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Abstract

Deep submicrontechnologycalls for new design tech-
niques, in which wire and gatedelaysare accountedto
have equal or nearly equal effect on circuit behaviour.
Asynchronousspeed-independent(SI) circuits,whosebe-
haviour is only robust to gate delay variations,may be
too optimistic. On theotherhand,building circuits totally
delay-insensitive(DI), for bothgatesandwires,is imprac-
tical. The paperpresentsan approachfor automatedsyn-
thesisof globally DI and locally SI circuits. It is based
onorder relaxation, asimplegraphicaltransformationof a
circuit’s behavioural specification,for which SignalTran-
sition Graph,aninterpretedPetrinet,is used.Themethod
is successfullytestedonasetof benchmarksandarealistic
designexample. It proveseffective showing averagecost
of DI interfacingatabout40%for areaand20%for speed.

1 Introduction

As the scaleof integration increases,managingsynchro-
nizationandcontrolof computationandcommunicationon
deepsub-micron(DSM) integratedcircuitsusinga global
clock is becomingincreasinglydifficult. Asynchronous
systems,free from the clock, offer a numberof potential
advantages,suchas reducedrisk of synchronizationfail-
ures,low powerconsumption,improvednoiseandelectro-
magneticcompatibilityto namebut a few.

Interpreted PNs (called Signal Transition Graphs
(STGs) [2, 7]) are widely used in specifying an asyn-
chronoussystembehavior in aformaltiming diagramstyle.
It is known thatfrom anSTGonecanderiveanimplemen-
tationwhich hasthespeed-independent(SI) property, i.e.,
suchthat the behavior of the circuit is correctunderany
distribution of gatedelays.The maindrawbackof SI cir-
cuitsis in neglectingtheinfluenceof wire delaysoncircuit
behavior. For the DSM technology, wherewire andgate
delayscan become(over long wires) equally important,
theimplementationshouldbetargetedat delay-insensitive
(DI) circuits [19], which allow wire delaysto be of arbi-
trary value. In fact, a reasonablestrategy for future tech-
nologieswould require one to partition the systeminto�
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blocksof relatively small size,for which thedesignercan
keepcontrolonwire delays(SI blocks)[10, 18], with aDI
interfacebetweenblocks[14].

Logic synthesisof hazard-freeasynchronouscontrol
circuits from STGspecificationshasreacheda goodlevel
of maturityandautomation(comparablein severalrespects
to that of synchronousFSMs),asexemplifiedby the tool
Petrify [3]. AsynchronousCAD is beingusedbothfor in-
dustrial andacademicdesignexperiments[12, 15]. It is
thereforemostnaturalto introduceDI interfacinginto the
existingSTG-basedsynthesisframework,sofarsupporting
the synthesisof both speed-independentcircuits and cir-
cuitsoptimizedusingavarietyof timing assumptions[4].

Thisapproachclearlydiffersfrom earlyideasaboutex-
ternallyDI andinternally timed Macro-modules[16, 11],
aswell asfrom morerecentimplementationstrategiesfor
quasi-DIandDI circuits [8, 1]. Theformer reliedon spe-
cially designedandpotentiallyslow meta-stabilitydetec-
tion circuits. The latter werebasedprimarily on syntax-
direct translationtechniquesfrom processalgebraicspec-
ifications,ratherthanon logic synthesiswith inherentop-
timization underdifferent cost functions. An alternative
technique,thatpermitsacertainlevelof delay-insensitivity
for inter-block communicationandrelieson local timing
conditions(FundamentalMode operation),is basedon a
Burst Mode (BM) Finite StateMachinespecification[9].
The BM approach,however, is not very flexible from the
point of view of the level of concurrency anddistribution
of controlflow, aswewill discussin Section5. STG-based
synthesis,which supportsa more powerful Input/Output
operationmode,allows oneto build circuits with a com-
pletelydistributedenvironment,asopposedto thecentral-
izedenvironmentassumedby theFM conditions.

