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Abstract

Many 0/1 datasets have a very large number of vari-
ables; however, they are sparse and the dependency struc-
ture of the variables is simpler than the number of vari-
ables would suggest. Defining the effective dimensionality
of such a dataset is a nontrivial problem. We consider the
problem of defining a robust measure of dimension for 0/1
datasets, and show that the basic idea of fractal dimension
can be adapted for binary data. However, as such the frac-
tal dimension is difficult to interpret. Hence we introduce
the concept of normalized fractal dimension. For a dataset
D, its normalized fractal dimension counts the number of
independent columns needed to achieve the unnormalized
fractal dimension of D. The normalized fractal dimension
measures the degree of dependency structure of the data. We
study the properties of the normalized fractal dimension and
discuss its computation. We give empirical results on the
normalized fractal dimension, comparing it against PCA.

1. Introduction

Many binary datasets occurring in data mining applica-
tions are, on one hand, complex as they have a very large
number of columns. On the other hand, some of those
datasets could be potentially simple, as they are very sparse
or have lots of structure. In this paper we consider the prob-
lem of defining a notion of effective dimension for a binary
dataset. We study ways of defining a concept of dimension
that would somehow capture the complexity or simplicity
of the dataset. Such a notion of effective dimension can be
used as a general score describing the complexity or sim-
plicity of the dataset; some potential applications of the in-
trinsic dimensionality of a dataset include model selection
problems in data analysis; it can also be used in speeding
up certain computations (see, e.g., [9]).

For continuous data there are many ways of defining the
dimension of a dataset. One approach is to use decompo-
sition methods such as SVD, PCA, or NMF (nonnegative
matrix factorization) [14, 19] and to count how many com-
ponents are needed to express, say, 90% of the variance in
the data. This number of components can be viewed as the
number of effective dimensions in the data.

In the aforementioned methods it is assumed that the
dataset is embedded into a higher-dimensional space by
some (smooth) mapping. The other main approach is to use
a different concept, that of fractal dimensions [3, 9, 15, 23].
Very roughly, the concept of fractal dimension is based on
the idea of counting the number of observations in a ball of
radius r and looking what the rate of growth of the number
is as a function of r. If the number grows as rk, then the
dimensionality of the data can be considered to be k. Note
that this approach does not provide any mapping that can be
used for the dimension reduction. Such mapping does not
even make sense because the dimension can be non-integral.

Applying these approaches to binary data is not straight-
forward. Many of the component methods, such as PCA
and SVD are strongly based on the assumption that the
data are real-valued. NMF looks for a matrix decomposi-
tion with nonnegative entries and hence is somewhat better
suited for binary data. However, the factor matrices may
have continuous values, which makes them difficult to in-
terpret. The component techniques aimed at discrete data
(such as multinomial PCA [6] or latent Dirichlet allocation
(LDA) [4]) are possible alternatives, but interpreting the re-
sults is hard.

In this paper we explore the notion of effective dimen-
sion for binary datasets by using the basic ideas from frac-
tal dimensions. Essentially, we consider the distribution of
the pairwise distances between random points in the dataset.
Denoting by Z this random variable, we study the ratio of
log P (Z < r) and log r, for different values of the r, and fit
a straight line to this; the slope of the line is known as the
correlation dimension of the dataset.



Interpreting the correlation dimension of discrete data
turns out to be a difficult task. To assist interpetation, we
normalize the correlation dimension by considering what
would be the number of variables in a certain random
dataset with independent columns having the same corre-
lation dimension. This normalized correlation dimension is
our main concept.

We study the behavior of the correlation dimension and
the normalized correlation dimension, both theoretically
and empirically. We give approximations for correlation
dimension, in the case of independent variables, showing
that it decreases when the data becomes more sparse. We
also give theoretical evidence indicating that positive cor-
relations between the variables lead to smaller correlation
dimensions.

Our empirical results for generated data show that the
normalized correlation dimension of a dataset with K inde-
pendent variables is very close to K , irrespectively of the
sparsity of the attributes. We demonstrate that adding posi-
tive correlation decreases the dimension. For real datasets,
we show that different datasets have quite different normal-
ized correlation dimensions, and that the ratio of the number
of variables to the normalized correlation dimension varies
a lot. This indicates that the amount of structure in the
datasets is highly variable. We also compare the normal-
ized correlation dimension against the number of PCA com-
ponents needed to explain 90% of the variance in the data,
showing interesting differences among the datasets.

The rest of this paper is organized as follows. In
Section 2 we define the correlation dimension for binary
datasets and we analyze the correlation dimension in Sec-
tion 3. The correlation dimension produces too small val-
ues and hence in Section 4 we provide means for scaling
the dimension. In Section 5 we represent our tests with real
world datasets. In Section 6 we review the related literature
and Section 7 is a short conclusion. The proofs are omitted
due to the space limitations.

