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I. INTRODUCTION

While the classical Kalman filter provides a complete and

rigorous solution for state estimation of linear systems under

Gaussian noise, the estimation problem for nonlinear systems

remains a problem of intense interest. Although rigorous

solutions to the nonlinear problem have been studied, these

results are either too narrow in applicability [2, 3] or are

computationally expensive [4]. Consequently, a wide range

of suboptimal methods have been examined for practical

applications. The estimation problem is complicated by the

fact that the distribution of the state is not completely char-

acterized by the second moment, as is the case with linear

systems. In particular, the probability density of the state

evolves according to the Fokker-Planck partial differential

equation [5].

The extended Kalman filter (XKF) [6] proceeds by adopt-

ing the formulae of the classical Kalman filter with the

Jacobian of the dynamics matrix (in both continuous time

and discrete time) playing the role of the linear dynamics

matrix. This approach thus mimics the classical Kalman filter

by propagating a matrix (the surrogate covariance) that is

analogous to the error covariance in the linear case. Although

XKF estimation is effective in many practical cases, the

method fails to account for the fully nonlinear dynamics

in propagating the error covariance, which, in turn, fails to

represent the error probability density.

To avoid the use of the Jacobian, which may not exist for

nonsmooth dynamics, the state-dependent Riccati equation
(SDRE) approach retains the fully nonlinear dynamics by

viewing the nonlinear plant dynamics as “frozen” linear

dynamics [7, 8]. This approach requires a choice of frozen-

linear dynamics, which are not unique. In addition, this

method, like XKF estimation, propagates a surrogate error

covariance.

In the present paper we consider yet another approach to

nonlinear state estimation known as the ensemble Kalman
filter (EnKF). While EnKF estimation has not been studied

outside of specialized applications, its importance to specific

problems is worthy of note. In particular, EnKF estimation

is widely used in weather forecasting, where the models

are of extremely high order and nonlinear, the initial states

are highly uncertain, and a large number of measurements
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are available. There exist few textbook discussions of EnKF

estimation. A brief overview of the technique is given in [9]

and [10] . In the weather prediction literature, there exist a

large number of papers that make use of the EnKF [11, 12].

The EnKF belongs to a broader category of filters known

as particle filters [13, 14]. Unlike XKF estimation and SDRE

estimation, particle filters use neither the Jacobian of the

dynamics nor frozen linear dynamics. The starting point

for particle filters is choosing a set of sample points, that

is, an ensemble of state estimates, that captures the initial

probability distribution of the state. These sample points are

then propagated through the true nonlinear system and the

probability density function of the actual state is approxi-

mated by the ensemble of the estimates.

In the case of the unscented Kalman filter [15] and the

central difference Kalman filter [16], the sample points are

chosen deterministically. In fact, the number of sample points

required is of the same order as the dimension of the system.

On the other hand, the number of ensembles required in

the EnKF is heuristic. While one would expect that a large

ensemble would be needed to obtain useful estimates, the

literature on EnKF suggests that an ensemble of size 50 to

100 is often adequate for systems with thousands of states.

The accuracy of the state estimates as a function of ensemble

size is thus an important research question.

The present paper has three main goals. First, we sum-

marize the steps of the EnKF estimation. Next, we apply

the EnKF to a collection of three numerical examples to

obtain insight into its effectiveness. In particular, we consider

one linear example and two nonlinear examples, of both low

order and high order. Our goal is to determine the tradeoff

between ensemble size and estimation accuracy. Finally,

using the results of these numerical studies, we speculate

on those features that contribute to the performance of the

EnKF in applications. Our hope is that this study will moti-

vate future analytical investigations to better understand the

effectiveness of EnKF in high-order, nonlinear applications.

II. THE EXTENDED KALMAN FILTER

Consider a discrete-time nonlinear system with dynamics

xk+1 = f(xk, uk) + wk (2.1)

and measurements

yk = h(xk) + vk, (2.2)

where xk, wk ∈ R
n, uk ∈ R

m, yk, and vk ∈ R
p. We

assume that wk and vk are stationary zero-mean white noise

processes with covariance matrices Qk and Rk, respectively.

