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a b s t r a c t

This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological

modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted

to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each

DEM and were compared to reference data. Hydrological simulations were conducted and the outputs

were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated

features and reference data. However, minor differences been found between streamflow simulations

resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These

findings indicate that while higher resolution DEM grids may result in more accurate representation of

terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling.

Hence the additional expense of generating high resolution DEM’s for the purpose of watershed

modeling at daily or longer time steps may not be warranted.

� 2014 Elsevier Ltd. All rights reserved.

Software and data availability

Name BASINS 4.0 (Better Assessment Science Integrating

point & Non-point Sources) with a non-proprietary,

open source, free GIS system, MapWindow (www.

MapWindow.org)

Developer U.S. EPA with AquaTerra Consultants and Idaho

State University

Contact http://www.aquaterra.com/contact/index.php

Availability and cost The software is available for free

download at USEPA (United States

Environmental Protection Agency)

website. Mapwindow is an open source

programmable GIS (VB, Cþþ, .NET, and

Active � controls) that supports

manipulation, analysis, and viewing of

geospatial data and associated attribute

data in several GIS data formats.

1. Introduction

Hydrologic simulation models and water resources planning

tools often use hydrographic datasets (most importantly stream

network polylines and watershed boundaries) which can be

q One sentence description: This paper explores the effects of LiDAR-derived

DEM resolution on hydrographic features extraction used for streamflow simula-

tion modeling.
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derived from gridded (raster) digital elevation models (DEMs) us-

ing well-established terrain analysis techniques (Jenson and

Domingue, 1988; Tarboton et al., 1991; Tarboton and Ames, 2001;

Teng et al., 2008; Tesfa et al., 2011). DEMs used in these processes

are derived from various sources including: manually surveyed

topographic maps, aerial photogrammetry, interpolated global

positioning system (GPS) points, and the NASA Shuttle Radar

Topography Mission (Farr and Kobrick, 2000; Kinsey-Henderson

and Wilkinson, 2013; Han et al., 2012). In recent years, another

source of data fromwhich DEMs can be derived has emerged in the

form of Light Detection and Ranging data (LiDAR).

LiDAR technology offers a relatively efficient way to produce

DEMs for high accuracy mapping applications. LiDAR sensors are

capable of receiving multiple laser pulse returns which, when

combined with precision GPS location data, can provide highly

accurate and dense point sample measurements of terrain height

and ground features (e.g. vegetation, built structures). In this way,

LiDAR can be used to define a detailed representation of the earth’s

surface horizontally as well as vertically, making the LiDAR data

source increasingly important for surface structure derivation and

its application in hydrographic feature extraction. Indeed, channels

extracted from a LiDAR-derived DEM have been shown to have a

more complex morphology and correspond better with field-

mapped networks than those derived from a conventionally pro-

duced DEM (Charrier and Li, 2012).

Murphy et al. (2007) suggests that when considering hydrologic

modeling, DEM cell size has a greater impact on results than does

the method by which the DEM was produced. Chow and Hodgson

(2009) demonstrated that DEM resolution progressively affects the

mean and deviation of slope within the range of 2e10 m. Shore

et al. (2013) used a 5 m resolution DEM was to study subcatch-

ment connectivity and found that detailed ditch data did not

contribute significantly to improving results. These observations

contribute to the primary question motivating the work presented

here: What is the relationship between hydrographic derivatives

(specifically watershed boundaries and stream network center-

lines) and the cell size of the LiDAR-derived DEM? Furthermore, is

there an optimal resolution of LiDAR-derived DEMs for hydrologic

modeling? These questions are important because of the extensive

use of DEM derived vector data features in both mapping and hy-

drologic modeling applications.

To address these questions, we produced several DEMs at

different resolutions (cell-sizes) from LiDAR datasets from three

different watersheds and delineated stream network centerlines

and watershed boundary polygons for each watershed at each DEM

resolution. The resulting vector data were then compared to best

available reference datasets for each watershed. An assessment of

the “correctness” of each extracted stream network is made

through the use of longitudinal root mean square error (LRMSE),

sinuosity deviation, and selected hydrographic parameters. To

assess the effect of LiDAR-derived DEM cell size variation on

streamflow simulation, a hydrologic model for a watershed was

calibrated using input watershed and stream networks from each

DEM resolution and resulting streamflow simulations were

compared to observed data.