2. Correlation dimension

There are several possible definitions of the fractal di-
mension of a subset of the Euclidean space; see, e.g., [3, 23]
for a survey; the Rényi dimensions [23] form a fairly general
family. The standard definitions of the fractal dimension are
not directly applicable in the discrete case, but they can be
modified to fit in.

The basic idea in the fractal dimensions is to study the
distance between two random data points.

We focus on the correlation dimension. Consider a 0/1
dataset D with K variables. Denote by ZD the random vari-
able whose value is the L1 distance between two randomly
chosen points from D; thus 0 ≤ ZD ≤ K . Informally, the
correlation dimension is the slope of the line fitted in the

log-log plot of (r, P (ZD < r)).
More formally, we first define the function f : N → R

to be f (r) = P (ZD < r). We extend this function to real
numbers by linear interpolation.

Let 0 ≤ r1 < r2 ≤ K . Then the different radii r and the
function f for a given dataset D determine the point set

I (D, r1, r2, N) = {(log r, log f(r)) |

r = r1 +
i (r2 − r1)

N
, i = 0 . . .N

}
.

We usually omit the parameter N for the sake of brevity.
For example, assume that P (ZD ≤ r) ∝ rd for some

d, that is, the number of pairs of points within distance d
grows as rd. Then I(D, r1, r2) is a straight line and the
correlation dimension is equal to d.

Definition 1. The correlation dimension cdR (D; r1, r2) for
a binary dataset D and radii r1 and r2 is the slope of the
least-squares linear approximation I (Z, r1, r2).

Assume that we are given α1 and α2 such that 0 ≤ α1 <
α2 ≤ 1. We define cdA (D; α1, α2) to be cdR (D; r1, r2),
where the radii ri are set to be max

(
f−1 (αi) , 1

)
. The

reason for truncating ri is to avoid some misbehavior oc-
curring with extremely sparse datasets.

That is, I (D, r1, r2) is the set of points containing the
logarithm of the radius r and the logarithm of the frac-
tion of pairs of points from D that have L1 distance less
than or equal to r. The correlation dimension is the slope
of the line that fits these points best. The difference be-
tween cdR (D; r1, r2) and cdA (D; α1, α2) is that cdR is
defined by using the absolute bounds r1 and r2 for the ra-
dius r, whereas cdA uses the parameters α1 and α2 to spec-
ify the sizes of the tail of the distribution. For instance,
cdA (D; 1/4, 3/4) is the correlation dimension obtained by
first computing the values r1 and r2 such that one quarter of
the pairs of points have distance below r1, and one quarter
of the pairs have distance above r2. The dimension is then
obtained by computing N + 1 points (log r, log f(r)) with
r1 ≤ r ≤ r2, and by fitting a line to these points, in the
least-squares sense.

How can we compute the correlation dimension of a bi-
nary dataset D? The probability P (ZD < r) can be com-
puted

1
|D|2

∑
x∈D

∑
y∈D

I(|x − y| < r),

where I(|x − y| < r) is the indicator function having value
1 if |x − y| < r, and value 0 otherwise. Computing the val-
ues P (ZD < r) for all integers r can thus be done trivially
in time O(N2K), where N is the number of points in D
and K is the number of variables. A sparse matrix repre-
sentation yields to a running time of O(NM), where M is
the total number of 1’s in the data: If point i has mi 1’s,



then
∑

i mi = M , and computing the all pairwise distances
takes time

N∑
i=1

N∑
j=1

(mi + mj) = 2NM.

If the number of points in a dataset is so large that
quadratic computation time in the number of points is too
slow, we can take a random subset Ds from D and estimate
the probability P (Z < r) by

1
|D| |Ds|

∑
x∈D

∑
y∈Ds

I(|x − y| < r)

or by
1

|Ds|2
∑

x∈Ds

∑
y∈Ds

I(|x − y| < r).

3. Properties of binary correlation dimension

In this section we analyze the properties of the corre-
lation dimension cdA (D; α1, α2) for binary datasets. We
show the following results under some simplifying assump-
tions. First, we prove that if the original data has in-
dependent columns, then the correlation dimension grows
as the probabilities of the individual variables get closer
to 0.5. Second, we show that in the independent case
cdA (D; α, 1 − α) grows as

√
K, where K is the number

of attributes (columns) in the dataset. Third, we prove that
if the variables are not independent, then the correlation di-
mension is smaller than for a dataset with the same margins
but independent variables.

For the analysis we need to make some simplifying as-
sumptions. One complication is caused by the fact that the
definition of cdR (D; r1, r2) involves the slope of a set of
points. However, note that I (D, r1, r2, 1) contains only
two points, and hence we have

cdR (D; r1, r2, 1) =
log f(r2) − log f(r1)

log r2 − log r1
.