In this paperwe investigatetheSTG-basedapproachto
thedesignof locally SI andgloballyDI asynchronouscon-
trol circuits,by posingtheproblematthebehavioral (STG)
level. Webelievethatourmethodwouldbeparticularlyef-
fective in thefollowing two designflow scenarios,bothre-
sultingin fairly largeSTGspecificationsthatwouldbenefit
from DI interfacing:

1. circuits specifiedusing a high-level behavioral no-
tation (suchasCSPor high-level Petri net), subse-
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quently refined into a large binary encoded STG,

2. control circuits for regular control structures.

For both scenarios it is appropriate to partition the large
specification at the STG level and synthesize its blocks
with DI interfaces. In this decomposition, a natural ques-
tion arises: what is the cost of DI interfacing?

In order to answer this question, we developed the the-
ory of iterative transformations of SI specifications to-
wards DI interfacing (Section 3). The suggested approach
was checked experimentally using the known set of asyn-
chronous benchmarks and synthesis tool Petrify [3]. In our
experiments (Section 4) we first partition the given circuit
into two parts at the STG level, and then consider each
part separately with the DI interface in between. We com-
pared the original circuit (entirely SI) against the new one
(SI circuit with DI interface). The results of this com-
parison show that the cost of DI interfacing is on average
about 36% for area and 20% for performance. These fig-
ures are quite encouraging because in the known methods
of DI synthesis the area and performance costs are much
higher [6]. Finally, in Section 5 we generalize the pro-
posed approach to obtain a globally DI implementation of
a totally different specification formalism (BM machines).
We believe that the combination of the SI and DI imple-
mentation styles opens up new perspectives for efficient
asynchronous design for DSM technologies.

This work focuses on the automatic introduction of DI
interfaces in the control part of the design. There are sev-
eral possible approaches to handling the data part as well.

1. The data-path can be designed using a DI-encoding
(e.g., dual rail, Sperner codes etc. [20]).

2. If a more efficient bundled data approach is chosen
for the data-path, like in Micropipelines [17], the or-
dering conditions between data and a corresponding
request signal are simpler to satisfy than the order-
ing conditions between several control signals, pos-
sibly coming from different parts of the overall de-
sign (e.g. two request lines accompanying a data bus
and an address bus in an inter-module interface as in
our first example in Figure 1). In particular, routing
can be constrained so as to keep the skew of a bundle
of wires to be under a small upper bound.

Moreover, many designs involve large pieces of control-
dominated logic without any data-path processing. Those
include modulo-N counters, multi-way pulse generators
and distributors, arbiters etc. Their cell-by-cell layout, with
DI interfaces between cells, which can internally be de-
signed as SI or even locally timed, would make them suit-
able as firm or hard macros in a DSM context.
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Figure 1: Simple asynchronous interface

2 Theoretical background

Figure 1.a shows a simple interface between two modules
in an asynchronous system, a master (e.g., a processor) and
a slave (e.g., memory). The interface involves two signal
handshakes, one for controlling the transmission of an ad-
dress (addreq andaddack) and another for data (datareq
anddataack). The timing diagram shown in Figure 1.a de-
fines the synchronization protocol between the handshakes
for the case of writing data into the slave. This protocol
allows an additional skew compensation between address
and data, making sure that the address is delivered to the
slave strictly before data, thus permitting an additional de-
lay in the corresponding address decode logic. This condi-
tion is captured by the arc directed from the rising edge of
theaddreq signal to that ofdatareq .

Figure 1.b shows the Petri Net (PN) corresponding to
the timing diagram of the controller. All events in this
PN are interpreted as signal transitions: rising transitions
of signala are labeled with “a+” and falling transitions
with “a�”. We also use the notationa� if we are not spe-
cific about the sign of the transition. Petri Nets with such
an interpretation are calledSignal Transition Graphs (or
STGs) [2]. STGs are typically represented in a “short-
hand” form, where places with one input and one output
arc are implicit.