2. Background

Historically, literature on the effect of spatial scale on topo-

graphic modeling largely focuses on DEMs created by means

other than LiDAR (Jenson, 1991; Moore, 1991; Tarboton et al.,

1991; DeVantier and Feldman, 1993; Olivera, 2001). However,

more recent studies include research on the effect of DEM reso-

lution on hydrology-related parameters from LiDAR data (Kienzle,

2004; Vaze et al., 2010; Sørensen and Seibert, 2007). Tarboton

et al. (1991) explored the length scale or drainage density for

network derivation from traditional digital elevation data, and

suggested criteria for determining the appropriate drainage

density at which to extract networks from DEMs. Zhang and

Montgomery (1994) found that increasing the grid size resulted

in an increased mean topographic index because of increased

contributing area and decreased slopes. Wolock and Price (1994)

found that increasing grid size resulted in higher minimum,

mean, variance, and skew of the topographic index distribution.

Techniques for generating DEM data from LiDAR have been

greatly improved in the last decade (Kraus and Pfeifer, 2001;

Agarwal et al., 2006; Xiaoye, 2008). With respect to the use of

the LiDAR-derived DEMs for hydrologic modeling, Murphy et al.

(2007) compared stream network modeling results using LiDAR

and photogrammetric derived digital elevation which reveals that

a flow network modeled from the LiDAR-derived DEM was most

accurate.

Kienzle (2004) investigated the effect of DEM raster resolution

on first order, second order and compound terrain derivatives and

identified an optimum grid cell size between 5 and 20 m, related to

terrain complexity. Sørensen and Seibert (2007) also showed that

the resolution and information content of a DEM has great influ-

ence on the computed topographic indices.

Spatially distributed hydrological models have been shown to

be sensitive to DEM resolution (Zhang and Montgomery, 1994;

Wolock and Price, 1994) both in horizontal and vertical measure-

ment (Kenward et al., 2000). Chauby et al. (2005) indicated that

finer resolution DEM cell sizes may result in improved output from

the Soil and Water Assessment Tool (SWAT). The effect of DEM

resolution on water quality modeling and calibration e specifically

due to changes in delineated watersheds e was reported by

Teegavarapu et al. (2006) using a Hydrologic Simulation Program

FORTRAN (HSPF) model.

3. Data

3.1. Study area

The three watersheds used for this study are located in Idaho,

U.S.A., and include: Dry Creek Experimental Watershed (DCEW),

Reynolds Creek Experimental Watershed (RCEW) and Slate Creek

Watershed (SCW), as shown in Fig. 1. These watersheds were

chosen because of: 1) the availability of extensive high point den-

sity airborne LiDAR datasets; 2) the availability of 1 m aerial images

and existing stream feature data used for creating reference stream

networks; and 3) areas with distinct topographical (and hence

hydrographical) characteristics which represent different steep

watersheds in this area. We recognize that our results will not

necessarily apply in broader flatter watersheds due, in part, to the

inherent difficulty in extracting drainage areas and networks from

flat terrain. A brief description of each watershed follows.

3.1.1. Dry Creek Experimental Watershed (DCEW)

DCEW is located within the Boise Mountains in Southwestern

Idaho (about 43� latitude, �116� longitude). DCEW includes the

28 km2 northeastward trending Dry Creek drainage extending from

1000 to 2100 m in the granitic region of the Boise Front.

3.1.2. Reynolds Creek Experimental Watershed (RCEW)

RCEW, typical of much of the intermountain region of the

western United States (Seyfried and Wilcox, 1995) is a rangeland

located in the Owyhee Mountains of southwestern Idaho, approx-

imately 80 km southwest of Boise, Idaho, USA. The watershed

ranges in elevation from 1101 to 2241 m and has 239 km2 drainage

area.
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3.1.3. Slate Creek Watershed (SCW)

SCW lies within the Salmon Basin in the southern part of Idaho’s

panhandle, and covers a total area of 320 km2. Elevation within

SCW ranges from 219 to 3843 m. Slate Creek originates high in the

BouldereWhite Cloud Mountains and descends northward to the

Salmon River, descending nearly 2000 m.