Furthermore, we assume that x0, wk and vk are uncorrelated.
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The objective is to obtain estimates xa
k of the state xk

using measurements yk so that tr
(E [ea

k(ea
k)T]

)
is minimized,

where ea
k ∈ R

n is defined by

ea
k � xk − xa

k. (2.3)

When the dynamics and measurement in (2.1) and (2.2)

are linear, that is,

f(xk, uk) = Akxk + Bkuk,

h(xk) = Ckxk,
(2.4)

the Kalman filter provides optimal estimates xa
k of the state

xk. Define the analysis state error covariance P a
k ∈ R

n×n

by P a
k � E [

ea
k(ea

k)T
]
. The Kalman filter equations [1] are

expressed in two steps, the analysis step, where information

from the measurements is used, and the forecast step, where

information about the plant is used. These steps are expressed

as the analysis step:

Kk = P f
xyk

(
P f

yyk

)−1

, (2.5)

P a
k = (I − KkCk) P f

k, (2.6)

xa
k = xf

k + Kk

(
yk − Ckxf

k

)
, (data update) (2.7)

and the forecast step:

xf
k+1 = Akxa

k + Bkuk, (physics update) (2.8)

P f
k+1 = AkP a

k AT
k + Qk, (2.9)

where the forecast state error covariance P f
k ∈ R

n×n is

defined by P f
k � E [

ef
k(ef

k)T
]
, and

P f
xyk

� E [
ef
k(yk − yf

k)T
]

= P f
kCT

k ,

P f
yyk

� E [
(yk − yf

k)(yk − yf
k)T

]
= CkP f

kCT
k + Rk,

(2.10)

where yf
k � Cxf

k, ef
k � xk − xf

k.

However, when the dynamics in (2.1) are nonlinear, the

discrete-time Riccati update equation (2.9) cannot be used to

propagate the forecast state error covariance P f
k. Propagating

the state error covariance of a nonlinear system is generally

difficult [3]. Hence, we consider approximate techniques for

state estimation of nonlinear systems. One of the most widely

used techniques for state estimation of nonlinear systems is

the extended Kalman filter, where in the forecast step,

xf
k+1 = f(xa

k, uk), (physics update)

P f
k+1 = AkP a

k AT
k + Qk,

(2.11)

and in the data assimilation step,

xa
k = xf

k + Kk(yk − h(xf
k)),

Kk = P f
kCT

k (CkP f
kCT

k + Rk)−1,

P a
k = P f

k − P f
kCT

k (CkP f
kCT

k + Rk)−1CkP f
k,

(2.12)

where the Jacobians Ak ∈ R
n×n and Ck ∈ R

p×n of f(x, u)
and h(x), respectively, are defined by

Ak � ∂f(x, u)

∂x

˛̨
˛
x=xa

k

, Ck � ∂h(x)

∂x

˛̨
˛
x=xa

k

. (2.13)

III. THE ENSEMBLE KALMAN FILTER

The ensemble Kalman filter (EnKF) is a suboptimal es-

timator, where the error statistics are predicted by using a

Monte Carlo or ensemble integration to solve the Fokker-

Planck equation. The Ensemble Kalman Filtering method is

presented in three stages.

First, to represent the error statistics in the forecast step,

we assume that at time k, we have an ensemble of q
forecasted state estimates with random sample errors. We

denote this ensemble as X f
k ∈ R

n×q , where

X f
k

�
= (xf1

k , . . . , x
fq
k ), (3.1)

and the superscript fi refers to the i-th forecast ensemble

member. Then, the ensemble mean xf
k ∈ R

n is defined by

xf
k

�
=

1
q

q∑
i=1

xfi
k .

Since the true state xk is not known, we approximate (2.10)

by using the ensemble members. We define the ensemble

error matrix Ef
k ∈ R

n×q around the ensemble mean by

Ef
k

�
=

[
xf1

k − xf
k · · · x

fq
k − xf

k

]
(3.2)

and the ensemble of output error Ea
yk

∈ R
p×q by

Ea
yk

�
=

[
yf1

k − yf
k · · · y

fq
k − yf

k

]
. (3.3)

We then approximate P f
k by P̂ f

k, P f
xyk

by P̂ f
xyk

, and P f
yyk

by

P̂ f
yyk

, respectively, where

P̂ f
k

�
=

1

q − 1
Ef

k(Ef
k)T,

P̂ f
xyk

�
=

1

q − 1
Ef

k(Ef
yk

)T, P̂ f
yyk

�
=

1

q − 1
Ef

yk
(Ef

yk
)T

(3.4)

Thus, we interpret the forecast ensemble mean as the best

forecast estimate of the state, and the spread of the ensemble

members around the mean as the error between the best

estimate and the actual state.