An STG transition isenabledif all its input places con-
tain a token. In the initial markingfp1; p2g of the STG
in Figure 1.c transitionaddreq+ is enabled. Every enabled
transition can fire, removing one token from every input
place of the transition and adding one token to every out-
put place. After the firing of transitionaddreq+ the net
moves to a new marking,fp3g, wheredatareq+ becomes
enabled.

Transitions in STG could be involved in different order-
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Figure2: Consistency violationsin STG

ing relations.Transitions��� and .�� arein directconflict if
thereexistsa reachablemarkingin whichbothof themare
enabledbut firing of oneof themdisablestheother. If ���
and .�� areenabledin somereachablemarkingbut arenot
in direct conflict, they areconcurrent. Conflict relations
canbegeneralizedby consideringthetransitivesuccessors
of directly conflicting transitions. Transitionswhich are
not concurrentand are not in (transitive) conflict are or-
dered. An STG is consistentif in everytransitionsequence
from theinitial marking,risingandfalling transitionsalter-
natefor eachsignal.

Thereare two sourcesof consistency violation in an
STG:

1. Auto-concurrency, dueto concurrency of transitions
of thesamesignal(seeFigure2.a,b)and

2. Switchover incorrectness, due to ordered rising
(falling) transitionswhich have no falling (rising)
transitionin between(seeFigure2.c).

Thesetof all signalsin a STG is partitionedinto a set
of inputs, which comefrom theenvironment,anda setof
outputsthatmustbeimplemented.

In addition to consistency, the persistency property is
requiredfor anSTG to beimplementableasa hazard-free
asynchronouscircuit. An event ��/ is persistentin marking0 if it is enabledin 0 andremainsenabledin any other
markingreachablefrom 0 by firing anotherevent .�/ . An
STG is output-persistentif all outputsignaleventsareper-
sistentin all reachablemarkingsandinput signalscannot
bedisabledby outputs.Outputpersistency thereforeonly
allows input eventsto be in direct conflict (thusmodeling
non-deterministicchoicein theenvironment).

The following importantstatementwasproved in [2]:
anSTGcanbeimplementedbya speed-independentcircuit
if it is consistentandoutput-persistent.

3 Delay-Insensitive Interfacing

Our approachhastwo distinctive features:

1 It is focusednot on total delay-insensitivity but on
delay-insensitiveinterfacing only. The basic as-
sumptionis that within a module the designeror
a physicaldesigntool can keepwire delaysunder
controlandhencethereis no point to ensuredelay-

insensitivity at the level of events internal to the
module.

1 Contraryto conventionalapproachesto DI synthe-
sis,thetasksof designinga moduleandits environ-
mentareconsideredseparately. Thisresultsin asym-
metric DI interfacingrequirements:only inputsare
requiredto be acceptedin a delay-insensitive fash-
ion by the circuit, becausedelay-insensitivity with
respectto outputsmattersonly whentheimplemen-
tationfor theenvironmentis synthesized.

Theabove conditionsleadto a morerelaxedaxiomatic
definition of delay-insensitive interfacing with respectto
theclassicaldefinitionof delayinsensitivitygivenin [19].
A specificationsatisfiesthe delay-insensitiveinterfacing
requirementif it meetsthefollowing conditions:

1. No auto-concurrency.

2. Alternating inputs (input eventscannotbe ordered
with otherinputevents).

3. No cross-disabling(inputs and outputscannotdis-
ableeachother).

Ourdesignframework usesSTGsasamodelbasis.The
naturalquestionis: what are the implicationsof the re-
quirementsof DI interfacingfor thepropertiesof theorig-
inal STG?

Proposition 3.1 A consistentand output persistentSTG
satisfiesDI interfacingconditionsif and only if no input
transitiondirectlyprecedesanotherinput transition.