3.2. Source data and accuracy

LiDAR data for RCEW and DCEW were acquired as part of a

project using LiDAR for studying eco-hydrologyand snowmodeling,

and data collection for SCWwas commissioned by the USDA Forest

Service. The LiDAR surveys were conducted byWatershed Sciences,

Corvallis, Oregon. A Leica ALS50 Phase II LiDAR instrument was

flown in a Cessna Caravan 208B aircraft over the period of

September 29 to October 3, 2006 for SCW and November 10 to

November 18, 2007 for RCEWandDCEW. The datawere delivered in

the LAS 1.1 file format with information on pulse return number,

easting, northing, elevation, scan angle, and intensity for each re-

turn. The vendor-reported vertical absolute accuracy, represented

as Root Mean Square Error (RMSE), is 0.026 m and 0.033 m for

DCEW and RCEW, respectively, and 0.088 m for SCW. Based on the

relationship between horizontal error andflight altitude (1/1100th),

the horizontal accuracy is estimated at approximately 0.30 m.

3.3. LiDAR-based DEM creation

3.3.1. LiDAR data post-processing

Derivation of bare earth DEMs from raw LiDAR data requires

removal of above-ground features such as vegetation and buildings.

Since few buildings and bridges exist in the study areas, the main

focus of filtering was to remove vegetation. The raw LiDAR point

cloud was height-filtered to separate ground and non-ground

returns described in Streutker and Glenn (2006). The non-ground

return points were filtered by setting the canopy spacing (moving

window) at 7 m, similar to other studies in the same and related

ecosystems (Streutker and Glenn, 2006; Streutker et al., 2011;

Glenn et al., 2011; Mitchell et al., 2011; Sankey and Glenn, 2011).

The LiDAR data in this study were processed using Idaho State

University’s freely available open-source BCAL LiDAR Tools (http://

bcal.geology.isu.edu/tools/lidar), which work with the free

Interactive Data Language (IDL) virtual machine and as a plug-in for

the image analysis software ENVI 4.7 (Exelis Visual Information

Solutions, Boulder, Colorado, USA).

3.3.2. LiDAR DEM generation

LiDAR points are not evenly spaced, therefore, it is necessary to

interpolate (where there are no existing points in the target raster

cell) or to generalize (where there aremanypoints in the target raster

cell) to obtain a single value to be applied to each cell in the output

raster DEM. After height-filtering the raw LiDAR data, DEMs were

generated from the first returns using a hybrid natural neighbor

interpolator (Tinkham et al., 2011). During the height-filtering pro-

cess, the height of all vegetation returns above the bare-earth surface

(interpolated using natural neighbors) was recorded. A bare-earth

DEM was computed as the mean elevation of all the ground

returns and elevation minus vegetation height of non-ground

returns. For cells with no LiDAR returns, returns from neighboring

pixels were used to compute the bare-earth elevation. A series of

LiDAR-derived DEMs for DCEWat different cell sizes were generated

based on the bare-earth LiDAR point cloud with all vegetation

removed, are shown in Fig. 2. Resulting DEMs were then used for

stream network delineation and hydrologic model application.

3.4. Stream network reference data

Assuming one dataset is the best available representation of a

particular feature, we can estimate the relative error contained

within other features by comparing them to the reference data (as a

measure of relative accuracy). To create reference stream center-

lines for the three study areas, field-derived stream networks and

watershed boundary feature datawere obtained for DCEW (Aishlin,

2007) and RCEW (Seyfried et al., 2001). A stream network feature

dataset for SCWwas retrieved from the National Hydrology Dataset

(NHD) (http://nhd.usgs.gov/). These stream centerlines were

checked and adjusted manually as needed using an imagery based

verifying method (Pai and Saraswat, 2013) against 1 m digital

orthoimagery of Idaho from 2009 National Agriculture Imagery

Program (NAIP). NAIP imagery was not used as a sole source for

stream network reference data because of vegetation obstructions

in the imagery. Also, many stream segments in these high, arid

watersheds are narrower than the 1 m pixel size of the NAIP data.