Similarly, in the case of cdA (D; α1, α2, 1) we have r1

and r2 such that αi = f(ri), and hence

cdA (D; r1, r2, 1) =
log α2 − log α1

log r2 − log r1
.

Throughout this section we assume that the parameter N in
I (D, r1, r2, N) is equal to 1.

Proposition 2. Assume that the dataset D has K indepen-
dent variables, and that the probability of the variable i be-
ing 1 is pi for each i, and let qi = 2pi(1 − pi). Assuming
that K is large enough, we have

cdA (D; α, 1 − α) ≈ C(α)
∑

i qi√∑
i qi(1 − qi)

,

where C(α) is a constant depending only on α. In par-
ticular, if all probabilities pi are equal to p, then for q =
2p(1 − p) we have

cdA (D; α, 1 − α) ≈ C(α)

√
Kq

1 − q
.

The proposition indicates that the correlation dimension
is maximized for variables as close to 0.5 as possible.

Corollary 3. Assume the dataset D has independent
columns. The correlation dimension cdA (D; α, 1 − α) is
maximized if the variables have frequency 0.5.

Proposition 2 also tells that for a dataset with indepen-
dent identically distributed columns, the dimension grows
as a square root of the number of columns. If α = 1/4, then
the constant C(α) is about 0.815.

The correlation dimension has an interesting connection
to the average distance in randomly picked point pairs.

Proposition 4. Assume that the dataset D has K indepen-
dent variables, and that the probability of variable i being
1 is pi. Let qi =

∑
i 2pi(1 − pi). Let µ =

∑
i qi be the

average distance of two randomly picked points.
Assume that we are given two constants c1 and c2 such

that 0 ≤ c1 < c2 ≤ 1. Then we can approximate the
correlation dimension as

cdR (D; c1µ, c2µ) ≈ C(c1, c2)µ,

where C(c1, c2) depends only of c1 and c2.

Note that Proposition 4 gives an approximation for the
quantity cdR, while Proposition 2 is about cdA; this, how-
ever, is a superficial difference. More important is the fact
that in Proposition 4 we look at the case where the bounds
r1 and r2 are on the same side of the mean, whereas the
bounds corresponding to α and 1 − α from Proposition 2
are on the two sides of the mean. This implies that Propo-
sition 4 gives a stronger bound: the dimension grows as a
function of the mean µ, not as a function of µ/σ.

Example 5. Let D be a dataset with K dimensions, and
consider the set D′ obtained by copying each variable in D
to N new variables. Then

P (ZD < r) = P (ZD′ < Nr) ,

and hence

cdR (D; r1, r2) = cdR (D′; Nr1, Nr2) .

Given a dataset D with K columns, we denote by
ind (D) a random binary dataset having K independent
variables such that the probability of ith variable being 1



is equal to the probability of ith column of a random trans-
action sampled from D being 1. Alternatively, ind (D) can
be considered as a dataset obtained by permuting each col-
umn of D independently. We conjecture that the correlation
dimension of D is always smaller than the correlation di-
mension of ind (D), given that the original variables are all
positively correlated.

Conjecture 6. Assume the marginal probability of all orig-
inal variables are less than 0.5, and that all pairs of original
variables are positively correlated. Then

cdA (D; α, 1 − α) ≤ cdA (ind (D) ; α, 1 − α) ,

i.e., the correlation dimension of the original data is not
larger than the correlation dimension of the data with each
column permuted randomly.

Support for this conjecture is provided by the fact that the
variance Var [ZD] of the variable ZD can be shown to be no
more than the variance Var

[
Zind(D)

]
; this does not, how-

ever, suffice for the proof. The intuition behind the above
conjecture is similar to what one observes in other types of
definitions of dimension: if we randomly permute each col-
umn of a dataset, we expect to see the rank of the matrix
to grow, and also explain an increase the number of PCA
components needed to explain, say, 90% of the variance.
In the experimental section we show the empirical evidence
for Conjecture 6.

4. Normalized correlation dimension

The definition of correlation dimension (Definition 1) is
based on the definition of correlation dimension for con-
tinuous data. We have argued that the definition has some
simple intuitive properties: for a dataset with independent
variables the dimension is smaller if the variables are sparse,
and the dimension seems to shrink if we add structure to the
data by making variables positively correlated.

However, the scale of the correlation dimension is not
very intuitive: the dimension of a dataset with K indepen-
dent variables is not K , although this would be the most nat-
ural value. The correlation dimension gives much smaller
values and hence we need some kind of normalization.