The proof is trivial: non-auto-concurrency is a nec-
essarycondition of STG consistency, absenceof cross-
disablingis guaranteedby outputpersistency andalterna-
tion of inputsdirectly comesfrom thedefinitionof DI in-
terfacing.

Proposition3.1givesanideaabouttheplaceswhereDI
interfacing might be violated in an STG: theseare STG
fragmentsin which input transitionsaredirectly causally
related.Theadditionof arbitrarydelaysto everyinputwire
mayunpredictablyalter theorderof originally orderedin-
putsto amodule.Thismeansthatfrom themodulepointof
view suchinputsbecomeconcurrent.Hencethe transfor-
mationof anSTGfor DI interfacingremovesdirectcausal
dependenciesbetweeninputsandmakesthemconcurrent.
This transformationcanbeperformedby iterativeapplica-
tion of a simpleoperationthat is calledorder relaxation
andis intuitively definedin Figure3. Note that orderre-
laxationmakespreviously orderedevents � and . to occur
concurrently“in a burst”.

The following two propertiesof order relaxationhelp
to clarify thetransformationtowardsDI interfacing.Their
proofscanbefoundin [13].
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Figure3: Orderrelaxation

Property 3.1 Order relaxation betweenevents � and .
preservespairwise ordering relationsbetweenall events
exceptfor � and . .
Property 3.2 Order relaxation betweentwo eventspre-
servesoutputpersistencyin an STG.

When in the original STG two inputs are directly
causallyrelated,thenDI interfacingcanbe obtainedonly
by anorderrelaxationbetweenthem. The latter, by Prop-
erty 3.2,doesnot causeany new cross-disablingto occur.
Unfortunatelynotall therequirementsof DI interfacingare
safelypreservedduringorderrelaxation.Indeedif events�
and . correspondto transitionsof thesamesignaltheir or-
der relaxationimmediatelyproducesauto-concurrency. If
non-auto-concurrency is preserved the above transforma-
tion is strictly delay-insensitivityincreasingandby itera-
tive applicationof it eventually (if non-auto-concurrency
is preserved)all therequirementsof DI interfacingaremet
in themodifiedspecification.

Thealgorithmfor STGtransformationto ensureDI in-
terfacing is presentedin Figure 4. The result of the al-
gorithm is eithera new STG in which DI interfacingre-
quirementsaresatisfiedor a failure in casewheninput or-
der relaxationleadsto auto-concurrency. The latter im-
pliesthattheoriginalSTGcannotbeimplementedwith DI
interfacing.2

Figure5 illustratesthetransformationto DI interfacing
for thechu133benchmarkexample(DI violationsarede-
notedby shading).DI interfacingis achievedby iterative
applicationof orderrelaxationbetweeninputevents.

4 Experimental results

Two typesof experiments,correspondingto thedesignsce-
nariosoutlinedin theintroduction,havebeenperformedto
testtheproposedmethod.

Case study: controller for analog-to-digital converter.
In the first example,we considerthe synthesisof a scal-
ablecontrol circuit, whoseSTG specificationhasa regu-
lar structure. It originatesfrom a practicalcasestudyof3

Indeed,Property3.1 implies that theorderin which onechoosesthepairwise
orderrelaxationbetweeninputsis irrelevant.

Input: STG 46587:9<;>=�;>?A@�B ( 9 - events,= - precedence relations, ? @ - initial marking)
Output: STG 4DC�E�587F9G;>=DHI;>?AH@ B with DI interfacing

foreach input events


and J , 
<K J do

/* order relaxation step */
remove causal arc L 
 ;MJMN
/* ordering predecessors of



with J */

foreach predecessor O of



do
add arc O K J ;