The second step is the analysis step: To obtain the analysis

estimates of the state, the EnKF performs an ensemble of

parallel data assimilation cycles, where for i = 1, . . . , q

xai
k = xfi

k + K̂k

(
yi

k − h(xfi
k )

)
. (3.5)

The perturbed observations yi
k are given by

yi
k = yk + vi

k, (3.6)

where vi
k is a zero-mean random variable with a normal

distribution and covariance Rk. The sample error covariance

matrix computed from the vi
k converges to Rk as q → ∞. We

approximate the analysis error covariance P a
k by P̂ a

k , where

P̂ a
k

�
=

1
q − 1

Ea
kEaT

k ,

and Ea
k is defined by (3.2) with xfi

k replaced by xai

k and

xf
k replaced by the mean of the analysis estimate ensemble

members. We use the classical Kalman filter gain expression

and the approximations of the error covariances to determine

the filter gain K̂k by

K̂k = P̂ f
xyk

(P̂ f
yyk

)−1. (3.7)

The last step is the prediction of error statistics in the

forecast step:

xfi
k+1 = f(xai

k , uk) + wi
k, (3.8)
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where the values wi
k are sampled from a normal distribution

with average zero and covariance Qk. The sample error

covariance matrix computed from the wi
k converges to Qk

as q → ∞. Finally, we summarize the analysis and forecast

steps.

Analysis Step:

K̂k = P̂ f
xyk

(P̂ f
yyk

)−1,

xai
k = xfi

k + K̂k

`
yk + vi

k − h(xfi
k )

´
,

xa
k = 1/q

qX
i=1

xai
k .

(3.9)

Forecast Step:

xfi
k+1 = f(xai

k , uk) + wi
k,

xf
k+1 = 1/q

qX
i=1

xfi
k+1,

Ef
k =

h
xf1

k+1 − xf
k+1 · · · x

fq
k − xf

k+1

i
,

Ea
yk

=
h

yf1
k − yf

k · · · y
fq
k − yf

k

i
,

P̂ f
xyk

=
1

q − 1
Ef

k(Ef
yk

)T, P̂ f
yyk

=
1

q − 1
Ef

yk
(Ef

yk
)T.

(3.10)

Unlike the extended Kalman filter, the evaluation of the

filter gain K̂k in the EnKF does not involve an approximation

of the nonlinearity f(x, u) and h(x). Hence, the computa-

tional burden of evaluating the Jacobians of f(x, u) and h(x)
is absent in the EnKF. Furthermore, note that (2.11)-(2.12)

in the XKF involves evaluation of P f
k ∈ R

n×n, which is an

O(n3) operation. However, in (3.9)-(3.10) of the EnKF, only

P̂ f
xyk

∈ R
n×p and P̂ f

yyk
∈ R

p×p, are evaluated, which is an

O(pqn) operation. Hence, if q � n, then the computational

burden of evaluating the approximate covariances in the

EnKF is less than the computational burden of determining

the approximate covariances in the XKF. However, (3.9)

implies that q parallel copies of the model have to be

simulated, and, when q is large, the computational burden

of the forecast step in the EnKF is large. Alternatively, in

the XKF, only one copy of the model is simulated to obtain

the state estimates. Hence, if n is very large and q � n, then

the EnKF is computationally less intensive than the XKF.

IV. LINEAR EXAMPLE: HEAT CONDUCTION IN A

ONE-DIMENSIONAL BAR

While the EnKF was developed with nonlinear estimation

problems in mind, we start with a linear heat conduction

example. The reason for this example is twofold. Firstly,

our main objective, the determination of parameters that

contribute to the tradeoff between ensemble size and esti-

mation accuracy, will not be influenced by nonlinear effects.

Secondly, we can calculate the optimal state estimates using

the Kalman filter. A comparison between the EnKF and

KF thus demonstrates the tradeoff between the number of

ensemble members needed and accuracy in estimation.