We showed Section 3 that under some conditions inde-
pendent variables maximize the correlation dimension. In-
formally, we define the normalized correlation dimension
of a dataset D to be the number of variables that a dataset
with independent variables must have in order to have the
same correlation dimension as D does.

More formally, let ind (H, p) be a dataset with H inde-
pendent variables, each of which is equal to 1 with proba-
bility p. From Proposition 1 we have an explicit formula for

cdA (ind (H, p) ; α, 1 − α): setting q = 2p(1 − p) we have

cdA (ind (H, p) ; α, 1 − α) ≈ C(α)

√
Hq

1 − q
.

If the dataset would have the same marginal frequency, say
s, for each variable, the normalized correlation dimension
of a dataset D could be defined to be the number H such
that

cdA (D; α, 1 − α) and cdA (ind (H, s) ; α, 1 − α)

are as close to each other as possible.
The problem with this way of normalizing the dimension

is that it takes as the point of comparison a dataset where
all the variables have the same marginal frequency. This is
very far from being true in real data. Thus we modify the
definition slightly.

We first find a value s such that

cdA (ind (K, s) ; α, 1 − α) = cdA (ind (D) ; α, 1 − α) ,

i.e., a summary of the marginal frequencies of the columns
of D: s is the frequency that variables of an independent
dataset should have in order that it has the same correlation
dimension as D has when the columns of D have been ran-
domized. We define the normalized correlation dimension,
denoted by ncdA (D; α, 1 − α), to be an integer H such that

|cdA (ind (H, s) ; α, 1 − α) − cdA (D; α, 1 − α)|
is minimized. Proposition 2 implies the following state-
ment.

Proposition 7. Given a dataset D with K columns, the di-
mension ncdA (D; α, 1 − α) can be approximated by

ncdA (D; α, 1 − α) ≈
(

cdA (D) α, 1 − α

cdA (ind (D)) α, 1 − α

)2

K.

For examples, see the beginning of the next section.

5. Experimental results

In this section we describe our experimental results. We
first describe some results on synthetic data, and then dis-
cuss real datasets and compare the normalized correlation
dimension against PCA.

Unless otherwise mentioned, the dimension used in our
experiments was cdA (D; 1/4, 3/4, 50).

5.1. Synthetic datasets

In this section we provide empirical evidence to support
the analysis in Sections 3 and 4. In the first experiment we
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Figure 1. Normalized correlation dimension
for data having K independent dimensions
for K ∈ {50, 100, 150, 200}.

generated 100 datasets with K independent columns and
random margins pi. For each dataset, the margins pi were
randomly picked by first picking pmax uniformly at random
from [0, 1]. Then, the probability pi was picked uniformly
from [0, pmax]; this method results in datasets with differ-
ent densities. The box plot in Figure 1 shows that the nor-
malized dimension is very close to K , the number of vari-
ables in the data. This shows that for independent data the
normalized correlation dimension is equal to the number of
variables, and that the sparsity of the data does not influence
the results.

In the second experiment we tested Proposition 2 with
synthetic data. We generated 100 datasets having indepen-
dent columns and random margins, generated as described
above. Figure 2 shows the correlation dimension as a func-
tion of µ/σ, where µ = E [ZD] and σ2 = Var [ZD]. The
figure shows the behavior predicted by Proposition 2: the
normalized fractal dimension is a linear function of µ/σ,
and the slope is very close to C(1/4) = 0.815.
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Figure 2. Correlation dimension as a func-
tion of µ/σ for data with independent
columns (see Proposition 2). The y-axis is
cdA (D; 1/4, 3/4) and the x-axis is µ/σ, where
µ = E [ZD] and σ2 = Var [ZD]. The slope of the
line is about C(1/4) = 0.815.

The theoretical section analyzes only the simplest form
of the correlation dimension, that is, the case where N = 1.
We tested how the dimension behaves for different N . In
order to do that, we used generated datasets from the previ-
ous experiments and plotted cdA (D; 1/4, 3/4, 50) against
cdA (D; 1/4, 3/4, 1). We see from Figure 3 that the corre-
lation dimension has little dependency of N .
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Figure 3. Correlation dimension
cdA (D; 1/4, 3/4, 50) as a function of
cdA (D; 1/4, 3/4, 1) for data having K in-
dependent dimensions for K ∈ {50, 100, 200}.

In the fourth experiment we verified the quality of the
approximation of Proposition 4. We used the same data in
the previous experiment. Figure 4 shows the correlation di-
mension against µ = E [ZD], the average distance of two
random points. From the figure we see that Proposition 4
is partly supported: the correlation dimension behaves as
a linear function of µ. However, the slope becomes more
gentle as the number of columns increases.
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Figure 4. Correlation dimension as a function
of µ for data with independent columns (see
Proposition 4). The y-axis is cdA (D; 1/4, 3/4)
and the x-axis is µ = E [ZD], the average dis-
tance between two random points.