/* ordering successors of J with


*/

foreach successor P of J do
add arc


QK P ;
/*modify ?R@ if necessary */
foreach initially marked arc LSOT; 
 N do? @ LILSOT;MJMNIN�UV5V? @ LILSOT; 
 N�N ;
foreach J K P with arc LWJ	;XP�N initially marked do?A@YLIL 
 ;MP�NINIUV5V?A@�LIL:JZ;MP�NIN ;
if L 
 ;MJMN is initially marked then

foreach arc LSOT;MJMN do ?A@YLIL[O\;�JMNINIUV56?A@�LIL 
 ;MJMNIN
if STG 4 becomes auto-concurrent then exit(failure);

endfor

Figure4: Algorithm for ensuringDI interfacing.
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anasynchronousSI controllerfor ananalog-to-digitalcon-
verter(ADC) [5].

This ADC implementsa well-known successive ap-
proximation algorithm. According to this algorithm, a
comparatoris iteratively activatedto comparethevalueof
thegiven input voltagewith theapproximatevoltagepro-
ducedby adigital-to-analogconverter(DAC), whosedigi-
tal input comesfrom a registerin which the ] -bit valueis
refinedbitwise,startingfrom themostsignificantbit. Each
refiningbit is producedby aone-bitbuffer connectedto the
outputof the comparator. The useof asynchronouslogic
allows this systemto avoid synchronizationerrorsdueto
meta-stability(which is known to bea problemin clocked
convertersdue to the analogpart of the circuit), and to
smoothout the temporaleffect of potentialmeta-stability
resolution[5] over thewholeconversionperiod.

Thecentralpartof theasynchronousADC, which con-
trolscopying abit valuefrom theone-bitbuffer to then-bit
register with a single bit shift, is an n-way scheduler;it
is functionallysimilar to a classicalpulsedistributor. The
scheduler’s behaviour canbe specifiedby an STG whose
structureis regular. Thespecificationof aschedulerwith 3
cellsis shown in Figure6.a.

Fromtheanalysisof thecausalrelationsbetweenevents
one could see that the behavior of the i-th cell of the
schedulerdependson thestateof the (i-1)-th and(i+1)-th
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Figure 6: A specificationof 3-cell scheduler(a) and the
inputorderrelaxationfor thecell 1 (b)

cells, togetherwith the signal ^�_�� 0 � (producedby com-
pletiondetectionlogic in a storagebuffer; seeFigure7.a).
Hencethespeed-independentimplementationof thesched-
uler might beobtaineddirectly usingtheSTGof Figure6,
which givesthefollowing logic circuit:

_a`�bc^�_�� 0 �ed f!`�g 2 f�` U 2 �h_a`MiD�j_a` f%`Ig 2Tkf ` b f `Ig 2 f ` �h_ ` �l_ ` U 2 k.Ab _ 2 _ImGn�n�n _Io
The drawbackof the SI implementationis that the de-

signer is responsiblefor satisfying the SI assumptions
aboutwiring delaysbetweenschedulercells.

In caseof conversionwith a large datapath(i.e., with
many cells in the scheduler)or in order to increasethe
layout flexibility , it couldbe moreconvenientto partition
thewholeschedulercircuit into smallerparts.Thesecould
be placedin differentpositionson the chip (not necessar-
ily adjacent)andthusrequireDI interfacing,while within
eachpartthedesignercouldstill rely on theSI hypothesis,
asshown in Figure7.b.
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Figure7: A schedulercircuit structure

In orderto evaluateanupperboundfor thecostof par-
titioning theschedulerwe considera partition into blocks
with onecell each.Eachcell communicateswith its neigh-
bors in a DI fashion,and thereforesynthesisof such a
schedulerreducesto the task of DI interfacing between
cells. The resultof orderrelaxationon the STGis shown
in Figure6, wherefor thei-th cell all thetransitionsof the
inputscomingfrom the(i-1)-th and(i+1)-th cellsarecon-
current.Theresultis shown in Figure6.b. Fromthis STG
thefollowing logic equationscanbederived:

_a`{b|^�_�� 0 �}d f!`�g 2 f!` U 2 f%`M.<�h_a`>i��h_a` f!`�g 2\k
f�`Qb f%`Ig 2 d�f�`%�lf�` U 2 _a` U 2 iD�h_a` k
.~b _ 2 _�mGn�n�n _�o�d>.<� ^�_�� 0 ��i��j. ^�_>� 0 �
A comparisonbetweenthe SI andDI implementations

shows that the latter is about38% larger. We have also
analyzedthe performanceof the SI and DI implementa-
tions, using logic simulation. We have synthesizedboth
theschedulercircuit andits environmentandsimulatedthe
resultinglogic netlist.Thedegradationof performancedue
to theincreasedcomplexity is about7%.

It is worth noting that thesenumberare significantly
lowerthanthoseusuallyreportedwhenreferringto synthe-
sisresultsfor DI implementations(seee.g[6] wherethe3
timesoverheadwasreportedfor a DI implementationof a
stackagainstits SI countepart).Thereasonfor that lies in
ourmoreflexibledesignstrategy, thatis speed-independent
circuitswith DI interfacinginsteadof totally DI solutions.

Delay-insensitive decomposition. Anothergroupof ex-
perimentswastargetedatDI decompositionof a relatively
complex circuit into two simplersubcircuitswith a DI in-
terface. The experiment(illustrated in Figure 8) started
from awell-known asynchronousbenchmarkset,in which
also the environmentwas synthesized(thus yielding cir-
cuitswithout inputs).Thesetof signalsof eachbenchmark
waspartitionedinto two groups,thus yielding two sepa-
ratemodulesasshown in Figure8.b. Eachmoduleplays
therole of theenvironmentfor its counterpart,andthe in-
terfacebetweenthemis madedelay-insensitive by apply-
ing order relaxationbetweeneventswhich are input for
eachmodule.Note that this processdoesnot alwayscon-
vergeto a correctimplementationbecauseof violationsin
non-auto-concurrency resultingfrom orderrelaxation(this
meansthatdecompositionfor DI interfacingcouldbeused
asa guidancecriterionfor asynchronoussystempartition-
ing). For all caseswhereDI interfacingcouldbeobtained
for somewire partition,we comparedtheDI implementa-
tion (Figure8.c)againsttheSI one(Figure8.a)in termsof
areaandperformance.The resultsareshown in Table1.
On averagethe areapenaltyis about36% andthe perfor-
mancedegradationis about20%.
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Area Performance
Circuit SI DI ratio SI DI ratio
chu133 (1) 144 144 1.00 5026 5380 1.07
chu133 (2) 144 200 1.39 5026 6505 1.29
chu150 184 232 1.26 6268 7000 1.12
mmu (1) 360 552 1.53 5909 7246 1.23
mmu (2) 360 536 1.49 5909 7127 1.21
wrdatab 232 328 1.41 7325 9786 1.34
master-r (1) 376 584 1.55 5993 7613 1.27
master-r (2) 376 472 1.26 5993 7650 1.28
mr0 (1) 504 576 1.14 10094 10183 1.01
mr0 (2) 504 680 1.35 10094 10629 1.05
mr1 (1) 344 472 1.37 7799 9134 1.17
mr1 (2) 344 448 1.30 7799 9722 1.25
vbe10b 320 392 1.23 8053 8736 1.08
trimos 264 456 1.73 6764 7462 1.10
Total 4456 6072 1.36 98052 114173 1.16

Table 1: Area and performance penalty of DI interfacing

5 Other applications of DI interfacing

Up to now the DI interfacing approach has been discussed
in the context of a system architecture consisting ofspeed-
independentmodules withDI communication. In that
case the starting point for DI transformation is a speed-
independent specification of the system, which is gradually
refined to satisfy the conditions of DI interfacing.