Fig. 1. Dry Creek Experimental Watershed (DCEW), Reynolds Creek Experimental Watershed (RCEW) and Slate Creek Watershed (SCW) in Idaho, USA.
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4. Analysis methods

4.1. Hydrographic features extraction

Techniques for extracting watershed boundaries and stream

network hydrography from DEM data are well established (Beven

and Kirkby, 1979; Jenson, 1991; Tarboton et al., 1991; Fekete et al.,

2001; Teng et al., 2008; Wu et al., 2011; Schwanghart and

Heckmann, 2012). We used geoprocessing tools within ArcGIS 9.3

(ESRI, Inc., Redlands, California), assembled in the ArcGIS Mod-

elBuilder tool, to extract stream networks and watershed areas

from each of the LiDAR-derived DEMs.

Hydrologic terrain analysis typically requires that the input DEM

be projected into a local or regional geographic projection system

that preserves distance and area measurements. For the purposes

of this study, the North American Datum 1983 Universal Transverse

Mercator (Zone 11 North) projection was used for all DEMs. We

used a simple pit-filling technique where areas of low elevation are

raised to the neighboring values, such that every DEM cell can

effectively “flow out” of the grid.

Flow direction was computed using an 8-direction pour point

model. The more computationally intensive DNmethod (Tarboton

et al., 1991) was also explored but was not used because it produced

essentially the identical results in our steep mountain watersheds.

Flow accumulation was computed at every cell such that an area

threshold could be set whereby any cells with an accumulation area

higher than the threshold are defined as streams. The same area

threshold (0.78 km2) was used for all data to ensure a similar

number of stream segments regardless of DEM resolution. Using

map algebra to identify cells exceeding the accumulation threshold,

stream networks were delineated from the DEM. Stream outlet

points were used to identify drainage outlets of watershed areas.

Raster-to-polyline and raster-to-polygon conversions were used to

convert stream networks and watershed areas into a vector data

format for comparison to reference data.

4.2. Feature accuracy assessment

Fig. 3 shows an example of multiple stream networks delineated

fromDEMdatawithin awatershed and compared to reference data.

Three measurements were adopted to assess the difference

between modeled and reference hydrography including total

assessment of stream length; assessment of variation along the

stream network; and assessment of sinuosity in resulting stream

networks as described below.

4.2.1. Stream length

Total stream length of all stream segments in the watershed is

used here as a measure of the level of stream detail as suggested in

Day (1977). Total watershed or catchment area is often used as a

critical parameter in hydrologic and water resources simulation

models. This follows Callow et al. (2007) who used stream length

and catchment area to explore the impact of hydrological correc-

tion methods on resulting DEMs.

4.2.2. Longitudinal root mean square error (LRMSE)

Longitudinal root mean square error (LRMSE) is defined as root

mean square error (RMSE) computed between a number of paired

sets of points located along both the modeled and reference stream

networks (Fig. 4). LRMSE is used here as a measure of how accu-

rately themodeled stream networksmatch the reference networks.

The smaller the LRMSE, the closer the fit between modeled and

reference data (Anderson et al., 2014).

Calculation of LRMSE was implemented by first dividing the

reference line into m equal-length segments and n evenly spaced

points, wherem¼ n� 1. Then, for each of these points, the distance

(d) from that point on the reference line to the nearest point on the

line being compared, was determined. LRMSE was then calculated

as:

LRMSE ¼ sqrt
n

X

i

h

d2i

i .

n
o

(1)

with m ¼ 100 and n ¼ 101.

4.2.3. Sinuosity

Sinuosity is used to describe the condition of curving in shape

and is used here as a quantitative index of streammeandering and a

distinctive property of channel pattern. Stream sinuosity, is

computed as the ratio of channel length to direct distance between

the beginning and end of the stream and is used in the study of the

geometry, dynamics, and dimensions of alluvial channels (Chorley

et al., 1984). Sinuosity was computed for all segments of both the

reference stream network and the modeled stream networks at

each DEM resolution for each study watershed.

5. Feature extraction results

DEM cell size, total stream length and data file size computed for

the three study watersheds at each DEM resolution are shown in

Tables 1e3. Total stream length variation is represented in Fig. 5.

Fig. 2. LiDAR-derived DEM data at various resolutions for DCEW.