Our fifth experiment tested how positive correlation af-
fects the correlation dimension. Conjecture 6 predicts that
positive correlation should decrease the correlation dimen-
sion. We tested this conjecture by creating random datasets



D such that column i depends on column i − 1. Let Xi be
variable number i in the generated dataset. We generated
data by a Markov process between the variables:

P (Xi = 1 | Xi−1 = 0) = P (Xi = 0 | Xi−1 = 1) = ti

and
P (X1 = 1) = P (X1 = 0) = 0.5,

where X = [X1, . . . , Xk] is the random element of D.
The reversal probabilities ti were randomly picked as

follows: For each dataset we picked uniformly a random
number tmax from the interval [0, 1]. We picked ti uniformly
from the interval [0, tmax]. Note that if the reversal proba-
bilities were 0.5, then the dataset would have independent
columns. Denoting Z = ZD, we have

P (Zi = 1 | Zi−1 = 0) = P (Zi = 0 | Zi−1 = 1)
= 2ti (1 − ti) .

A rough measure of the amount of correlation in the data
is t =

∑
2ti (1 − ti). Figure 5 shows the correlation di-

mension as a function of the quantity t. We see that the
datasets with strong correlations tend to have small dimen-
sions, as the theory predicts.
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Figure 5. Correlation dimension as a func-
tion of t, a rough measure of correlation in a
dataset. The y-axis is cdA (D; 1/4, 3/4) and the
x-axis is the quantity t =

∑
2ti (1 − ti), where

ti is the reversal probability between columns
i and i − 1.

Next, we go back to the first experiment to see whether
the normalized correlation dimension depends on the spar-
sity of data. Note that sparse datasets have small µ =
E [ZD]. Figure 6 shows the normalized correlation dimen-
sion as a function of µ for the datasets used in Figure 1.
We see that the normalized dimension does not depend of
sparsity, as expected.

We tested Proposition 7 by plotting the normalized di-
mension as a function of KcdA (D)2/cdA (ind (D))2. We
used the generated datasets from the previous experiment
and from our fifth experiment, as well. Figure 7 reveals that
the approximation is good for the used datasets.
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Figure 6. Normalized correlation dimension
as a function of µ, the average distance be-
tween two random points. The x-axis is µ =
E [ZD] and the y-axis is ncdA (D; 1/4, 3/4).
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Figure 7. Normalized correlation dimension
as a function of KcdA (D)2 /cdA (ind (D))2.
The left figure contains datasets with inde-
pendent columns and in the right figure adja-
cent columns of the datasets depend on each
other.

5.2. Real datasets

In this section we investigate how our dimensions behave
with 9 real-world datasets: Accidents, Courses, Kosarak,
Paleo, POS, Retail, WebView-1, WebView-2 and 20 News-
groups. The basic information about the datasets is summa-
rized in Table 1.

The datasets are as follows. 20 Newsgroups1 is a collec-
tion of approximately 20 000 newsgroup documents across
20 different newsgroups [18]. Data in Accidents2 were ob-
tained from the Belgian “Analysis Form for Traffic Acci-
dents” forms that is filled out by a police officer for each
traffic accident that occurs with injured or deadly wounded
casualties on a public road in Belgium. In total, 340 183
traffic accident records are included in the dataset [12].

1http://people.csail.mit.edu/jrennie/
20Newsgroups/

2http://fimi.cs.helsinki.fi/data/accidents.dat.
gz



Table 1. The basic statistics of the datasets.
The column K corresponds to the the num-
ber of columns and the column N to the num-
ber of rows. The last column is the density of
1’s in percentages.

Data K N # of 1s Dens.

Accidents 469 340 183 11 500 870 7.21
Courses 5 021 2 405 64 743 0.54
Kosarak 41 271 990 002 8 019 015 0.02

Paleo 139 501 3 537 5.08
POS 1 657 515 597 3 367 020 0.39

Retail 16 470 88 162 908 576 0.06
WebView-1 497 59 602 149 639 0.51
WebView-2 3 340 77 512 358 278 0.14

The datasets POS3, WebView-14 and WebView-25 were con-
tributed by Blue Martini Software as the KDD Cup 2000
data [16]. POS contains several years worth of point-of-
sale data from a large electronics retailer. WebView-1 and
WebView-2 contain several months worth of click-stream
data from two e-commerce web sites. Kosarak6 consists
of (anonymized) click-stream data of a Hungarian on-line
news portal. Retail7 is a retail market basket data supplied
by an anonymous Belgian retail supermarket store [5]. The
dataset Paleo8 contains information of species fossils found
in specific paleontological sites in Europe [10]. Courses is
a student–course dataset of courses completed by the Com-
puter Science students of the University of Helsinki.