However, the DI interfacing approach is certainly not re-
stricted to that particular architecture. The main idea of the
approach is that delays of system components (gates and
wires) are roughly separated into two classes: controlled
and uncontrolled. Components with controlled delays are
restricted to be placed in close vicinity in the chip and are
considered to be in the same logic module. Uncontrolled
delays are due to communications between different logic
modules [14]. Hence DI interfacing should work equally
well when logic modules are implemented under more ag-
gressive timing assumptions than speed-independence. It
is the responsibility of the designer to ensure that each
module functions correctly under these timing assump-
tions, while the overall correctness of the system is ensured
by the DI interfacing between modules.

A possible extension of the suggested approach is illus-
trated below by implementing a system with DI interfacing
starting from burst-mode (BM) behavioral specifications
[9, 21].

Unlike the cases discussed in Section 4, it will result in
order relaxation betweenoutputsignals.

A burst-mode machine is an FSM-like specification in
which each state transition is caused by a burst of con-
currently switching inputs followed by a burst of concur-

rently switching output and state signals. Implementation
of a BM specification relies on the so calledFundamental
Modehypothesis. This hypothesis states that the reaction
of the environment is relatively slow, and a new input burst
can only start when all the switching activity caused by the
previous burst inside the circuit has stopped.

A burst-mode specification can be equivalently repre-
sented by an STG model. Figure 9(b) shows the BM spec-
ification of a FIFO for a SCSI controller [22], while Figure
9(c) shows its equivalent STG representation. Note that
the fundamental mode assumption must be translated in
the corresponding STG as causal arcs which synchronize
output bursts (e.g.,aout� androut+) with the next input
bursts (e.g.,rin+ andain+)2.

BM specification does not allow any direct ordering be-
tween inputs: either inputs occur in a burst (concurrently)
or they are separated by transitions of output or/and state
signals. This means that eachindividualBM machine nat-
urally satisfies the conditions of DI interfacing (see Section
3). However ensuring DI interfacing betweena set ofcom-
municating BM machines is more complicated than for SI
modules, because the DI interfacing conditions (Section 3)
take into account the behavior of input signals only.

Outputs can change in any order, and their proper re-
ception must be ensured by the receiving modules. There-
fore the notion of DI interfacing for a set of SI modules
relies on “distributed responsibilities”: each module can
accept DI inputs, and all modules together cooperate in
a globally DI fashion. This is reasonable because speed-
independence makes only local timing assumptions (on
gate fanout wires).

This approach will not work for the case of BM ma-
chines because of the non-locality of the fundamental
mode assumption. Indeed for the FIFO in Figure 9(c) the
fundamental mode assumption requires that the transitions
aout� androut+ of bothoutputs precedes the transitions
rin+ andain+ of bothinputs. Howeverain+ is produced
by the (i+1)-th cell of the FIFO,that receives onlyaout
as input, whilerin+ is produced by the (i-1)-th cell,that
receives onlyrout as input. Therefore the fundamental
mode assumption is a timing requirement which cannot be
ensured only by the local analysis of pairwise communica-
tions, but requires global timing analysis. Imposing tim-
ing assumptions on the speed ofindependenthandshakes
clearly contradicts the nature of DI communication. Hence
for the case of outputs which communicate with different
BM machines the fundamental mode assumption must be
refined via relaxation of output synchronization. Note that,
contrary to the input order relaxation in case of SI mod-
ules (which is defined purely by a syntactic transformation

2The dummy transition labeled with� is equivalent to four arcs, between each
output transition and each input transition.



of the STG), the refinementof the fundamentalmodeas-
sumptionrequiresadditionalsemanticinformation about
thestructureof thedistributedenvironmentof themodule
(whichsignalscommunicatewith which othermodules).
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rin+

aout- rout+
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rin*ain+/
rout-
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1

2
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Figure9: DI transformationof theBM FIFOspecification

For thecaseof theFIFO in Figure9(c), therefinement
resultsin therelaxationof thesynchronizationfor theout-
put burst �#�\�%�Y� and �T�\����� . Consideringthenaturalsep-
arationof i-th FIFO cell environment into left and right
handshakes �I�\�X]<�Z�T�\�%�Z� and �����X]<���#�\�%�Z� , this resultsin the
new STGshown in Figure9(d).