P. Yang et al. / Environmental Modelling & Software 58 (2014) 48e57 51



We observed a decreasing tendency in total stream length

(Fig. 5) as a function of cell size in all three watersheds. This is

consistent with the findings of Fekete et al. (2001) and may be due

to the chosen re-gridding algorithms as noted by Wu et al. (2011).

Resulting LRMSE values (as computed between modeled stream

networks and reference stream) are shown in Fig. 6. LRMSE values

were found tomonotonically increasewith increasing DEM cell size

in the three study areas.

The difference between the reference data and the derived

streams in varying cell size ranged from 15 to 82 m for DCEW and

from 20 to 39 m for RCEW and 21e99 m for SCW, respectively. The

effect of varying cell size on LRMSE values wasmoderate at 1e10m,

with no more than 20% deviation from 1 to 10 m in all study areas.

However, at 30 and 60 m, the LRMSE reaches as high as 99 m. The

implications of this variability with respect to hydrologic modeling

are discussed in the conclusions.

Compared to the sensitivity analysis of LRMSE, the sinuosity

deviation from the referencewith varying DEM cell size revealed an

inverse tendency for cell sizes less than 10 m and an increase for

cell sizes larger than 10 m (Fig. 7). The absolute sinuosity difference

between the reference and the derived streams from varying cell-

sized DEMs ranged from 0.05 to 0.1 for RCEW. At the cell size of

10m, the absolute standard deviation valuewas smallest for each of

the experimental watersheds, which indicates that stream net-

works derived from the cell sizes of 10 mwere best matched to the

reference stream.

6. Streamflow simulation and results

To examine the impact of DEM resolution on hydrologic

modeling, streamflowwas simulated using LiDAR DEMs at different

resolutions at the DCEW outlet. DCEW was chosen due to its rela-

tively small area and availability of observation data for calibrating

the watershed model.

Fig. 4. Computation of LRMSE between modeled and reference stream segments.

Fig. 3. A separate stream network was derived from each DEM and compared to reference data.

Table 1

RCEW hydrographic feature.

Cell size (m) Data volume (kb) Total stream length (m)

1 1,605,430 62,014

5 66,047 56,900

10 16,509 55,796

30 1836 52,657

60 460 51,647
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6.1. Hydrologic model calibration and validation

Hydrological Simulation Program e Fortran (HSPF) was used to

simulate streamflow at DCEW outlet where observed data was

available. HSPF is a continuous simulation model that represents

hydrologic processes, storages and fluxes for a watershed. It is a

comprehensive watershed model designed to simulate water

quantity and quality processes and has been applied extensively to

manage hydrologic and water quality issues in watersheds (Chew

et al., 1991; Al-abed and Al-Sharif, 2008; Hall et al., 2008; Zhang

and Montgomery 1994, Fonseca et al., 2014). Calibration of HSPF

is an iterative procedure of parameter evaluation (Fig. 8), as a result

of comparing simulated against observed values of interest.

We calibrated the DCEW watershed model using the HSPF

parameter estimation software, HSPExp (Lumb et al., 1994). The

system computes the following statistics from the simulated and

observed streamflow time series: total runoff volume, mean of the

low flow recession rates, mean of the lowest 50 percent and highest

10 percent of the daily mean flows, flow volumes for selected

storms, seasonal volume and runoff volume for selected summer

storms. It computes the ratio of simulated surface runoff and

interflow volumes and the difference between the simulated actual

evapotranspiration and the potential evapotranspiration.

The hydrological model was calibrated using flow and meteo-

rological data acquired at the lower gage station using Hydro-

Desktop (Ames et al., 2012) and via public ftp from the DCEW

project located at the outlet of the DCEW watershed for the entire

period of 2000e2005 and validated for a 3 year period (2007e

2009). Potential evapotranspiration was derived from maximum

andminimum air temperature withWDMUtil software, included in

BASINS. During model calibration, values of several sensitive model

parameters were varied within the acceptable and reasonable

range to obtain the best practical agreement between observed and

simulated streamflow data. Runoff responses to precipitation

events were calibrated by adjusting various pervious land segment

parameters PWATER: Lower Zone Evapotranspiration, Lower Zone

Nominal Soil Moisture Storage, Index of Infiltration Capacity, Base

Groundwater Recession, Fraction of Groundwater Inflow to Deep

Recharge, Fraction of Remaining Evapotranspiration from Baseflow,

Interflow Inflow Parameter, Interflow Recession Parameter and

Upper Zone Nominal Soil Moisture Storage. The different DEMs

used in simulation will differ in the channel routing geometry,

channel length, width, depth, slope, surface area and volume of

water. These values are obtained from the DEM’s and are used to

populate the hydraulic function tables in HSPF which will define

the river reaches hydrology.