We began our experiments by computing the correlation
dimension cdA (D; 1/4, 3/4) for each dataset. In order to
do that, we needed to estimate the probabilities P (ZD < r).
Since some of the datasets had a very large amount of rows
(see Table 1), we estimate the probabilities P (ZD < r) by

1
|D| |Ds|

∑
x∈D

∑
y∈Ds

I (|x − y| < r) , (1)

where I (|x − y| < r) is 1 if |x − y| < r, and 0 otherwise.
The set Ds was a random subset of D containing 10 000
points. Since Paleo and Courses have small number of
rows, no sampling is used and Ds was set to D for these
datasets. The evaluation times are discussed in the end of
the section.

3http://www.ecn.purdue.edu/KDDCUP/data/BMS-POS.
dat.gz

4http://www.ecn.purdue.edu/KDDCUP/data/
BMS-WebView-1.dat.gz

5http://www.ecn.purdue.edu/KDDCUP/data/
BMS-WebView-2.dat.gz

6http://fimi.cs.helsinki.fi/data/kosarak.dat.gz
7http://fimi.cs.helsinki.fi/data/retail.dat.gz
8NOW public release 030717 available from [10].

We also computed cdA (ind (D) ; 1/4, 3/4), the corre-
lation dimension for the datasets with the same column
margins but independent columns. Our goal was to use
these numbers to provide empirical evidence for the the-
oretical sections. To calculate the dimensions we need to
estimate the probabilities P

(
Zind(D) < r

)
. The estimation

was done by generating 10 000 points from the distribution
of Zind(D).

The dimensions cdA (D) and cdA (ind (D)) are given in
Table 2. We see that the dimensions are very small. The rea-
son is that the datasets are quite sparse. We also observe that
cdA (ind (D)) is always larger than cdA (D), which sug-
gests that there is at least some structure in the datasets.

In addition, we used cdA (ind (D)) to verify Proposi-
tion 2. This was done by computing µ/σ, where µ =
E

[
Zind(D)

]
and σ2 = Var

[
Zind(D)

]
. We also computed

Ĉ(1/4) = cdA (ind (D) ; 1/4, 3/4)
σ

µ
.

Note that Proposition 2 suggests that Ĉ(1/4) ≈ 0.8. Table 2
shows us that this is indeed the case.

Table 2. Correlation dimensions of the
datasets. In the second column, D′ = ind (D).
The third column is the fraction µ/σ, where
µ = E [ZD′ ] and σ2 = Var [ZD′ ]. The fourth col-
umn is an estimate of the coefficient C(1/4)
obtained by dividing cdA (D′) with µ/σ.

Data cdA (D) cdA (D′) µ/σ Ĉ (1/4)

Accidents 3.79 5.50 6.67 0.83
Courses 1.56 5.94 7.29 0.82
Kosarak 0.96 3.21 3.96 0.81

Paleo 1.21 3.20 3.87 0.83
POS 1.14 2.98 3.62 0.82

Retail 1.33 3.73 4.49 0.83
WebView-1 1.27 1.93 2.26 0.86
WebView-2 1.01 2.58 3.05 0.85

We continued our experiments by calculating the nor-
malized correlation dimension ncdA (D; 1/4, 3/4). For this
we computed the probability s such that

cdA (ind (K, s) ; α, 1 − α) = cdA (ind (D) ; α, 1 − α)

using binary search. Also, the normalized dimension itself
was computed by using binary search. The normalized di-
mensions are given in Table 3.

Recall that the normalized correlation dimension of data
D indicates how many variables a dataset D′ with indepen-
dent columns should have so that the distributional behavior
of the pairwise distances between points would be about the



Table 3. Normalized correlation dimensions
of the datasets.

Data K ncdA
ncdA(D)

K
KcdA(D)2

cdA(ind(D))2

Accidents 469 220 0.47 222.91
Courses 5 021 304 0.06 344.24
Kosarak 41 271 2 378 0.06 3 684.78

Paleo 139 15 0.11 19.90
POS 1 657 181 0.11 242.91

Retail 16 470 1 791 0.11 2 107.52
WebView-1 497 190 0.38 214.33
WebView-2 3 340 359 0.11 512.97

same in D and D′. Thus we note, for example, that for the
Paleo data the dimensionality is about 15, a fraction of 11%
of the number of columns in the original data.

The last column in Table 3 is the estimate predicted by
Proposition 7. Unlike with the synthetic datasets (see Sec-
tion 5.1), the estimate is poor in some cases. A probable
reason is that the examined datasets are extremely sparse,
and hence the techniques used to obtain Proposition 7 are
no longer accurate. This is supported by the observation
that Accident has the best estimate and the largest density.