Consider the heat conduction in a one-dimensional bar,

governed by the equation

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
+ u(x, t), (4.1)
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Fig. 1. Mean squared error between the estimates obtained from the EnKF
estimator with 10, 20 and 100 ensemble members and the state of the truth
model. The MSE of the KF estimates is also plotted for comparison.

where T (x, t) is the temperature at position x and time t,
u(x, t) represents external heat sources acting on the bar, and

α is the heat conduction coefficient. The initial and boundary

conditions are T (x, 0) = T (0, t) = T (L, t) = 300K,

where L is the length of the bar. Two sinusoidally varying

heat sources are acting on the bar at positions 0.33L and

0.67L, respectively. Using a central difference method, (4.1)

is discretized over a spatial grid with n = 100 cells, resulting

in the linear time invariant model

xk+1 = Axk + Buk + wk, (4.2)

where A ∈ R
100×100 is tridiagonal, B is chosen such that the

input uk ∈ R
2 affects cells 33 and 67, and wk is assumed to

be zero-mean white Gaussian process noise with covariance

matrix Q = 0.5In.We assume that noisy measurements yk

of the temperature at cells 10, 20, . . . , 90 are available and

vk is zero-mean white Gaussian noise with covariance R =
0.01I9.

We first simulate the truth model from an arbitrary initial

condition x0. A low number of ensemble members leads

to sampling errors, which implies that the sample error

covariance matrix computed from the wi
k is different from

the actual process noise covariance matrix Q, degrading the

performance of the filter. The mean squared error (MSE)

in the state estimates is shown in Figure 1 for the KF, the

EnKF with 10, 20, and 100 ensemble members. As expected,

the accuracy of the EnKF increases when the number of

ensemble members grows. Figure 2 shows the evolution of

the MSE as a function of the ensemble size. This is an

illustration of the tradeoff between accuracy and number of

ensemble members.

V. NONLINEAR EXAMPLE: VAN DER POL OSCILLATOR

Next, we compare the performance of the XKF estimator

and the EnKF estimator on a low dimensional nonlinear

example. A first-order Euler discretization of the equations
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Fig. 2. MSE as a function of ensemble size. This is an illustration of the
tradeoff between accuracy and the ensemble size.

of motion of the Van der Pol oscillator yields

xk+1 = f(xk), (5.1)

where xk =
[

x1,k x2,k

]T
,

f(xk) =

»
x1,k + hx2,k

x2,k + h
`
α(1 − x2

1,k)x2,k − x1,k

´ –
, (5.2)

and h is the step size. We assume that the Van der Pol

oscillator is driven by wk, that is,

xk+1 = f(xk) + wk, (5.3)

where wk ∈ R
2 is zero-mean white Gaussian noise with

covariance matrix Q ∈ R
2×2. We assume that for all k � 0,

measurements of either x1,k or x2,k are available so that

yk = Cxk + vk, (5.4)

where vk ∈ R is zero mean white Gaussian noise with

covariance R > 0 and C selects x1,k or x2,k. The objective

is to obtain estimates xa
k of the state xk using measurements

yk in an extended Kalman filter. Note that the XKF estimator

requires the Jacobian of the function f(x), whereas the

EnKF estimator does not require the Jacobian. Let α = 1
and the step size h = 0.1 so that the discrete-time system

(5.1) is stable. Let the noise covariances of wk and vk be

Q = diag(0.0262, 0.008) and R = 0.003, respectively. We

first simulate the truth model (5.3) from an arbitrary initial

condition x0 ∈ R
2. Next, we assume that xf

0 �= x0 and use

measurements yk of x2,k so that C =
[

0 1
]
, to obtain

estimates xa
k of xk. The extended Kalman filter gain Kk is

obtained using (2.5), (2.11)-(2.13) and the initial condition

P f
0 = diag(6.3e − 4, 2.2e − 4). The state estimates and

the MSE in the state estimates of xk obtained by using

measurements of x2,k in the XKF are shown in Figures 3

and 4, respectively. The state estimates obtained from the

EnKF when 5, 10, and 30 ensemble members are used, are

also shown in Figure 3. The MSE in the state estimates

obtained from the EnKF is shown in Figure 4. In this case

the performance of the EnKF estimator with 5 ensembles is

the same as the performance of the extended Kalman filter.