The performance evaluation of hydrologic models is generally

made and reported through comparisons of simulated and

observed variables. In our study, simulated and measured stream-

flow were used in statistical performance functions to compare

catchments at the lower gage station. Three model efficiency

criteria were applied for analyses: deviation of runoff volumes,

NasheSutcliffe coefficient of efficiency and coefficient of

determination.

Table 2

DCEW assessment.

Cell size (m) Data volume (kb) Total stream length (m)

1 267,637 39,798

5 10,710 35,521

10 2681 35,413

30 299 33,412

60 75 32,398

Table 3

SCW Assessment.

Cell size (m) Data volume (kb) Total stream length (m)

1 676,671 121,039

5 101,882 119,104

10 25,471 117,580

30 2832 112,311

60 709 100,550

Fig. 5. Stream length as a function of cell size in the three watershed study areas.

Fig. 6. LRMSE values as a function of DEM cell size for each watershed.

Fig. 7. Sinuosity difference by cell size in the three watershed study areas.
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6.2. Model performance evaluation

To quantify model performance, several statistical measures

were calculated for all simulations. Bennett et al. (2013) presents

several methods for measuring quantitative performance

including: direct model comparison, comparison of real and

modeled values concurrently, key residual criteria, residual

methods using data transformations and, correlation and model

efficiency performance measures. A brief description of the statis-

tical criteria used follows:

The deviation of runoff volumes Dv, also known as the per-

centage bias, is the simplest goodness-of-fit criterion (Legates and

McCabe, 1999). Its value is calculated as follows:

Dv½%�n ¼

Pn
i¼1ðSi � OiÞ
Pn

i¼1ðOiÞ
� 100 (2)

where Si is the simulated discharge for each time step, Oi is the

observed value and n is the total number of values within the

period of analysis. For a perfect model, Dv is equal to zero. The

smaller the Dv value, the better the performance of the model.

The NasheSutcliffe coefficient (Nr or E) is ameasure of statistical

association, which indicates the percentage of the observed vari-

ance that is explained by the model. The NasheSutcliffe coefficient

(Nash and Sutcliffe, 1970), also known as the efficiency criterion (E),

is estimated using Equation (3):

E ¼ 1�

Pn
i¼1ðOi � SiÞ

2

Pn
i¼1ðOi �BiÞ

2
(3)

where Øi is the average measured discharge and all the other var-

iables have the same meaning as above. The second term in

Equation (3) represents the ratio between the mean square error

(MSE) and the variance of the observed data. Thus, if a value of E

equals to zero it indicates that the model output is not better than

the averaged observed streamflow for the entire period of analysis.

Essentially, the closer the model efficiency to 1, the more accurate

the model. Mean Square Error (MSE) quantifies the difference be-

tween values implied by an estimator and the true values of the

quantity being estimated, a value of zero means that the estimator

predicts observations of the parameter with perfect accuracy. It can

be estimated by using Equation (4):

MSE ¼
1

n

Xn

i¼1
ðyi � oiÞ (4)

where n is the number of predictions, yi is the estimation values and

oi are the observed values.

Root Mean Square Error (RMSE) e also called root mean square

deviation e is the standard deviation of the differences between

predicted values by a model and the observed values. RMSE of a

model prediction is defined in Equation (5):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1
ðyi � oiÞ

r

(5)

Fourth Root Mean Quadruple Error (R4MS4E) is a statistic that

emphasizes large errors by using the fourth power of the RMSE as

in Equation (6):

R4MS4E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1
ðoi � siÞ

44

r

(6)

Relative Volume Error (RVE) gives an indication of how good a

measurement is relative to the size of the sample being measured.