We also tested the accuracy of Proposition 7 with 20
Newsgroups dataset9. In Figure 8 we plotted the normalized
correlation dimension as a function of the estimate. We see
that the approximation overestimates the dimension but the
accuracy is better than in Table 3.
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Figure 8. Normalized correlation dimension
as a function of KcdA (D)2 /cdA (ind (D))2.
Each point represents one newsgroup in 20
Newsgroups dataset.

We will compare the normalized correlation dimensions
against PCA in the next subsection.

Next we studied the running times of the computation of
the correlation dimension. Computing the distance of two
binary vectors can be done in O(M) time, where M is the

9The messages were converted into bag-of-words representations and
200 most informative variables were kept.

number of 1’s in the two vectors. Hence, estimating the
probabilities using Equation 1 can be done in O(|Ds|L),
where L is the number of 1’s in D. We need also to fit the
slope to get the actual dimension, but the time needed for
this operation is negligible compared to the time needed for
estimating the probabilities. Note that in our setup, the size
of Ds was fixed to 10 000 (except for Paleo and Courses).
Hence, the running time is proportional to the number of 1’s
in a dataset. The running times are given in Table 4.

Table 4. The running times of the correlation
dimension in seconds for various datasets.
Time/# of 1’s: time in milliseconds divided by
the number of 1’s in the data.

Data # of 1’s Time Time/# of 1’s

Accidents 11 500 870 973 0.085
Courses 64 743 9 0.141

Paleo 3 537 0.1 0.039
Kosarak 8 019 015 793 0.099

POS 3 367 020 447 0.133
Retail 908 576 103 0.113

WebView-1 149 639 17 0.114
WebView-2 358 278 40 0.112

5.3. Correlation dimension vs. other methods

There are different approaches for measuring the struc-
ture of a dataset. In this section we study how the normal-
ized dimension compares with PCA.

We performed PCA to our datasets and computed the
percentage of the variance explained by the M first PCA
variables, where M = ncdA (D). Additionally, we cal-
culated how many PCA components are needed to explain
90% of the variance. The results are given in Table 5.
We observe that ncdA (D) PCA components explain rela-
tively large portion of the variance for Accidents, POS, and
WebView-1, but explains less for Paleo and WebView-2.

The most interesting behavior is observed in the Paleo
dataset. We see that whereas PCA dimension says that Pa-
leo should have relatively high dimension, the normalized
dimension suggests a very small value. We know that Paleo
has a very strong structure (by looking at the data) so this
suggests that the PCA approach overestimates the intrinsic
dimension for Paleo. This behavior can perhaps be partly
explained also by considering the margins of the datasets.
The margins of Paleo are relatively homogeneous whereas
the margins of the rest datasets are skewed.



Table 5. Normalized correlation dimensions
versus PCA for various datasets. The sec-
ond column is the percentage of variance ex-
plained by ncdA (D) variables and the third
column is the number of variables needed to
explain 90% of the variance.

Data ncdA (D) PCA (%) 90% PCA Dim.

Accidents 220 99.83 81
Paleo 15 48.50 79
POS 181 84.48 246

WebView-1 190 87.89 208
WebView-2 359 59.73 1 394

6. Related work

There has been a significant amount of work in defin-
ing the concept of dimensionality in datasets. Even though
most of the methods can be adapted to the case of binary
data, they are not specifically tailored for it. For instance,
many methods assume real-valued numbers and they com-
pute vectors/components that have negative or continuous
values that are difficult to interpret. Such methods in-
clude, PCA, SVD, and non-negative matrix factorization
(NMF) [14, 19]. Other methods such as multinomial PCA
(mPCA) [6], and latent Dirichlet allocation (LDA) [4] as-
sume specific probabilistic models of generating the data
and the task is to discover latent components in the data
rather than reasoning about the intrinsic dimensionality of
the data. Methods for exact and approximate decomposi-
tions of binary matrices in Boolean semiring have also been
proposed [11, 21, 22], but similarly to mPCA and LDA,
they focus on finding components instead of the intrinsic
dimensionality.

The concept of fractal dimension has found many ap-
plications in the database and data mining communities,
such as, making nearest neighbor computations more effi-
cient [24], speeding up feature selection methods [29], out-
lier detection [27], and performing clustering tasks based on
the local dimensionality of the data points [13].

Many different notions of complexity of binary datasets
have been proposed and used in various contexts, for in-
stance VC-dimension [2], discrepancy [7], Kolmogorov
complexity [20] and entropy-based concepts [8, 25]. In
some of the above cases, such as Kolmogorov complexity
and entropy methods, there is no direct interpretation of the
measures as a notion of dimensionality of the data as they
are measures of compressibility. VC-dimension measures
the dimensionality of discrete data, but it is rather conserva-
tive as a binary dataset having VC-dimension d means that
there are d columns such that the projection of the dataset

on those coordinates results all possible bit vectors of length
d. Hence, VC-dimension does not make any difference be-
tween datasets {0, 1}d and {x ∈ {0, 1}K :

∑K
i=1 xi ≤ d},

although there is a great difference when d << K . Further-
more, computing the VC-dimension of a given dataset is a
difficult problem [26].