However, as the ensemble size q increases, the performance

0 50 100 150 200 250 300 350 400 450 500
−8
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−4

−2

0

2

4

6

x 1,
k

0 50 100 150 200 250 300 350 400 450 500
−4

−2
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2

4

time index −k

x 2,
k

actual state 
EnKF est. with q=5
EnKF est. with q=10
EnKF est. with q=30
KF estimate 

Fig. 3. State estimates xa
k of the noise driven Van der Pol oscillator when

measurements of x2,k are used in the EnKF estimator. The state estimates
from the EnKF with q = 5, 10, and 30 ensembles is also plotted. The state
estimates improve as more ensembles are used.

of the EnKF improves and the performance of the EnKF with

30 ensembles is better than the performance of the XKF.

VI. NONLINEAR EXAMPLE: ONE-DIMENSIONAL

HYDRODYNAMIC FLOW

We consider the flow of an inviscid, compressible fluid

along a one-dimensional channel. The dynamics of hydro-

dynamic flow are governed by Euler’s equations
∂�

∂t
= − ∂

∂x
�v,

d

dt

„
p

�γ

«
= 0,

�
∂v

∂t
= −�v

∂v

∂x
− ∂p

∂x
,

(6.1)

where � ∈ R is the density, v ∈ R is the velocity, p ∈ R

is the pressure of the fluid, and γ = 5
3 is the ratio of

specific heat of the fluid. Due to the presence of coupled

partial differential equations, it is generally difficult to obtain

closed-form solutions of (6.1). However, a discrete-time

model of hydrodynamic flow can be obtained by using a

finite-volume based spatial and temporal discretization.

Assume that the channel consists of n identical cells. For

all i = 1, . . . , n, let �[i], v[i], and p[i] be the density, velocity,

and pressure in the ith cell. We use a second-order Rusanov

scheme [17] to discretize (6.1) and obtain a discrete-time

model that enables us to update the flow variables at the

center of each cell. We assume that the flow variables at

cells 1 and 2 are determined by the boundary conditions uk

so thath
�
[1]
k m

[1]
k E [1]

k �
[2]
k m

[2]
k E [2]

k

iT

= uk. (6.2)

Furthermore, we assume Neumann boundary conditions for
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xk and its ensemble Kalman filter estimate xa

k is shown. The error in the
state estimates decreases as the number of ensembles increases and the
performance of the EnKF estimator with q = 30 ensembles is better than
the performance of the XKF estimator.

the cells with index n − 1 and n − 2 so that, for all k � 0,2
64

�
[n]
k

m
[n]
k

E [n]
k

3
75 =

2
64

�
[n−1]
k

m
[n−1]
k

E [n−1]
k

3
75 =

2
64

�
[n−2]
k

m
[n−2]
k

E [n−2]
k

3
75 , (6.3)

where, for all i = 1, . . . , n, the momentum m[i] and energy

E [i] in the ith cell are given by

m[i] = �[i]v[i], E [i] =
1
2
�[i](v[i])2 +

p[i]

γ − 1
. (6.4)

Finally, define the state vector x ∈ R
3(n−4) by

x
�
=

[
�[3] m[3] E [3] · · ·�[n−2] m[n−2] E [n−2]

]T
. (6.5)

Using a second-order Rusanov scheme [17] yields a non-

linear discrete-time update model of the form

xk+1 = f(xk, uk). (6.6)

Let n = 40 so that x ∈ R
108. For all k � 0, let uk ∈ R

3

denote the boundary condition for the first two cells, so that

uk =
ˆ
�
[1]
k m

[1]
k E [1]

k

˜T
=

ˆ
�
[2]
k m

[2]
k E [2]

k

˜T
. (6.7)

For all k � 0, we choose �
[1]
k = �

[2]
k = 1, v

[1]
k = v

[2]
k =

1 + 0.1 sin(0.5k), and p
[1]
k = p

[2]
k = 1. We assume that the

truth model is given by

xk+1 = f(xk, uk) + wk, (6.8)

where wk ∈ R
3(n−4) represents unmodeled drivers and is

assumed to be zero-mean white Gaussian process noise with

covariance matrix Q ∈ R
3(n−4)×3(n−4), where

Q = diag(Q[3], Q[4], . . . , Q[n−2]) (6.9)

and, for all i = 3, . . . , n − 2, Q[i] ∈ R
3×3 is defined by

Q[i] =

{
diag(0.001, 0.005, 0.01), if i = 10, 30,

03×3, else.
(6.10)

It follows from (6.8)-(6.9) that the flow variables in only the

10th and 30th cell are directly affected by wk. Next, assume

that the measurement yk ∈ R
6 of density, momentum and

energy at the 16th and 17th cells is given by

yk = Cxk + vk, (6.11)

where C ∈ R
6×3(n−4) and vk ∈ R

6 is zero-mean white

Gaussian noise with covariance matrix R = 0.001I6×6.