RVE can vary between �N andN with an ideal value of zero; it is

estimated using Equation (7):

RVE ¼
1
n

Pn
i¼1ðoi � siÞ

1
n

Pn
i¼1ðoiÞ

(7)

The Coefficient of Determination (R2) determines howmuch the

variance between two variables is described by a linear fit. It

can vary between 0 and 1, the higher the value the better fit

(Equation (8)).

R2 ¼

0

B

@

Pn
i¼1ðoi �BÞðyi � yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðoi �BÞ2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðyi � yÞ2

q

1

C

A

2

(8)

where y is the average of the predicted values.

Standard Deviation Ratio (RSR) is similar to RMSE weighted by

standard deviation of the observed values; with an ideal value of

zero it can vary between zero and N and is estimated using

Equation (9):

RSR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðoi � siÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðoi �BÞ2

q (9)

6.3. Hydrological simulation sensitivity based on DEM resolution

The values of hydrologic parameters that were adjusted using

HSPExp during the calibration process are within the range of

Fig. 8. HSPF calibration steps.
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those shown in literature (Bicknell et al., 2005). Simulated annual

streamflow for the different DEM resolutions for the period 2000

to 2005 is shown in Fig. 9. The total simulated runoff was over-

estimated for all DEMs, the percentage difference achieved was

6.2%, 6.1% 7.5%, 5.9% and 10.9% for 1 m, 5 m, 10 m, 30 m and 60 m

resolutions respectively. There was good agreement between

observed and simulated annual streamflow for the years 2000

and 2001 (<10% difference) and fair for the years 2002 and 2004

(<20%). Daily (Fig. 10) and average monthly (Fig. 11) hydrographs

(DEM10) from the model were plotted with the respective

observed discharge from the DCEW gaging station (daily and

average monthly simulation for the remaining DEM’s are avail-

able upon request). Daily and monthly calibration and validation

shows fair results based on the statistics criteria shown in

Table 4.

For validation purposes, the calibratedmodel was run for 2007e

2009 without changing any parameter values. Simulated daily and

average monthly, were compared with respective observed data

values. Fig. 12 and Fig. 13 show the results obtained for the 10 m

DEM resolution.

Satisfactory agreement between observed and simulated

streamflow was obtained in the validation model. The total simu-

lated runoff was underestimated by 8.9% and 9% for daily and

average monthly. Even though the NasheSutcliffe coefficient of

efficiency value is considered to be a satisfactory modeling result

for both calibration and validation it is worth noting that observed

flow data for DCEW is affected by ice formation during winter

months affecting data accuracy.

Results of this calibration and validation show that insignificant

variations in model accuracy occur depending on the resolution of

the input LiDAR-derived DEM used to generate stream networks

and watershed boundaries. Although the largest deviation of runoff

volume occurred for the 60 m cell size DEM, there is no consistent

pattern in the simulation error based on the DEM used. We expect

that the lack of apparent effect onmodel results may be due, in part,

to the low temporal resolution of the model (daily and monthly

time steps) and that a higher temporal resolution model might

show more dramatic effects of DEM resolution.

7. Conclusions

The effect of LiDAR-derived DEM resolution on hydrographic

features derivation is clearly evident. Among all the DEM samples

from 1 to 60 m cell size, the total stream length were greatest at the

cell size of 1 m, and there was a descending tendency with the

increase in cell size. The results show that higher resolution LiDAR-

derived DEMs produce more detailed hydrographic features.

LRMSE increased with cell size, indicating better accuracy at higher

resolution (smaller cell size). Results demonstrated that the dif-

ference in the spatial distance between the reference and modeled

streams tended to be smaller with a finer resolution. Interestingly,

this variability in LRMSE, did not translate into notable variation in

Fig. 10. Daily observed and simulated streamflow at DCEW lower station: time series (left) and scatter plot (right, R2 ¼ 0.538).

Fig. 11. Average monthly observed and simulated streamflow at DCEW lower station: time series (left) and scatter plot (right, R2 ¼ 0.682).
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hydrologic model results. We also observed that the absolute de-

viation between sinuosity of sample streams and reference data

reached its smallest value at the cell size of 10m. This demonstrates

the resulting shape of streams obtained from LiDAR data matched

best with the reference data at an intermediate cell size instead of

the highest resolution (1 m DEM).