SynthesizingtheSTGin Figure9(d) requiresonemore
statesignalthantheSTGin Figure9(c). Theperformance
penaltywas evaluatedby checkingthe speedof a 3-cell
FIFO buffer like theoneshown in Figure10.

cell cell cell

rout rin

aoutain0 1 2

rout

ain aout

rin

Figure10: 3-cell FIFObuffer with closedenvironment

Theresultingdatais shown in Table2 in columnsBM
and DI. Note that the only placewherethe fundamental
modeassumptioncomesinto play in the STG in Figure
9(c) is theoutputburst ���#�\�%� –�T�\��� + � . After its relaxation
theSTGin Figure9(d) makesno implicit timing assump-
tions.HencetheFIFObuffer synthesizedby thisSTGis in
factimplementedaslocally SI andgloballyDI.

We alsoexploited locally thesame(usuallyreasonable)
timing assumptionthat BM synthesismakes,namelythat
the delaysof the circuit of a singleFIFO cell aresmaller
thanthedelaysof thehandshakesbetweencells.

Theresultsof this optimizationareshown in Table2 in

columnDIopt. Timing optimizationimprovesthe perfor-
mancepenaltyto becomeonly 23%.

Penalty BM DI ratio DIopt ratio
Area(literals) 17 22 1.29 21 1.24
Performance 5438 9107 1.67 6707 1.23

Table2: Areaandperformancepenaltiesfor DI interfacing
of theBM FIFO

Wealsoanalyzedthecostof DI interfacingfor othertwo
partsof the SCSIcontroller(theBus InterfaceUnit, BIU,
andtheInitiator Send,IS). Theresultingareapenalties(in
termsof literalsof thelogic implementation)arepresented
in Table3.

For thesespecificationsthecostof transformationto DI
interfaceis ratherlow, dueto thefactthatthefundamental
modeis usedonly in a few casesin the SCSIcontroller,
namelyin 3 burstsout of 11 for IS andin 1 burstout of 9
for BIU.

Module BM DI ratio
IS 54 59 1.09

BIU 41 42 1.03

Table3: Areapenaltyfor SCSIcontroller

6 Conclusions

Designstyleswhich neglectwire delaysseemto beoverly
optimisticevenwith thecurrenttechnology, andwill most
likely becomeless and less applicablewhen moving to
deepsub-micronimplementations.Theextremecasewhen
wire delaysareassumedto have arbitraryvaluesleadsto
the well known delay-insensitive approachfor circuit de-
sign. However delay-insensitive circuits are often unus-
ablebecauseof theirexcessiveareaandperformanceover-
heads.In this paperwe suggestedan approachwhich re-
sults in partial delay-insensitivity of an implementation.
Under this approacha designeridentifiesa set of “dan-
gerous”wires which shouldbe implementedin a delay-
insensitive fashion,while for the rest of a circuit other
(more conventional)designstyles might be applied. In
particular, we usedspeed-independentimplementationfor
the partsof a systemin which wire delayscould be con-
trolled by the designeror a routing tool, andthenapplied
thedelay-insensitive hypothesisonly to thewires running
betweensuchspeed-independent“islands”.

We have developedanautomatedmethodwhich trans-
formsanoriginally speed-independentspecificationinto a
specificationwith DI interface. Contraryto the common
belief aboutthe high areaandperformancepenaltyof DI
circuits,our experimentalresultsshow that the costof DI
interfacingis rathermoderate:about40%for areaand20%
for speed.This is a direct consequenceof a moreflexible



strategy of partitioningasysteminto its speed-independent
anddelay-insensitivesub-domains.
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