact it is determined
by renormalization group. [6],[1’7]-[19] If one computes the first quantum
correction to the above theory, one gets corrections of order as (y – yo) so that 4
when Ay >> l/a~, the quantum corrections are big and must be resummed.
This can be done by succesive iterations and yields a renormalization group. t

If we change the cutoff scale for y. to y. – dg, then we iind that the action
for the gluon fields is unchanged, but the functional form of F is modified.

If we define \

we find that this renormalization group equations can be written as a 13u-
clidean functional Schrodinger equation

$
>>

& =–H(p, 6/6p)z (17) -,

It turns out that H is quadratic in 6/6p, and has no potential for V(p, ~p).
This equation is a non-linear quantum diffusion equation. [5],[20]-[21]
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For example, if we have the ordinary diffusion equation,

-’$Z= –;P2Z

the solution is

z= ~–x2/2y

&

(18)

(19)

and the wavepacket spreads as y get larger. This is unlike the case where
there would be a potential. In this latter case, the system would go to the
minimum of the potential and oscillate around. Expectation values with a
potential would become time independent, but those without contain non-
trivial time evolution. This non-trivial time evolution is at the’ heart of the
small x problem.

One can find approximate solutions of the above equation. For large
transverse momentum scales, one reeovers the Gaussian ansatz of the MV
model. [4] For small transverse momentum scales, but still large compared to
AQCD,the solution for $’ becomes a scale invariant Gaussianj and this region
is universal in that its behavior is independent of the saturation scale.[22]

The equations above also reproduce all the known evolution equations for
structure functions. In the linear Iimit where the Color Glass field is weak,
the DGLAP and BFKL equations can be generatedf[23]-~4] The first non-
linear corrections also foliow,~2]-[3] and in the large ~NC limit, the Balitsky-
Kovchegov ecpation’ to all orders in density for Fz is recovered. [25]-[26]

One might hope that this equation might be solvable exactly, at least
in large NC. At least one should be able to formulate a reasonable non-
perturbative algorithm for its numerical solution.
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