Although we based our study on LiDAR data, we expect that

similar results would be achieved using DEM’s derived from other

data sources. These results are consistent with Zhang and

Montgomery (1994) who proposed that a 10 m grid cell size rep-

resents a rational compromise between increasing resolution and

data volume for simulating geomorphic and hydrological processes.

This also agrees with Zhang et al. (2008) who showed that 10 m

LiDAR DEMmodeled watershed discharge and sediment yield were

closest to field observations. Indeed, although extremely high-

resolution data are becoming more readily available, our results

show that the use of such data may not necessarily result in better

DEMs for hydrologic applications.

Our daily and average monthly streamflow simulation

modeling showed satisfactory agreement between observed and

simulated values, evaluated by the NasheSutcliffe coefficient of

efficient and confirmed by the model validation. Future work is

needed to explore the sensitivity of the modeled streamflow using

higher resolution DEM’s at sub daily model time steps. Also,

sources of inaccurate data due to frozen conditions and conse-

quently reduced streamflow need to be further investigated in the

DCEW watershed.

In summary, our results confirm that higher resolution LiDAR-

generated DEMs generally do result in improved stream network

and watershed boundary representations, but we determined that

the improvements in hydrography do not necessarily result in

improved streamflow simulations using a watershed scale hydro-

logic model. These results have significant implications for resource

allocation in hydrologic modeling, as they suggest that expensive

data collection efforts (e.g. LiDAR data collection) for the express

purpose of generating high resolution DEMs for watershed

Table 4

Statistical criteria for the DCEW model calibration by DEM cell size.

DEM1 DEM5 DEM10 DEM30 DEM60

Calibration

Daily

E 0.45 0.45 0.50 0.45 0.41

RSR 0.75 0.75 0.71 0.74 0.77

R2 0.54 0.54 0.54 0.54 0.42

Dv (%) 6.20% 6.10% 7.50% 5.90% 10.90%

MSE 0.02 0.02 0.02 0.02 0.02

RMSE 0.14 0.14 0.13 0.14 0.14

R4MS4E 0.36 0.36 0.35 0.36 0.36

RVE 0.07 0.07 0.08 0.06 0.12

Monthly

E 0.64 0.64 0.65 0.64 0.61

RSR 0.60 0.60 0.60 0.60 0.63

R2 0.67 0.67 0.68 0.67 0.65

Dv (%) 6.30% 6.10% 7.40% 6.00% 11.00%

MSE 0.01 0.01 0.01 0.01 0.01

RMSE 0.10 0.10 0.10 0.10 0.10

R4MS4E 0.17 0.17 0.17 0.17 0.18

RVE 0.07 0.07 0.08 0.06 0.12

Validation

Daily

E 0.50 0.50 0.49 0.50 0.47

RSR 0.61 0.60 0.71 0.60 0.61

R2 0.52 0.52 0.52 0.52 0.52

Dv (%) �10.70% �9.20% �8.90% �9.00% �0.60%

MSE 0.01 0.01 0.01 0.01 0.01

RMSE 0.10 0.10 0.10 0.10 0.10

R4MS4E 0.18 0.18 0.18 0.18 0.17

RVE �0.12 �0.10 �0.08 �0.10 �0.01

Monthly

E 0.63 0.63 0.64 0.63 0.61

RSR 0.61 0.61 0.47 0.61 0.62

R2 0.64 0.64 0.65 0.64 0.64

Dv (%) �10.10% �8.70% �9.00% �8.40% �0.10%

MSE 0.01 0.01 0.01 0.01 0.01

RMSE 0.08 0.08 0.07 0.08 0.08

R4MS4E 0.12 0.12 0.11 0.12 0.11

RVE �0.10 �0.09 �0.08 �0.08 0.00

Fig. 12. Daily observed and simulated streamflow for the validated model at DCEW lower station: time series (left) and scatter plot (right, R2 ¼ 0.519).

Fig. 13. Average monthly observed and simulated streamflow for the validated model at DCEW lower station: time series (left) and scatter plot (right, R2 ¼ 0.654).
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modeling may not necessarily result in better hydrologic

simulations.
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