Also the work on random projections and dimensional-
ity reductions, such as in [1], is related but that line of re-
search has different goals than ours. Finally, methods such
as multidimensional scaling (MDS) [17] and Isomap [28]
focus on embedding the data (not necessarily binary) in
low-dimensional spaces with small distortion, mainly for
visualization purposes.

7. Concluding remarks

We have given a definition of the effective dimension of
a binary dataset. The definition is based on ideas from frac-
tal dimensions: We studied how the distribution of the dis-
tances between two random data points from the dataset be-
haves, and fit a slope to the log-log set of points. We defined
the notion of normalized correlation dimension. It measures
the number of dimensions of the appropriate density that a
dataset with independent variables should have to have the
same correlation dimension as the original dataset.

We studied the behavior of correlation dimension and
normalized correlation dimension, both theoretically and
empirically. Under certain simplifying assumptions, we
were able to prove approximations for correlation dimen-
sion, and we verified these results using synthetic data.

Our empirical results for real data show that different
datasets have clearly very different normalized correlation
dimensions. In general, the normalized correlation dimen-
sion correlates with the number of PCA components that
are needed to explain 90% of the variance in the data, but
there are also intriguing differences.

Traditionally, dimension means the degrees of freedom
in the dataset. One can consider a dataset embedded into a
high-dimensional space by some (smooth) embedding map.
Traditional methods such as PCA try to negate this embed-
ding. Fractal dimensions, however, are based on different
notion, the behavior of the volume of data as a function of
neighborhoods. This means that the methods in this paper
do not provide a mapping to a lower-dimensional space, and
hence traditional applications, such as feature reduction, are
not (directly) possible. However, our study shows that frac-
tal dimensions have promising properties and we believe
that these dimensions are important as such.

A fundamental difference between the normalized cor-
relation dimension and PCA is the following. For a dataset
with independent columns PCA has no effect and selects the
columns that have the highest variance until some selected
percentage of the variance is explained. Thus, the number



of PCA components needed depends on the margins of the
columns. On the other hand, the normalized correlation di-
mension is always equal to the number of variables for data
with independent columns.

Obviously, several open problems remain. It would be
interesting to have more general results about the theoretical
behavior of the normalized correlation dimension. In the
empirical side the study of the correlation dimensions of
the data and its subsets seems to be a promising direction.
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[21] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Man-
nila. The discrete basis problem. In J. Fürnkranz, T. Schef-
fer, and M. Spiliopoulou, editors, Knowledge Discovery
in Databases: PKDD 2006 – 10th European Conference
on Principles and Practice of Knowledge Discovery in
Databases, Berlin, Germany, Croatia, September 18–22,
2006, Proceedings, Lecture Notes in Computer Science.
Springer, 2006.

[22] S. D. Monson, N. J. Pullman, and R. Rees. A survey of
clique and biclique coverings and factorizations of (0, 1)-
matrices. Bulletin of the ICA, 14:17–86, 1995.

[23] E. Ott. Chaos in Dynamical Systems. Cambridge University
Press, 1997.

[24] B.-U. Pagel, F. Korn, and C. Faloutsos. Deflating the dimen-
sionality curse using multiple fractal dimensions. In ICDE,
pages 589–598. IEEE Computer Society, 2000.

[25] P. Palmerini, S. Orlando, and R. Perego. Statistical proper-
ties of transactional databases. In H. Haddad, A. Omicini,
R. L. Wainwright, and L. M. Liebrock, editors, SAC, pages
515–519. ACM, 2004.

[26] C. H. Papadimitriou and M. Yannakakis. On limited nonde-
terminism and the complexity of the V-C dimension. Jour-
nal of Computer and System Sciences, 53(2):161–170, 1996.

[27] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and
C. Faloutsos. LOCI: fast outlier detection using the local
correlation integral. In U. Dayal, K. Ramamritham, and
T. M. Vijayaraman, editors, ICDE, pages 315–326. IEEE
Computer Society, 2003.

[28] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduc-
tion. Science, 290(5500):2319–2323, 2000.

[29] C. Traina Jr., A. J. M. Traina, L. Wu, and C. Faloutsos.
Fast feature selection using fractal dimension. In K. Becker,
A. A. de Souza, D. Y. de Souza Fernandes, and D. C. F.
Batista, editors, SBBD, pages 158–171. CEFET-PB, 2000.