We simulate the truth model (6.8) from an arbitrary initial

condition x0 ∈ R
3(n−4) and obtain measurements yk from

(6.11). The objective is to estimate the density, momentum

and energy at the cells where measurements of flow variables

are unavailable using the XKF and the EnKF.

Note that the extended Kalman filter (2.11)-(2.13) requires

the Jacobian of the nonlinear function f(x, u). However,

f(x, u) in (6.6) is obtained using the second-order Rusanov

scheme and contains the non-differentiable functions abs(·)
and max(·, ·). Hence, Ak defined in (2.13) does not exist.

Hence, let f̂(x, u) be an approximation of f(x, u) in (6.8)

obtained by replacing all non-differentiable functions in

f(x, u) with differentiable approximations. For example, the

abs(x) function can be approximated by tanh(αx), where

α > 0 is large. Next, define the Jacobian Âk of f̂(x, u) by

(2.13) with f(x, u) replaced by f̂(x, u). Although an analyt-

ical expression for Âk can be obtained, numerical techniques

are typically used to obtain an approximate Jacobian. Due

to the large dimension of the system, obtaining an analytical

expression for Âk is tedious and hence, we use a numerical

approximation Ãk of Âk.

The estimates xf
k from the extended Kalman filter are

obtained from (2.11)-(2.13) with Ak replaced by Ãk and

initial conditions

xf
0 =

[
1 1 1.5 · · · 1 1 1.5

]T
,

P f
0 = 0.001I3(n−4)×3(n−4).

(6.12)

The state estimates from the ensemble Kalman filter are

obtained from (3.9)-(3.10). The ensemble size q is varied

and, for all i = 1, . . . , q, the initial ensemble members xfi
0

are assumed to be random variables with mean xf
0 and co-

variance P f
0 . Figure 5 shows the MSE between the estimates

xf
k and state xk when no data assimilation is performed and

when measurements yk are used in the extended Kalman

filter. The error in the state estimates obtained using the

ensemble Kalman filter with ensemble size q = 25, 40, 60,

and 80 is shown in the same figure. It can be seen that

the error in the estimate of the flow variables decreases

as the ensemble size is increased from 25 to 60. However,

the performance of the EnKF estimator with 60 ensemble

members is the same as the performance of the EnKF with

80 ensemble members. Hence, further improvement in the

performance cannot be achieved by increasing the ensemble

member size q.

Figure 6 shows the density profile of the truth model at t =
190s. The density profiles obtained by using the estimates of

the extended Kalman filter and the ensemble Kalman filter

are also plotted. As the ensemble size q is increased, the

performance of the EnKF improves and as shown in Figure
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Fig. 6. Profile of the density ρ at t = 190s. The actual density profile
and the density profile from the state estimates obtained using the extended
Kalman filter and the ensemble Kalman filter are shown. The density profile
when no data assimilation is performed is also shown in the figure for
comparison.

7, the computational time required to calculate the estimates

also increases. The time taken to simulate 200 s of flow in

the truth model is also shown in Figure 7 for comparison.

The simulations were performed using MATLAB 7.0 on a

Pentium 4, 3.2 GHz processor. The huge computational time

in the XKF is due to the huge matrix multiplication required

to evaluate the covariance, and the numerical procedure used

to obtain the Jacobian.

VII. CONCLUSION

In this paper we described the ensemble Kalman filter

algorithm. This approach to nonlinear Kalman filtering is

a Monte Carlo procedure, which has been widely used in

weather forecasting applications. Our goal was to apply the

Truth model EnKF q=40 q=80 q=100 q=150 EKF
0
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200

250

tim
e 

in
 s

Fig. 7. Time required to simulate 200 s of hydrodynamics flow using the
truth model. The time required to obtain the state estimates using the XKF
and EnKF is shown.

ensemble Kalman filter to representative examples to quan-

tify the tradeoff between estimation accuracy and ensemble

size. For all of the linear and nonlinear examples that we

considered, the ensemble Kalman filter worked successfully

once a threshold ensemble size was reached. In future work

we will investigate the factors that determine this threshold

value.
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